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Abstract

Angular path integration is the ability of a system to estimate its own heading direction from 

potentially noisy angular velocity (or increment) observations. Non-probabilistic algorithms 

for angular path integration, which rely on a summation of these noisy increments, do not 

appropriately take into account the reliability of such observations, which is essential for 

appropriately weighing one’s current heading direction estimate against incoming information. In 

a probabilistic setting, angular path integration can be formulated as a continuous-time nonlinear 

filtering problem (circular filtering) with observed state increments. The circular symmetry of 

heading direction makes this inference task inherently nonlinear, thereby precluding the use 

of popular inference algorithms such as Kalman filters, rendering the problem analytically 

inaccessible. Here, we derive an approximate solution to circular continuous-time filtering, which 

integrates state increment observations while maintaining a fixed representation through both 

state propagation and observational updates. Specifically, we extend the established projection-

filtering method to account for observed state increments and apply this framework to the circular 

filtering problem. We further propose a generative model for continuous-time angular-valued 

direct observations of the hidden state, which we integrate seamlessly into the projection filter. 

Applying the resulting scheme to a model of probabilistic angular path integration, we derive 

an algorithm for circular filtering, which we term the circular Kalman filter. Importantly, this 

algorithm is analytically accessible, interpretable, and outperforms an alternative filter based on a 

Gaussian approximation.
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I. INTRODUCTION

A compass is an immensely useful tool for a traveler trying to find their way in a barren and 

featureless landscape. Absent such a tool, the traveler must employ dead reckoning, using 
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what they roughly know about how often and how much they have turned, and summing 

up those turns to maintain an internal sense of their spatial orientation. Angular path 

integration, i.e., estimation of heading direction or orientation based on angular self-motion 

cues, plays an essential role in spatial navigation of humans, other animals and robots 

[1, 2]. Imperfect sensors make angular path integration an inherently noisy process, and 

inevitably lead to an accumulation of error in the heading estimate over time. Other cues, 

such as those from visual landmarks, can help correct the estimate’s error, despite being also 

noisy and ambiguous. Importantly, properly combining path integration with these external 

cues requires a reliability-weighted update of the orientation estimate. Computing with 

uncertainties in such a strategic way is a hallmark of dynamic Bayesian inference, and calls 

for a probabilistic description. Our goal in this work is to derive a dynamic probabilistic 

algorithm for angular path integration.

It is well known that many organisms are able to maintain an internal compass which they 

update by self-motion cues. Since the discovery of orientation-selective head-direction cells 

in rats [3], and, more recently, the heading direction circuit in Drosophila [4], theoretical 

efforts to unravel the mechanism of angular path integration in the brain have highlighted the 

role of angular velocity observations of self-initiated turns [5, 6], e.g., from proprioceptive 

or vestibular feedback, or from visual flow. Current theories suggest that these biological 

systems implement angular path integration by neural network motifs called ring attractors 

[7, 6]. Such networks maintain a heading direction estimate through sustained neural 

activity, but lack the ability to simultaneously represent the estimate’s certainty. However, 

the question of whether such biological systems indeed only operate with single point 

estimates or instead perform probabilistic inference has been hampered by the lack of a 

probabilistic algorithm for path integration in the brain. The reason for this is the complex 

set of conditions that are required of such an algorithm: (i) the state-space is circular, (ii) 

the path integration must operate with a continuous time stream of inputs, (iii) it must 

maintain a fixed representation of the underlying probability distribution, in line with the 

expectation that, within a certain area of computation, the brain maintains a similarly fixed 

representation e.g., in terms of a parametric [8] or sampling-based [9] representation, and 

(iv) in addition to angular velocity observations, (noisy) direct angular observations (e.g., 

visual landmarks) may be present, which need to be integrated accordingly.

One approach to designing an algorithm that satisfies these conditions is to consider it in the 

broader context of continuous-time filtering, which aims to continuously update a posterior 

distribution over a dynamically evolving hidden state variable from noisy observational 

data. From condition (i), a circular state-space implies that the underlying filtering task is 

nonlinear, which precludes the use of popular linear schemes such as the Kalman filter 

[10, 11]. Furthermore, the solution to this so-called circular filtering problem is analytically 

intractable [12], and needs to be approximated. The approximation we derive here goes 

beyond existing circular filtering algorithms [13, 14, 15] (see also the review by Kurz et al. 

[12]) by both considering increment observations — like observations of angular velocity — 

and by addressing a continuous stream of observations (condition (ii)). Furthermore, while 

these previous approaches changed the representations used between prediction and update 

steps, ours uses a fixed representation, satisfying our condition (iii).
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A recent promising approach to circular filtering [16] supports continuous-time state 

transitions, but is limited to discrete-time and direct (rather than increment) observations. 

Their method is based on projection filtering [17, 18], a rigorous approach that combines 

nonlinear filtering with information geometry. The idea behind projection filtering is to 

approximate the posterior between consecutive discrete-time observations with a parametric 

distribution. This approximation is chosen to minimize the distance between the true and 

the approximated posterior, as measured by the Fisher metric. By updating only the values 

of the parameters, this approach automatically keeps a fixed representation for the posterior 

in terms of a parametric distribution. Furthermore, if the approximated posterior and the 

emission probabilities of the observations are conjugate, updating posterior parameters in 

light of further discrete-time direct observations is straightforward. Projection filtering can 

be generalized to hidden processes that evolve on arbitrary submanifolds of Euclidean space 

[19], which makes it applicable to the circular filtering problem. Two challenges hamper 

the direct application of projection filters to angular path integration. First, no variants 

currently exist that handle increment observations, either in discrete or continuous time, as 

we would require to process angular velocity observations. In fact, increment observations 

have generally received little attention in the filtering literature (but see [20]). Second, 

there is currently no framework that combines projection-filtering with angular-valued 

continuous-time observations. We will address both challenges in this work.

We introduce a novel continuous-time nonlinear filtering algorithm based on projection 

filtering, that includes increment observations and can be applied to circular filtering 

and to angular path integration, and that meets conditions (i)-(iv) outlined above. To 

do so, we first describe the general nonlinear filtering problem with observed increment 

observations in Euclidean space in Section II. In Section III, we review the projection 

filtering framework [17, 18] as an approximate solution for nonlinear filtering, and extend 

this approach to account for increment observations. We demonstrate that applying this 

framework to a linear filtering problem recovers the generalized Kalman filter. In Section 

IV, we revisit the continuous-time circular filtering problem. Therein, we first derive a 

probabilistic algorithm for angular path integration, i.e., when only increment observations 

are present. We then account for direct angular-valued observations, in addition to increment 

observations, by proposing a generative model based on a constant information-rate 

criterion that supports seamless inclusion into the filtering algorithm. Combining all of the 

above, we finally retrieve, as a special case of the general framework, a circular filtering 

algorithm for Gaussian-type increment and angular direct observations, which we term 

the circular Kalman filter. We demonstrate in numerical simulations that this algorithm 

performs comparably to an asymptotically-exact particle filter, and outperforms a Gaussian 

approximation in the estimation of both heading direction as well as its associated certainty.

II. THE FILTERING PROBLEM WITH INCREMENT OBSERVATIONS

We consider multivariate filtering with observations generated by increments of the hidden 

state, rather than the hidden state itself. We assume that the hidden state variable Xt ∈ ℝN

evolves according to a stochastic differential equation (SDE) of the form:
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dXt = f Xt, t dt + Σx
1/2dWt, (1)

with Wt an ℝN-Brownian motion (BM) process, a vector-valued drift function 

f : ℝN × ℝ ℝN, and a matrix ∑x
1/2 ∈ ℝN × N, which determines the error covariance of 

the hidden state process. In the following, we will use the shorthand ft(x): = f(x, t) or 

skip its argument completely (whenever there is no notational ambiguity). The density 

pt(x): = p Xt = x  of this stochastic process evolves according to a partial differential 

equation, the Fokker–Planck equation (FPE):

dpt = ℒ† pt dt, (2)

with

ℒ† pt(x) = − ∑
i = 1

N ∂
∂xi

fi(x, t)pt(x)

+ 1
2 ∑

i, j

N
Σx ij

∂2

∂xi∂xj
pt(x) .

(3)

Equivalently, expectations of a scalar test function ϕt: = ϕ Xt  with respect to pt(x) evolve 

according to

dE ϕt = E ℒ ϕt dt, (4)

with the propagator

ℒ ϕt(x, t) = ft(x)T ∇ϕt(x) + 1
2Tr HϕΣx , (5)

where ∇ denotes the gradient with respect to x, Tr( ⋅ ) denotes the trace operator and Hϕ

is the Hessian matrix with Hϕ ij =
∂2ϕt

∂xi∂xj
. Note that ℒ and ℒ† are adjoint operators with 

respect to the L2 inner product.

We assume that the hidden state process Xt in (1) cannot be observed directly, but instead 

is partially observed through the process dUt, which is governed by the infinitesimal state 

increments dXt:

dUt = C dXt + Σu
1/2dVt

= C ft Xt dt + C Σx
1/2dWt + Σu

1/2dVt .
(6)

where Vt is an ℝM-BM process, and C ∈ ℝM × N. The matrix Σu ∈ ℝM × M determines the 

level of noise in the increment observations. Due to its dependency on the increment dX, the 

observation process dUt is effectively governed by two noise sources, dWt and dVt. The first 
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is correlated with the noise in the hidden state dynamics. The second is independent of it. 

This is in contrast to classical filtering problems, which consider the noise in hidden states 

and observations to be independent (cf. Appendix V-A).

If U0: t = Uτ: τ < t  denotes the filtration generated by the process Ut, then the filtering 

problem is to compute the posterior density pt(x) = p Xt = x ∣ U0: t  or, equivalently, the 

posterior expectation E ϕt : = E ϕ Xt ∣ U0: t . In an uncorrelated noise setting, the Kushner–

Stratonovich equation describes the temporal evolution of the posterior expectation E ϕt
[21, 22, 23] (Appendix V-A). To find a similar formal solution for filtering with observed 

state increments (i.e., correlated noise), we can account for the correlations between 

observations and the hidden state by introducing a slight modification in the Kushner–

Stratonovich equation, resulting in a generalized Kushner–Stratonovich equation (gKSE) 

[23, Chapter 3.8] (cf. Nüsken et al. [20]). For our particular problem, we show in Appendix 

V-B that the dynamics of posterior expectations satisfy

dE ϕt = E ℒ ϕt dt + cov ϕt, ft + ΣxE ∇ϕt
T

⋅ CTΣu
−1 dUt − CE ft dt ,

(7)

with cov ϕt, ft = E ϕtft − E ϕt E ft , and

Σu = CΣxCT + Σu . (8)

Note that the right-hand side of (7) does not only depend on E ϕt , but also on E ϕtft , 

E ∇ϕt  and other expectations of potentially nonlinear functions, which in general cannot be 

computed from E ϕt  alone. Therefore, in order to completely characterize the probabilistic 

solution, we would need one equation (7) for every moment of the posterior, with each 

moment corresponding to a specific choice of ϕt. Thus, except for a few very specific 

generative models, such as linear ones, the dynamics of posterior expectations in (7) will 

result in a system of an infinite number of coupled SDEs, which in general is analytically 

intractable.

Remark 1.

Equation (7) is the gKSE if state increments are the only available type of observations. 

In Appendix V-B, we extend it to the Kushner–Stratonovich equation when both state 

increments and (Gaussian-type) direct observations are present.

In what follows, we will approximately solve the continuous-time filtering problem with 

observed state increments by projecting the gKSE onto a submanifold of parametric 

densities with a finite number of parameters, resulting in a finite system of coupled SDEs for 

these parameters. For this, we will first review the general projection method, which so far 

has only been applied to classical filtering problems with uncorrelated state and observation 

noise, and then extend this framework to filtering problems with observed hidden state 

increments.
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III. PROJECTION FILTERING FOR OBSERVED CONTINUOUS-TIME STATE INCREMENTS

A. The general projection filtering method

Projection filtering is a method for approximate nonlinear filtering that is based on 

differential geometry. In this subsection, we outline briefly the differential geometric setup 

and derivation of the projection filter, and refer the reader to the seminal papers on 

projection filters [17, 24, 18], or the intuitive introduction to the subject matter presented in 

[25], for more detailed derivations and in-depth discussion of the method.

In general, we can interpret the solution of a (stochastic) differential equation (such as 

the FPE (2)) as a (stochastic) vector field on an infinite-dimensional function space ℳ of 

probability density functions pt. If the vector field is stochastic (which is usually the case in 

nonlinear filtering [22]), we consider it to be given in Stratonovich form

dpt = A† pt dt + ℬ† pt ∘ dUt, (9)

which is the standard choice for stochastic calculus on manifolds. Let us further assume a 

parametrization pθ(x): = p(x; θ) with a finite set of parameters θ = θ1, …θm ∈ Θ, such that 

the solution to (9) is reasonably well approximated by these parametrized densities.

Projection filtering provides a solution to the filtering problem by evolving the parameters 

θ, thereby constraining the approximate posterior to evolve on a finite-dimensional 

submanifold S = pθ(x); θ ∈ Θ  of ℳ, rather than on ℳ itself. This implies that we have 

to project the vector field in (9) onto the tangent space TθS

TθS = Span ∂pθ
∂θ1

, …, ∂pθ
∂θm

⊂ L1, (10)

where the 
∂pθ
∂θi

 denote the basis vectors of this tangent space. Intuitively, an orthogonal 

projection minimizes at each timestep the distance between the true posterior pt and its 

approximation pθ with respect to a Riemannian metric which, for probability distributions, 

corresponds to the Fisher metric [26]

gij = Epθ
∂logpθ(x)

∂θi

∂logpθ(x)
∂θj

. (11)

This allows us to use the general orthogonal projection formula

Πθ[Z] = ∑
i

∑
j

gij Z, ∂pθ
∂θi θ

⋅ ∂pθ
∂θj

, (12)

where Πθ denotes the projection operator, the gij are the components of the inverse Fisher 

metric, and
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Z1, Z2 θ: = ∫
Ω

dxZ1(x)Z2(x)
pθ(x) , Z1, Z2 ∈ TθS . (13)

is the inner product that is associated with the Fisher metric (see Proposition 1 in Appendix 

V-C).

To find the parameter updates resulting from this projection, we apply the projection (12) 

to the dynamics of the probability density pt in (9). Since our approximate dynamics evolve 

along tangent vectors to the manifold parametrized by θ, the posterior pθ will stay on this 

manifold. Hence, the left-hand side of (9) can be written in terms of the basis vectors of TθS
by using the chain rule:

Πθ dpθ = ∑
j

∂pθ
∂θj

dθj . (14)

Further, by letting the projection act on the right-hand side of this equation, and 

consecutively comparing coefficients in front of the basis vectors 
∂pθ
∂θj

, we find the following 

Stratonovich SDEs for the parameters of the projected density following the evolution in (9):

dθj = ∑
i

gij A† pθ , ∂pθ
∂θi θ

dt

+∑
i

gij ℬ† pθ , ∂pθ
∂θi θ

∘ dUt .
(15)

This is the result of Brigo et al. [18, Theorem 4.3].

To facilitate the comparison to the gKSE (7), we further slightly rewrite this SDE:

dθj = ∑
i

gij ∫
Ω

dxA† pθ
∂logpθ

∂θ dt

+∑
i

gij ∫
Ω

dxℬ† pθ
∂logpθ

∂θ ∘ dUt

(16)

= ∑
i

gijEθ A ∂logpθ
∂θi

dt

+∑
i

gijEθ ℬ ∂logpθ
∂θi

∘ dUt,
(17)

where Eθ[ ⋅ ] here denotes the expectation with respect to the projected density pθ, and A

and ℬ denote the adjoint of A† and ℬ† with respect to the L2 scalar product. Rewriting 

the SDE in such a way allows us to immediately identify the operators A and ℬ on the 
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right-hand side of this equation with the operators used for propagating expectations rather 

than densities.

To illustrate how to identify the operator A concretely, let us consider the filtering problem 

without any observations, i.e., a simple diffusion, which is formally solved by the Fokker–

Planck Equation (2). Noting that the operator ℒ† propagates the density through time, 

we identify A† = ℒ†. Similarly, we find A = ℒ for the adjoint. Thus, the projection can 

be immediately determined from the time evolution of the expectation in Eq. (4), with 

ϕt =
∂logpθ

∂θi
:

dθj = ∑
i

gijE ℒ ∂logpθ
∂θi

dt . (18)

If state increments are observed, expectations are propagated by using the gKSE (7), and 

identification of the operators A and ℬ is possible after having transformed the gKSE to 

Stratonovich form, as we will see in the next section. Since this is usually easier to do 

than transforming the generalized Kushner equation for the posterior density in Stratonovich 

form, Eq. (17) is a more convenient choice for the parameter dynamics than Eq. (15).

Remark 2.—The derivation in the seminal papers on projection filtering [17, 18] follows a 

slightly different route but leads to the same result (15). We also refer the reader to the very 

accessible derivation presented in [25].

B. Projection with observed state increments

As we have seen, the adjunction between the SDE evolution operators for densities and 

associated expectations allowed us to use the expectation’s evolution equation to derive the 

projection filter for a specific problem (18). The same applies if the evolution of the density 

(or equivalently, that of the expectations) is a stochastic differential equation, as is the case 

for the KSE and the gKSE (7), as long as these are given in Stratonovich form. This allows 

us to formulate the projection filter for filtering with observed state increments:

Theorem 1.—The projection filter for the filtering problem with observed state increments 

is given by the following SDE of the parameters θ of a projected density pθ:

dθj = ∑
i

gij Eθ ℒ ∂logpθ
∂θi

− 1
2 Eθ Σu

−1/2C ft
2∂logpθ

∂θi

+Eθ Tr Σu
−1CJfΣxCT ∂logpθ

∂θi
dt

+∑
i

gij Eθ
∂logpθ

∂θi
ft + ΣxEθ ∇ ∂logpθ

∂θi

T

⋅ CTΣu
−1 ∘ dUt,

(19)
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with Jf ij =
∂fi
∂xj

 denoting the Jacobian matrix, and with the short-hand modified generator

ℒ ϕt : = ∇ϕt(x) TC−1ΣuΣu
−1C ft(x)

+ 1
2Tr HϕΣxC−1ΣuΣu

−1C .
(20)

Proof.: As a first step, let us rewrite the gKSE (7) in Stratonovich form (Corollary 3 in V-B):

dE ϕt = E ℒ ϕt − 1
2 cov ϕt, Σu

−1/2Cft
2

+Tr Σu
−1C cov ϕt, Jf ΣxCT dt

+ cov ϕt, ft + ΣxE ∇ϕt
TCTΣu

−1 ∘ dUt .

(21)

This equation allows us to identify the operators A and ℬ in Eq. (17) as the operations 

acting on ϕt in front of dt and dUt, respectively. By letting these operators act on ϕt =
∂logpθ

∂θj
in Eq. (17), and evaluating the expectations under the projected density pθ, we obtain SDEs 

for the desired parameters. These can be further simplified by using

Eθ
∂logpθ

∂θj
= ∂

∂θj ∫
Ω

dx pθ(x) = 0,

which yields (19). □

The 1D special case follows directly from (19).

Corollary 1.—For univariate filtering problems, i.e. a filtering problem with N = M = 1 in 

(1) and (6), with C = c, Σx = σx2, Σu = σu2 and Σu = σu
2 = c2σx2 + σu2, the projection filter with 

observed state increments reads:

dθj = ∑
i

gij σu2

σu
2Eθ ℒ ∂logpθ

∂θi

− c2

2σu
2 Eθ ft

2∂logpθ
∂θi

+ σx2Eθ
∂ft
∂x ⋅ ∂logpθ

∂θi
dt

+∑
i

gij c
σu

2 Eθ ft
∂logpθ

∂θi

+σx2Eθ
∂

∂x
∂logpθ

∂θi
∘ dUt .

(22)
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C. Projection on exponential family distributions

Analogous to [18], it is possible to derive explicit filter equations for the natural parameters 

of a projected exponential family distribution. Consider the following exponential family 

parametrization:

pθ(x): = exp θ⊤T(x) − Ψ(θ) , (23)

where θ is the vector of natural or canonical parameters, T(x) is the vector of sufficient 

statistics and exp(Ψ(θ)) is the normalization.

Corollary 2.—The projection filter for the filtering problem with observed state increments 
is given by the following SDE of the natural parameters θ of a projected density pθ 
belonging to the exponential family:

dθj = ∑
i

gij Eθ ℒ T i(x)

− 1
2 Eθ Σu

−1/2C ft
2

T i(x) − ηi

+Eθ Tr Σu
−1CJfΣxCT T i(x) − ηi dt

+∑
i

gij Eθ T i(x) − ηi ft + ΣxEθ ∇T i(x) T

⋅ CTΣu
−1 ∘ dUt,

(24)

where ηi = Eθ Ti(x)  is the posterior expectation of the sufficient statistic Ti(x). The 

parameters η are sometimes referred to as dual or expectation parameters.

Proof.: Making use of the duality relation between natural and expectation parameters for 

exponential families,

∂
∂θi

logpθ(x) = T i(x) − ∂
∂θi

Ψ(θ) = T i(x) − ηi, (25)

and the fact that ∂
∂x ηi = 0, Eq. (24) follows directly from the projection filter with observed 

state increments (19). □

Example 1—(Generalized Kalman–Bucy filter). In order to demonstrate the general 

approach, let us consider a model with linear state dynamics

dXt = aXtdt + σxdW t, (26)

dUt = cdXt + σudV t . (27)

Here, we will show that a projection on a Gaussian manifold with
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pθ(x) = N x; μt, σt2 (28)

results in dynamics for the parameters μt and σt that are consistent with the generalized 

Kalman–Bucy Filter for observed state increments [20, Section 4.2]. In fact, since Eqs. (26) 

and (27) are both linear, the posterior density is a Gaussian and thus the projection filter 

becomes exact. For this particular problem, the projection filter reads:

dθj = ∑
i

gij σu2

σu
2Eθ aXt

∂
∂x

∂logpθ
∂θi

+ σx2
∂2

∂x2
∂logpθ

∂θi

− c2a2

2σu
2 Eθ Xt

2∂logpθ
∂θi

dt

+∑
i

gij c
σu

2 aEθ Xt
∂logpθ

∂θi

+σx2Eθ
∂

∂x
∂logpθ

∂θi
∘ dUt .

(29)

We will use this to determine SDEs for the parameters μt and σt2, with 
∂logpθ

∂μt
=

x − μt
σt2

 and 

∂logpθ
∂ σt2

= − 1
2σt2

+
x − μt
2σt4

, respectively, under the Gaussian assumption. First, the components 

of the Fisher information matrix of a Gaussian parametrized by its expectation parameters 

are given by

gμμ = 1
σt2

, gσ2σ2 = 1
2σt4

, gσ2μ = gμσ2 = 0. (30)

Since the matrix is diagonal, the components of its inverse are gμμ = gμμ−1 = σt2 and 

gσ2σ2 = gσ2σ2
−1 = 2σt2. This considerably simplifies the projection in Eq. (29) for the time 

evolution of μt and σt. Explicitly carrying out the expectations in Eq. (29) under the assumed 

Gaussian density, the SDEs for these parameters read:

dμt = aμtdt + c
cσx2 + σu2

aσt2 + σx2 ⋅ dUt − acμtdt , (31)

dσt2 = 2aσt2 + σx2 − c2

cσx2 + σu2
aσt2 + σx2

2 dt . (32)

We found these Ito SDEs from their Strontonovich form by noting for the first line that the 

quadratic variation between σt and the observations process Ut is zero. In other words, no 

correction term according to the Wong–Zakai theorem [27] is required, such that both Ito 

and Stratonovich form have the same representation. Note that for a nonlinear generative 

model, this will in general not be the case [18]. Equations (31) and (32) are identical to the 
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generalized Kalman–Bucy filter [20, Eqs. (62) & (65)], thus demonstrating the validity of 

our approach.

Despite being able to reproduce existing results, the main purpose of the projection filtering 

approach is to simplify potentially hard filtering problems such that the parameter SDEs 

become analytically accessible. This becomes particularly useful if a certain parametric form 

of the posterior is desired, for instance for computational reasons, and can be very appealing 

if expectations are easily carried out under the assumed posterior and the Fisher matrix is 

straightforward to invert or even diagonal.

Example 2—(Multivariate Gaussian with diagonal covariance matrix). From a 

computational perspective, projection on a Gaussian density with diagonal covariance matrix 

can be advantageous in certain situations. In particular, such a solution only requires 

equations for 2N parameters, instead of N2 + N for a general Gaussian with Fisher matrix 

components

gμi, μj = Σt−1
ij, gμi, σnm2 = 0,

gσij, σnm = 1
4 Σt−1

in Σt−1
jm + Σt−1

im Σt−1
jn ,

which is in general hard to invert. For a Gaussian with diagonal covariance matrix, these 

simplify to

gμi, μt = Σt−1
ij, gσii2, σ2ii = 1

2 Σt−1
ii
2 = 1

2σii2
,

while all other components evaluate to zero, making the Fisher matrix diagonal and 

straightforward to invert. Since the diagonality of the covariance matrix effectively 

decouples the dimensions, expectations can be carried out in each dimension separately. 

Nevertheless, the specific form of the parameter SDEs will crucially depend on the specific 

form of the nonlinear function ft(x). For instance, considering the linear case, i.e. ft(x) = Ax, 

yields

dμt = Aμt + Σx + diag σii2 A CTΣu
−1 dUt − CAμtdt ,

dσii2

dt = 2σii2 A − ΣxCTΣu
−1CA ii

−2σii4 ATCTΣu
−1CA ii + Σx − ΣxCTΣu

−1CΣx ii .
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IV. CONTINUOUS-TIME CIRCULAR FILTERING

In this section, we will consider continuous-time circular filtering with observed state 

increments as a concrete application of the framework derived above. We will further extend 

it to account for quasi continuous-time von Mises-valued observations (formally defined 

below), to provide a continuous-time generalization of the discrete-time circular filtering 

problem that is frequently encountered in spatial navigation problems.

A. Assuming observed angular increments only

We assume that the hidden state Xt is parametrized on S1 by angle φt ∈ [0, 2π), effectively 

embedding S1 in ℝ2 as a unit circle. We further assume that φt follows a diffusion on the 

circle:

dφt = f φt, t dt + σφdW t, (33)

where Wt is now an ℝ1-BM process, and drift and diffusion functions are as defined in 

Section II. The propagator ℒ[ ⋅ ] for this process is the same as for the corresponding process 

in ℝ1 as given in Eq. (5).

For state processes that evolve on submanifolds of ℝn, as the S1 considered here, Tronarp 

and Särkkä [19] have shown that projection filter equations are identical to the case 

where the state variable Xt evolves in Euclidean space. Since the mathematical operations 

performed to derive the projection filter with observed state increments in Theorem 1 are 

essentially the same as in Tronarp and Särkkä [19] for the state diffusion, their result carries 

over to our problem. Thus, Theorem 1 can straightforwardly be applied to the circular 

filtering problem by considering a circular projected density pθ(φ), such as the von Mises or 

a wrapped normal distribution.

Example 3—(Circular diffusion with observed state increments). In this example, we 

explicitly model angular path integration as the estimation of a circular diffusion based on 

observed angular increments. Consider a model where the hidden state evolves according to 

a Brownian motion on the circle, with noisy observations of its increment

dφt = 1
κφ

dW t, (34)

dUt = dφt + 1
κu

dV t . (35)

Here, φt could, for instance, correspond to the heading direction of an animal (or a 

robot) that is navigating in darkness and only has access to self-motion cues dUt, i.e., 

measurements of angular increments, but not to direct heading cues such as landmark 

positions. We chose to parametrize the diffusion constants in terms of precisions, κφ and κu, 
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to make units comparable to that of the precision of the projected density, which we will 

denote κt. Thus, the parameter κφ governs the speed of the hidden state diffusion, and the 

parameter κu modulates the reliability of the observation process that is governed by the 

increments. The gKSE for this model’s posterior expectation of a test function ϕt: = ϕ φt  in 

Stratonovich form reads:

dE ϕt = 1
2 κφ + κu

E ∂2

∂φ2 ϕt dt + κu
κφ + κu

E ∂
∂φϕt ∘ dUt . (36)

As a result, the projection filter for the parameters θ becomes (cf. Eq. (19))

dθj = 1
κφ + κu

∑
i

gij 1
2Eθ

∂2

∂φ2
∂logpθ

∂θi
dt

+κuEθ
∂

∂φ
∂logpθ

∂θi
∘ dUt .

(37)

We now want to solve the circular filtering problem with observed state increments by 

projecting on the von Mises density

pμ, κ(φ) = Vℳ φ; μt, κt = 1
2πI0 κt

exp κtcos φ − μt , (38)

parametrized by mean μt and precision κt, using Eq. (37). Unlike e.g., the wrapped normal 

distribution, which is another popular choice for unimodal circular distributions, the von 

Mises distribution is an exponential family distribution and could alternatively be written in 

natural parametrization (23). Here, we chose to parametrize it by μt and κt, as it significantly 

simplifies the computation of the Fisher metric and its inverse, which appears on the right-

hand side of (37). Noting that

∂
∂μt

logpμ, κ(φ) = κtsin φ − μt , (39)

∂
∂κt

logpμ, κ(φ) = − F κt + cos φ − μt , (40)

where F(κ) =
I1(κ)
I0(κ)  denotes a ratio of Bessel functions, the components of the Fisher metric 

(with respect to the μt, κt parametrization) are given by:

gμμ = κt2Eμ, κ sin2 φt − μt = κtF κt , (41)
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gκκ = Eμ, κ F κt + cos φt − μt
2

= 1 − F κt
κt

− F κt
2,

(42)

gμκ = gκμ = 0. (43)

Since the Fisher metric is diagonal, the components of its inverse are simply gμμ = gμμ−1, 

gκκ = gκκ−1 and gμκ = gκμ = 0.

Using these gij’s and explicitly computing the expectations on the right-hand side of Eq. (37) 

with respect to the von Mises approximation, we find the projection filter equations for this 

model:

dμt = κu
κφ + κu

⋅ dUt, (44)

dκt = − 1
2 κφ + κu

ℱ κt dt, (45)

where we defined the strictly positive function

ℱ κt = F κt

1 − F κt
κt

− F κt
2

,
(46)

and found the Ito form of dμt from its Stratonovich form by noting that the noise variance is 

constant, making this conversion straightforward.

The projection filter defined by Eqs. (44) and (45) for orientation tracking in darkness 

has an intuitive interpretation: the mean μt is updated according to the angular increment 

observations, weighted by their reliability, as quanitified by κu. Even in the presence of 

such observations, the estimate’s precision, κt, decays towards zero, since ℱ κt  is strictly 

positive. This decay reflects the accumulation of noisy observations. Very informative 

angular velocity observations with large κu may slow the decay, but cannot fully prevent 

it. In other words, without direct angular observations (which we will introduce in Section 

IV-B below), the estimate will inevitably become less accurate over time.

In Figure 1a, we illustrate in an example simulation that, despite the presence of angular 

increment observations, the estimate slowly drifts away from the true heading φt. As a 

benchmark we use a particle filter, and further compare mean μt and precision rt = F κt
of the projection filter to that estimated by a Gaussian projection filter approximation (see 

Appendix V-F for details on these benchmarks). Such a filter relies on the assumption that 

the hidden state φt evolves on the real line, and thus leads to a slight deviation in the 

dynamics of the estimated precision κt.
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Numerically, our projection filter’s performance in this example is indistinguishable from 

that of the particle filter (Figure 1b, c), and its estimated precision rt matches exactly 

the empirical precision evaluated by averaging the estimation error over 5000 simulation 

runs. The estimated precision of the Gaussian approximation, in contrast, systematically 

underestimates its precision for large observation reliability, and overestimates it when the 

angular increment observations become very noisy (Figure 1c).

Example 4—(Higher-order circular distributions). The previous example is one of the 

simplest examples of a circular filtering problem, and results in an approximated posterior 

that is always unimodal. This might be insufficient for certain settings in which we would 

like to consider more sophisticated projected densities. To show that our framework extends 

beyond such simple models, let us consider a class of circular distributions with exponential-

family densities of the form

p(φ) = 1
Z(a, b)exp ∑

k = 1

K
akcos(kφ) + bksin(kφ) . (47)

The case K = 1 recovers the previously used von Mises distribution (38), but with a 

different parametrization. For K = 2, this density is referred to as the generalized von Mises 

distribution, whose properties have been studied extensively [28, 29]. As a proof of concept, 

we will now use the projection filter for the natural parameters (Eq. (24)) to project the 

solution to the generative model in Eqs. (34) and (35) onto a distribution with density (47).

The circular distributions with densities (47) belong to the exponential family distributions, 

with natural parameter vector θ = (a, b) with a = a1, …, aK  and b = b1, …, bK , and 

sufficient statistics given by

Tkcos(φ) = cos(kφ), Tksin(φ) = sin(kφ) . (48)

The corresponding expectation parameters are defined by

ηkcos = Eθ Tkcos , ηksin = Eθ Tksin . (49)

According to Corollary 2, the projection filter for the natural parameters of an exponential 

family density requires us to apply the right-hand side of the gKSE (36) to the sufficient 

statistics. For this, we need to compute

Eθ
∂

∂φTkcos(φ) = − kEθ[sin(kx)] = − kηksin, (50)

Eθ
∂2

∂φ2 Tkcos(φ) = − k2Eθ[cos(kx)] = − k2ηkcos, (51)
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Eθ
∂

∂φTksin(φ) = kηkcos, (52)

Eθ
∂2

∂φ2 Tksin(φ) = − k2ηksin . (53)

Furthermore, we note that the components of the Fisher matrix gij are given by

gij = ∂2

∂θi∂θj
logZ(a, b), (54)

where the θi refer to the ith element in the parameter vector θ that contains the elements 

of both a and b. Inverting this matrix to get the inverse components gij is in general not 

straightforward. In fact, already the Fisher metric needs to be computed numerically, as the 

normalization Z(a, b) is inaccessible in closed form. We will thus treat G−1 symbolically 

and sort the parameters such that G−1 is composed of the blocks

G−1 = Gc, c Gs, c

Gs, c Gs, s
, (55)

Then, the projection filter for the natural parameters can be formally written as

da = Gc, c − 1
κφ + κu

k2 ⊙ ηcosdt − κu
κφ + κu

k ⊙ ηsin ∘ dUt

+Gs, c − 1
κφ + κu

k2 ⊙ ηsindt + κu
κφ + κu

k ⊙ ηcos ∘ dUt ,
(56)

db = Gs, c − 1
κφ + κu

k2 ⊙ ηcosdt − κu
κφ + κu

k ⊙ ηsin ∘ dUt

+Gs, s − 1
κφ + κu

k2 ⊙ ηsindt + κu
κφ + κu

k ⊙ ηcos ∘ dUt ,
(57)

where we denote with k = (1, …, k)⊤ the vector of values k, k2 results from the element-wise 

squaring of k, η is the vector of expectation parameters, and ⊙ the element-wise (Hadamard) 

product. This example demonstrates that our framework could, in principle, be applied to 

project the posterior to more general and inevitably more complicated densities, should the 

need arise. Although we do not show this here explicitly, an instance where this might 

increase filtering accuracy is one where the initial density p0(φ) is multimodal. The example 

also shows that, in general, a projection filtering approach might not be the most practical 

approach. Here in particular, computation of the Fisher matrix components might only be 

possible numerically, and in that case is computationally expensive. This highlights the need 
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for a careful choice of the posterior density and its corresponding parametrization, where 

(ideally) expectations of sufficient statistics are available in closed-form.

B. Quasi continuous-time von Mises observations

So far we have focused on filtering algorithms that rely exclusively on observed angular 

increments. Such algorithms are bound to accumulate noise, such that their precision will 

decay to zero in the long run. To counteract this effect, let us now consider how to 

additionally include observations that are generated directly from the hidden state, rather 

than only its increments. Specifically, we will in this section propose an observation model 

for (quasi-)continuous time von Mises valued observations with Zt ∈ S1, which we will 

refer to as direct angular observations, because they are governed by the hidden state φt
directly. This model will allow us to formulate a von Mises projection filter for both angular 

observations, and angular increment observations in the continuous-time circular filtering 

problem.

In classical continuous-time filtering settings, continuous-time observations Yt are usually 

considered to follow a Gaussian diffusion process, whose drift component is governed 

by the hidden state Xt [23]. Equivalently, one could consider ‘time-discretized’ (or ‘quasi-

continuous’) observations Zt: =
dY t
Δt  with sampling time step Δt, according to

Zt ∼ N ℎ Xt , σz2Δt−1 , (58)

which is the usual setting of discrete-time filtering (with fixed Δt), with ℎ(x) being a 

potentially nonlinear function. Notably, the Fisher information ℐ Xt  about the state of the 

hidden variable Xt that is conveyed by these quasi-continuous observations Zt grows linearly 

with sampling time step Δt (seel Proposition 2 in Appendix V-D). The consequence of this 

scaling is rather intuitive: decreasing the sampling time step Δt will result in overall more 

observations per unit time, which, in turn, are individually less informative about the state 

Xt. This renders the information rate (information per unit time) independent of the chosen 

time step.

Analogously, we now consider observations that are drawn from a von Mises distribution 

centered around a nonlinear S1 valued transformation ℎ:S1 S1 of the true hidden state φt,

Zt ∼ Vℳ ℎ φt , α κz, Δt . (59)

We would like this observation model to have the same linear information scaling properties 

as the Gaussian observations encountered in the classical filtering problems, i.e. when 

hidden state noise and observation noise are uncorrelated. Thus, we need to choose the 

function α κz, Δt  such that the information content about the state φt scales linearly with 

step size Δt and observation precision κz.

Theorem 2.—If α κz, Δt  is chosen such that
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α κz, Δt = ξ−1 κzΔt , (60)

where ξ−1 is the inverse of ξ(x) = xF(x) (and F(x) =
I1(x)
I0(x)  as defined earlier), then the 

information about the state of the random variable φt scales linearly with sampling time step 

and observation precision, i.e., ℐ φt ∝ κzΔt.

Proof.: The information content about the random variable φt is given by the Fisher 

information

ℐ φt = EZt
∂

∂ϕ logVℳ Zt; ℎ(ϕ), α
2

∣ ϕ = φt (61)

= ℎ′ φt
2αI1(α)
I0(α) ∝ αF(α) . (62)

We require that the information content per time step Δt is constant and proportional in κz, 

which can be achieved if α varies with Δt and κz according to

α κz, Δt F α κz, Δt ∝ κzΔt . (63)

This can be achieved if α κz, Δt = ξ−1 κzΔt , with

ξ(x): = x ⋅ I1(x)
I0(x) . (64)

□

Once a step size Δt is chosen, ξ−1 κzΔt  can be computed numerically. For sufficiently small 

κzΔt, e.g., in the continuum limit, this function can be approximated by ξ−1 κzΔt ≈ 2κzΔt, 

while it becomes ξ−1 κzΔt ≈ κzΔt for large κzΔt (Figure 2). The latter is consistent with the 

intuition that, for highly informative observations, the single observation likelihood is well 

approximated by a Gaussian (which breaks down in the limit Δt 0).

What we have considered here is in essence a modified discrete time observation model, 

which implies that we can take advantage of filtering methods available for circular filtering 

with discrete-time observations [13, 12]. However, by allowing the precision α κz, Δt  to vary 

with time step, we additionally ensure that the information rate stays constant: increasing 

the time step will result in more observations per unit time, which is accounted for by less 

informative individual observations. Thus, the observation model defined in (59) and (60) 

constitutes a quasi continuous-time observation model.
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C. Adding quasi continuous-time observations to the circular projection filter

If the measurement function ℎ(φ) in (59) is the identity, we can add the direct observations to 

our filter by straightforwardly making use of Bayes’ theorem at every time step. Specifically, 

since we assumed our approximated (projected) density to be von Mises at all times, the 

measurement likelihood

p Zt ∣ φt = Vℳ Zt; φt, α κz, Δt (65)

is conjugate to the density before the update 

pt−(φ): = p φt = φ ∣ Z0: t − ΔT = Vℳ φ; μt − , κt − . In other words, the posterior 

pt(φ): = p φt = φ ∣ Z0: t  is guaranteed to be a von Mises density as well:

pt(φ) ∝ p Zt ∣ φt pt−(φ) (66)

= exp
cosϕt
sinϕt

⊤
α κz, dt

cosZt
sinZt

+ κt −
cosμt −
sinμt −

. (67)

As expected from an exponential family distribution, the natural parameters 

θt = κt cosμt, sinμt
⊤ are updated according to

θt = θt − + α κz, Δt
cosZt
sinZt

. (68)

This operation is equivalent to a summation of vectors in ℝ2, where the natural parameters 

refer to Eucledian coordinates, and (μ, κ) are the corresponding polar coordinates (Figure 

3a). In the continuum limit, we write

dθt = 2κzdt
cosZt
sinZt

, (69)

where we used that α κz, dt 2κzdt for dt 0. A coordinate transform from θ to (μ, κ) 

recovers the update equations for mean μt and κt that result from quasi-continuous time 

observations

dμt = d arctan θ2, θ1 = 2κzdt
κt

sin Zt − μt , (70)

dκt = d θ1
2 + θ2

2 = 2κzdtcos Zt − μt . (71)

The recovered update equations are appealingly simply for identity (or linear) observation 

functions, as such functions allow us to leverage Bayesian conjugacy properties. For 

nonlinear observation functions, in contrast, the posterior after the update is in general not in 
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the same class of densities (and in this particular case not a von Mises distribution anymore). 

To apply the projection filtering framework to project such a nonlinear observation model 

back onto the desired manifold of densities, one would need to know the vector field for the 

density pt that incorporates the observation-induced update, a derivation that is beyond the 

scope of this work.1

Example 5—(The circular Kalman filter). Let us revisit angular path integration, which 

we introduced in Example 3 as a circular diffusion with observed angular increments, 

and extend it to include direct angular observations Zt with likelihood (65). Such angular 

observations could, for instance, correspond to directly accessible angular cues, such as 

visual landmarks. Combining Eqs. (44) and (45) with Eqs. (70) and (71) to include the 

quasi-continuous updates results in

dμt = κu
κφ + κu

⋅ dUt + 2κzdt
κt

sin Zt − μt , (72)

dκt = − 1
2 κφ + κu

ℱ κt dt + 2κzdtcos μt − Zt . (73)

Due to the simplicity of these equations, as well as their structural similarity to the 

generalized Kalman filter, while taking full account of the circular state and measurement 

space, we coin the SDEs (72) and (73) the circular Kalman filter (circKF).

Considering that 2κzdt is modulated by the direct observation’s reliability κz, the final 

terms in the filter’s update equations nicely reflect the reliability-weighting that is already 

present in classical filtering problems: more reliable direct observations, relative to the 

current certainty κt, have a stronger impact on the mean μt. Furthermore, if the current 

observation Zt is similar to the current estimate μt, this estimate is hardly updated, while 

the estimate’s certainty κt increases. In contrast, if direct observations and current estimate 

are in conflict, the certainty κt might temporarily decrease (Figure 3a). What makes this last 

feature particularly interesting is that it only occurs in the circKF, but not in its Euclidean 

counterpart, the standard Kalman filter. In the latter an update induced by direct observations 

always leads to an increase in certainty. Numerically, the circKF features performance close 

to that of a particle filter over a wide range of parameters, while outperforming a Gaussian 

projection filter (Figure 3b, c). The reason for the deviation of the circKF from the optimal 

solution is that the von Mises distribution is still an approximation of the true posterior, 

which leads to slight deviations in the updates when the direct observations are integrated. 

These deviations are offset by the more than 10-fold decrease in computation time of the 

circKF that we observed in simulations: a single run in Figure 3c with the particle filter took 

3.14±0.11s, while it only took 0.113±0.005s with the circKF on a MacBook Pro (Mid 2019) 

running 2.3 GHz 8-core Intel Core i9 using NumPy 1.19.2 on Python 3.9.1.

1As outlined earlier, for a Gaussian setting this would be the update part of the Kushner–Stratonovich equation. To the best of our 
knowledge, no such equation exists for von Mises-valued observations.
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V. CONCLUSION

In this paper, we derived a continuous-time nonlinear filter with observed state increments, 

based on a projection filtering approach. Using this framework, we revisited the problem 

of probabilistic angular path integration. By additionally proposing a quasi continuous-time 

model for von Mises-valued direct observations, we were able to formulate a circular 

filtering algorithm that accounts for both increment and direct angular observations. Notably, 

this algorithm fulfills the following four conditions: (i) it operates on a circular state-space 

and (ii) in continuous time, (iii) it maintains a consistent representation during state 

propagation and observation update, as ensured by the projection filtering method, and (iv) 

it performs the proper integration of both increment and direct observations. Even though 

we have only fully worked out the algorithm for univariate circular filtering problems, we 

have formulated the overall projection filtering framework for more general multivariate 

problems. As by the results in [19], we expect our framework to carry over to multivariate 

circular filtering problems, such as reference vector tracking on the unit sphere. A possible 

shortcoming of this approach is that the class of generative models it can deal with is 

fairly limited. The generalized Kushner–Stratonovich equation is only valid if the error 

covariance of the observation process does not explicitly depend on the value of the hidden 

state. This constrains the generative model in the following way: first, we can only allow 

additive noise in the state process, as any multiplicative noise would enter the increment 

observation process Ut as state-dependent noise. Second, only linear transformations of state 

increments can be considered. As demonstrated in Example 4, another shortcoming of the 

projection-filtering method in general is that this approach is only computationally feasible 

for problems that are analytically accessible, i.e., where expectations under the projected 

density can be computed rapidly, or in closed form. In this paper, we thus focused on 

projected densities where these expectations could be efficiently computed.

Despite these limitations, the analytical accessibility and interpretability of our main result, 

in particular the circular Kalman filter, make it an attractive algorithm for unimodal 

circular filtering problems. First, it is straightforward to implement in software. Since its 

representation stays fixed through all times, it relies on only two equations which can 

be integrated straightforwardly, e.g. with an Euler–Maruyama scheme [30]. As we have 

seen in our numerical experiments, this makes this filter much faster than established 

methods, such as particle filters. Second, the interpretation of the dynamics are intuitively 

comprehensible. Third, since it is a continuous-time formulation, it automatically scales with 

respect to chosen sampling step size (as long as it is sufficiently small). This is an advantage 

over continuous-discrete filtering problems, which usually consider a fixed sampling step 

size, and need to be reformulated should the sampling rate in the observations change 

or vary across time. Lastly, animals navigate the world based on a continuous stream of 

sensory information, which motivates the use of continuous-time models when trying to 

understand how the brain operates under uncertainty. Thus, one possible application could 

be a conceptual description of how the brain performs angular path integration [31].
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APPENDIX

A. Nonlinear filtering in a nutshell

Let us briefly review the classical nonlinear filtering setting, i.e., filtering with observations 

that follow a diffusion process with noise uncorrelated to that of the hidden state process, in 

order to compare this with filtering with observed state increments. In line with standard 

literature [23], let Yt denote the process of ℝM-valued direct observations. Then the 

generative model commonly referred to in classical nonlinear filtering is given by

dXt = f Xt, t dt + Σx
1/2dWt, (74)

dYt = h Xt, t dt + Σy1/2dVt, (75)

with Vt and Wt independent standard Brownian motion processes, and h:ℝN × ℝ ℝM

a potentially nonlinear, vector-valued observation function. All other quantities have been 

defined below (1). Note that the observations process is a diffusion with error covariance 

Σydt. The goal of nonlinear filtering is to compute dynamics of the posterior expectations 

E ϕt : = E ϕ Xt ∣ Y0: t , where Y0: t = Yτ: τ < t  denotes the filtration generated by the 

process Yt. Formally, this is solved by the Kushner–Stratonovich equation (KSE, [23, 

Theorem 3.30]):

dE ϕt = E ℒ ϕt dt + cov ϕt, ht
TΣy−1 dYt − E ht dt , (76)

with cov ϕt, ht = E ϕt, ht − E ϕt E ht .

B. Derivation of the generalized Kushner–Stratonovich equation for the 

posterior expectation (Eqs. (7) and (21))

Let us revisit the generative model in Eqs. (1) and (6):

dXt = f Xt, t dt + Σx
1/2dWt, (77)
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dUt = C f Xt, t dt + CΣx
1/2dWt + Σu

1/2dVt, (78)

with Wt and Vt independent vector-valued Brownian motion processes, as defined earlier. 

Here, we derive the gKSE (7) by treating this model as a correlated noise filtering problem, 

which allows us to directly apply established results [23, Corollary 3.38].

Lemma 1.

The generalized Kushner–Stratonovich equation (gKSE) for the evolution of the conditional 
expectation of a test function E ϕt = E ϕ Xt ∣ Y0: t  in the presence of state increment 

observations dUt is given by (Ito form)

dE ϕt = E ℒ ϕt dt + cov ϕt, ft + ΣxE ∇ϕt
T

⋅ CTΣu
−1 dUt − CE ft dt .

(79)

Proof.—To simplify calculations, we first require that the observations process has 

an error covariance that equals the identity, and thus we rescale the process dUt by 

Σu
1/2 = CΣxCT + Σu

1/2
,

dUt = Σu
−1/2dUt . (80)

Eqs. (77) and (80) define a filtering problem where the noise in hidden process Xt and 

observation process Ut are correlated, with quadratic covariation

X, UT
t

= ΣxCTΣu
−1/2 . (81)

Thus, the result of [23, Corollary 3.38] (KSE for correlated noise filtering problems) is 

directly applicable to our problem. For more details on [23, Corollary 3.38], we kindly refer 

to the proof based on the innovations method provided therein. An alternative proof based 

on the change of measure approach is presented in [20].

Note that the KSE for correlated noise [23, Eq. 3.72] is similar to the classical KSE for 

uncorrelated noise problems (76), except for a correction term, given by a vector field ℬ[ϕ],

dE ϕt = E ℒ ϕt dt + cov ϕt, Σu
−1/2Cft + E ℬ ϕt

T

⋅ dU − ΣuCE ft dt .
(82)

The vector field ℬ[ϕ] can be read out from the dynamics of the quadratic covariation 

between the process ϕt and the rescaled observations process Ut. Using Ito’s lemma, we can 

write:
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dϕt = ∇ϕt
T ⋅ dXt + 1

2Tr ΣxHϕ dt, (83)

and thus

d ϕ, UT
t

= ∇ϕt
Td X, UT

t (84)

= ∇ϕt
TΣxCTΣu

−1/2dt = :ℬ ϕt
Tdt . (85)

Further identifying ht = Σu
−1/2C ft, we find

dE ϕt = E ℒ ϕt dt + cov ϕt, ft + ΣxE ∇ϕt
T

⋅ CTΣu
−1/2 dUt − Σu

−1/2CE ft dt .
(86)

Rescaling dUt = Σu
−1/2dUt yields (79).

Remark 3.—By combining (76) and (79) it is possible to derive a generalized Kushner 

equation when both types of observations are present, i.e., when we consider both the 

process Yt (Eq. 75) and the process Ut (Eq. 78) as the observations:

dE ϕt = E ℒ ϕt dt + cov ϕt, ht
TΣy−1 dYt − E ht dt

+ cov ϕt, ft + ΣxE ∇ϕt
TCTΣu

−1/2

⋅ dUt − Σu
−1/2CE ft dt .

(87)

In this case, the expectations E[ ⋅ ] are with respect to the filtration Y0: t and U0: t, i.e., 

E ϕt = E ϕ Xt ∣ Y0: t, U0: t .

Corollary 3.

In Stratonovich form, the generalized Kushner–Stratonovich equation (gKSE) for the 
evolution of the conditional expectation of a test function E ϕt = E ϕ Xt ∣ Y0: t  in the 

presence of increment observations dUt reads:

dE ϕt = E ℒ ϕt − 1
2 cov ϕt, Σu

−1/2Cf t2

+Tr Σu
−1C ⋅ cov ϕt, Jf ΣxCT dt

+ cov ϕt, ft + ΣxE ∇ϕt
TCTΣu

−1 ∘ dUt,

(88)

with
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E ℒ ϕt = E ℒ ϕt − E ∇ϕt
TΣxCTΣu

−1Cft

− 1
2Tr ΣxE Hϕ ΣxCTΣu

−1C
(89)

For one-dimensional problems with N = M = 1, C = c, Σx = σx2, Σu = σu2 and 

Σu = σu
2 = c2σx2 + σu2, (88) simplifies to

dE ϕt = σu2

σu
2E ℒ ϕt

− c2

2σu
2 cov ϕt, ft

2 + σx2cov ϕt,
∂

∂x ft dt

+ c
σu

2 cov ϕt, ft + σx2E ∂
∂x ϕt ∘ dUt .

(90)

Proof.—We convert between Itô and Stratonovich calculus using the Wong–Zakai theorem 

[27]:

Bt
T ⋅ dUt = Bt

T ∘ dUt − 1
2d BT , U t, (91)

where the symbol ◦ denotes Stratonovich calculus, and BT , Y t is the quadratic covariation 

between the processes Yt and Bt. We identify (cf. Eq. (79))

Bt
T = cov ϕt, ft + ΣxE ∇ϕt

TCTΣu
−1, (92)

and write

dE ϕt = E ℒ ϕt dt − Bt
TCE ft dt + Bt

T ⋅ dUt (93)

= E ℒ ϕt dt − Bt
TCE ft dt + Bt

T ∘ dUt − 1
2d BT , U t . (94)

To obtain the change in quadratic covariation d BT , U t, it is helpful to find dBt by Itô‘s 

lemma

dBt
T = dE ϕtft − E ϕt dE ft − dE ϕt E ft

−dE ϕt dE ft + dE ∇ϕt Σx CTΣu
−1 .

(95)

The evolution of the expectations is obtained by straightforward application of the gKSE 

(79), substituting ϕt with the functions ϕtft, ft and ∂
∂x ϕt. This will result in terms that 
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multiply dUt, which are those relevant for computing the change of the covariation 

process, d BT , U t. Further note that the quadratic covariation of the observation process 

evolves according to d UT , U t = Tr Σu dt. Some tedious but straightforward algebra and term 

rearrangements then result for the quadratic covariation in

d BT , U t = cov ϕt, Σu
−1/2C ft

2

+Tr CTΣu
−1C ⋅ cov ϕt, Jf Σx

+2cov ΣxCTΣu
−1C ft

T
, ∇ϕt

−2cov ϕt, ft CTΣu
−1CE ft

T

+Tr ΣxE Hϕ ΣxCTΣu
−1C dt .

(96)

Plugging this into (94), and again some algebra, yields

dE ϕt = E ℒ ϕt − E ∇ϕt
TΣxCTΣu

−1Cft

− 1
2Tr ΣxE Hϕ ΣxCTΣu

−1C dt

− 1
2 cov ϕt, Σu

−1/2Cft
2

+Tr Σu
−1C ⋅ cov ϕt, Jf ΣxCT dt

cov ϕt, ft + ΣxE ∇ϕt
TCTΣu

−1 ∘ dUt .

(97)

This equation can be further simplified by noting that I − ΣxCTΣu
−1C = C−1ΣuΣu

−1C. Further, 

we can substitute

E ℒ ϕt = E ℒ ϕt − E ∇ϕt
TΣxCTΣu

−1Cft

− 1
2Tr ΣxE Hϕ ΣxCTΣu

−1C
(98)

in the first line, which yields Eq. (88). Equation (90) follows from (88) as the 1D special 

case.

C. Fisher metric and scalar product

Proposition 1.

The scalar product defined in Eq. (13),

Z1, Z2 θ: = ∫
Ω

dxZ1(x)Z2(x)
pθ(x) , Z1, Z2 ∈ TθS, (99)

is the scalar product on TθS that is associated with the Fisher metric [26]
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gij = Epθ
∂logpθ(x)

∂θi

∂logpθ(x)
∂θj

. (100)

Proof.—Consider Z1 and Z2 to correspond to two of the basis vectors of the tangent space 

TθS, i.e., Z1 =
∂pθ(x)

∂θi
 and Z1 =

∂pθ(x)
∂θj

. Then

∂pθ
∂θi

, ∂pθ
∂θj θ

= ∫
Ω

dx 1
pθ(x)

∂pθ(x)
∂θi

∂pθ(x)
∂θj (101)

= ∫
Ω

dx∂logpθ(x)
∂θi

∂logpθ(x)
∂θj

pθ(x) (102)

= E ∂logpθ(x)
∂θi

∂logpθ(x)
∂θj

= gij . (103)

This concludes the proof. □

D. Information scaling

Proposition 2.

The Fisher information ℐ Xt  about the hidden state variable Xt that is conveyed by 

Gaussian-type discrete-time observations,

Zt ∼ N Zt; g Xt , Δt−1 , (104)

grows linearly with the time step Δt.

Proof.—The information content about the variable φt that is conveyed by the observation 

Zt is given by the Fisher information

ℐ Xt = EZt
∂

∂x logN Zt; g(x),
σz2
Δt

2
∣ x = Xt

= g′(x)2

σz4
(Δt)2EZt Zt − g(x) 2

= g′(x)2

σz2
Δt ∝ Δt .

□

Kutschireiter et al. Page 28

IEEE Trans Signal Process. Author manuscript; available in PMC 2023 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. Details on numerical simulations

Our numerical simulations in Figures 1 and 3, corresponding to Examples 3 and 5, 

were based on artificial data generated from the true model equations. In particular, the 

“true” state φt is a single trajectory from Eq. (34), and observations are drawn at each 

time point from Eq. (35) and, in the case of Example 5, additionally from Eq. (65). To 

simulate trajectories and observations, we use the Euler–Maruyama approximation [30]. In 

this approximation, the time-discretized generative model with fixed time step size Δt in 

Examples 3 and 5 reads:

φt ∼ N φt − Δt,
1
κφ

Δt mod 2π (105)

ΔUt ∼ N φt − φt − Δt,
1
κu

Δt (106)

Zt ∼ Vℳ φt, ξ−1 κzΔt . (107)

The same time-discretization scheme was used to numerically integrate the SDEs (44), (45), 

(72) and (73) for the von Mises parameters μt and κt. Unless stated otherwise, we used 

Δt = 0.01 in all our numerical simulations, and give times in units of κϕ.

F. Benchmarks for numerical simulations

For our numerical simulations in Figures 1 and 3, corresponding to Examples 3 and 5, we 

used the following filtering algorithms to compare the circKF against.

1) Particle Filter:

1. As benchmark, we used a Sequential Importance Sampling/Resampling particle 

filter (SIS-PF, [32]), that was modified to account for state increment 

observations ΔUt.

The N particles in the SIS-PF where propagated according to

π φt
(j) ∣ φt − Δt

(j) , ΔUt

= N φt − Δt
(j) + κu

κu + κφ
ΔUt,

1
κφ + κu

Δt mod 2π,
(108)

and each particle j was weighted at each time step according to

wt
(j) = wt − Δt

(j) ⋅ Vℳ Zt; φt
(j), ξ−1 κzΔt , (109)

yielding an SIS for this model that is asymptotically exact in the N ∞ limit. Mean μt and 

precision rt of the filtering distribution were determined at each time step according to a 

weighted average on the circle, i.e. the first circular moment:
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rtexp iμt = ∑
j = 1

N
wt

(i)exp iφt
(i) . (110)

For a von Mises distribution, the radius r of the first circular moment and the precision 

parameter κ are related via r =
I1(κ)
I0(κ) , which is why we use r rather than κ in our plots.

In our simulations, we used N = 103 if direct angular observations Zt were present, and N = 

104 if only state increment observations were present. We re-sampled the particles whenever 

the effective number of particles, Neff = ∑j w(i) −2, was lower than N/2.

2) Gaussian approximation:

The reference filter, which we refer to as “Gauss filter”, is a heuristic method that assumes 

posterior mean μt and variance σt to evolve according to a generalized Kalman–Bucy filter 

(Eqs. (31) and (32)). Such a filter is often referred to as “assumed density filter” (ADF) in 

the literature, which under certain conditions, such as for the circular filtering problem we 

consider here, becomes fully equivalent to a Gaussian projection filter (see [18, Section 7] 

for in-depth discussion). In order to make the resulting distribution circular, this Gaussian 

is consecutively approximated by a von Mises distribution via κt ≈ σt−2, resulting in the 

following update equations for the model in Example 3:

dμt = κu
κφ + κu

dUt, (111)

dκt = d 1
σt2

= − 1
κφ + κu

⋅ 1
κt2

dt . (112)

For the model used in Example 5, this is combined with the observations in the same way 

as for the circKF. Note that in absence of direct angular observations zt, the mean dynamics 

are the same as for the circKF, while κt deviates (as shown in Figure 1). When direct angular 

observations are present, this, in turn, affects the computation of the update in the mean 

dynamics, which leads to a worse numerical performance than the circKF.

G. Code availability

Jupyter notebooks to generate Figs. 1–3, the underlying simulation data as well as Python 

scripts to generate this data has been deposited at Zenodo, and is publicly available at https://

doi.org/10.5281/zenodo.5820406.
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Fig. 1. Circular filtering with observed angular increments.
a) The von Mises projection filter in Eqs. (44) and (45) is able to track a diffusion process on 

the circle based on observed increments, with mean μt and precision rt (given by rt =
I1 κt
I0 κt

) 

matching that of a particle filter (curves are on top of each other). b) While the precision 

r t estimated from the deviation between mean μt and true trajectory φt and the precision 

rt estimated by the filter coincide for both the von Mises projection filter and the particle 

filter, the Gaussian projection filter (“Gauss filter”) tends to underestimate its precision. c) 

Empirical (upper panel) and estimated (lower panel) precision for different values of the 

observations precision κu at time T = 10 κφ−1. Note that in the upper panel, the empirical 

precision r t of the different filters is identical. Parameters for a) and b) are κφ = 1, κu = 10, 

times are in units of κφ−1. Simulations in b) and c) were averaged over 5000 runs.
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Fig. 2. Time scaling of quasi-continuous angular observations.
Both a) the Fisher information per observation and b) the Fisher information rate 

are linear and constant, respectively, in the sampling time step Δt when using 

α κz, Δt = ξ−1 κzΔt  (”Ideal”). For comparison, we also plot α κz, Δt = κzΔt (small κzΔt 

approximation,”Squareroot”) and α κz, Δt = κzΔt (Gaussian approximation,”Linear”). c) 

Sample simulation with the constant position of the state φt = φ estimated from quasi-

continuous observations with different α functions and sampling time steps Δt. Ideally, the 

estimated precision rt should be independent of the chosen simulation time step Δt. This is 

satisfied by all simulations except for the linear approximation for small κzΔt (dark orange), 

and the square root approximation for large κzΔt (light green). In these simulations, we used 

time units of seconds (s), and set κφ = 100/s and κz = 100/s (by design, κz has units of Fisher 

information per unit time), without loss of generality. Precision estimates were averaged 

over 10 simulation runs. Black and grey arrow in panel b) correspond to the two time step 

sizes shown in panel c).
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Fig. 3. Filtering with quasi-continuous time angular observations.
a) Single quasi-continuous time update step (68) with angular observation zt, where the 

length of the vector indicates observation reliability α κzdt . The update step for Bayesian 

inference on the circle is equivalent to a vector addition in the 2D plane. The lower panel 

demonstrates that a conflicting observation leads to a decreased certainty of the estimate 

directly after the update, corresponding to a shorter vector. b) Empirical precision r t (upper 

panel) and estimated precision rt of the circular Kalman filter (circKF) and a Gaussian 

projection filter (Gauss filter), when compared to a particle filter, for different values of the 

observation precision κz at time T = 10 κφ−1. Parameters were κφ = 1 and κu = 1, times are in 

units of κφ−1. c) Estimated versus empirical precision up to T = 10 κφ−1 for the different filters 

at κz = 10. The precisions shown in b) and c) are averages across 5000 simulation runs.
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