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Abstract

First-order methods with momentum such as Nesterov’s fast gradient method are very useful for

convex optimization problems, but can exhibit undesirable oscillations yielding slow convergence

for some applications. An adaptive restarting scheme can improve the convergence rate of the

fast gradient methd, when the parameter of a strongly convex cost function is unknown or when

the iterates of the algorithm enter a locally well-conditioned region. Recently, we introduced

an optimized gradient method, a first-order algorithm that has an inexpensive per-iteration

computational cost similar to that of the fast gradient method, yet has a worst-case cost function

convergence bound that is twice smaller than that of the fast gradient method and that is optimal

for large-dimensional smooth convex problems. Building upon the success of accelerating the

fast gradient method using adaptive restart, this paper investigates similar heuristic acceleration

of the optimized gradient method. We first derive new step coefficients of the optimized gradient

method for a strongly convex quadratic problem with known function parameters, yielding a

convergence rate that is faster than that of the analogous version of the fast gradient method. We

then provide a heuristic analysis and numerical experiments that illustrate that adaptive restart can

accelerate the convergence of the optimized gradient method. Numerical results also illustrate that

adaptive restart is helpful for a proximal version of the optimized gradient method for nonsmooth

composite convex functions.
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1 Introduction

The computational expense of first-order methods depends only mildly on the problem

dimension, so they are attractive for solving large-dimensional optimization problems [1].
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In particular, Nesterov’s fast gradient method (FGM) [2,3,4] is used widely because it

has a worst-case cost function convergence bound that is optimal up to a constant for

large-dimensional smooth convex problems [3]. In addition, for smooth and strongly convex

problems where the strong convexity parameter is known, a version of FGM has a linear

convergence rate [3] that improves upon that of a standard gradient method. However,

without knowledge of the function parameters, conventional FGM does not guarantee a

linear convergence rate.

When the strong convexity parameter is unknown, a simple adaptive restarting scheme [5]

for FGM heuristically improves its convergence rate (see also [6,7] for theory and [1,8,9]

for applications). In addition, adaptive restart is useful even when the function is only

locally strongly convex near the minimizer [5]. First-order methods are known to be suitable

when only moderate solution accuracy is required, and adaptive restart can help first-order

methods achieve medium to high accuracy.

Recently we proposed the optimized gradient method (OGM) [10] (built upon [11]) that

has efficient per-iteration computation similar to FGM yet that achieves the optimal worst-

case convergence bound for decreasing a large-dimensional smooth convex function among

all first-order methods with fixed or dynamic step sizes [12]. (See [13,14,15] for further

analysis and extensions of OGM.) This paper examines OGM for strongly convex quadratic
functions and develops an OGM variant that provides a linear convergence rate that is faster

than that of FGM. The analysis reveals that, like FGM, OGM may exhibit undesirable

oscillating behavior in some cases. Building on the quadratic analysis of FGM in [5], we

propose an adaptive restart scheme [5] that heuristically accelerates the convergence rate of

OGM when the function is strongly convex or even when it is only locally well-conditioned.

This restart scheme circumvents the oscillating behavior. Numerical results illustrate that the

proposed OGM with restart performs better than FGM with restart in [5].

Sec. 2 describes convex problem and reviews first-order algorithms for convex problems

such as gradient method, FGM, and OGM. Sec. 3 studies OGM for stronlgy convex

quadratic problems. Sec. 4 suggests an adaptive restart scheme for OGM using the quadratic

analysis in Sec. 3. Sec. 5 illustrates the proposed adaptive version of OGM that we use

for numerical experiments on various convex problems in Sec. 6, including nonsmooth

composite convex functions, and Sec. 7 concludes.

2 Problem and Algorithms

2.1 Smooth and Strongly Convex Problem

We first consider the smooth and strongly convex minimization problem

min
x ∈ ℝd

f(x)
(M)

that satisfies the following smooth and strongly convex conditions:

– f:ℝd ℝ has Lipschitz continuous gradient with Lipschitz constant L > 0, i.e.,
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∥ ∇f(x) − ∇f(y) ∥ ≤ L ∥ x − y ∥ , ∀x, y ∈ ℝd, (1)

– f is strongly convex with strong convexity parameter μ > 0, i.e.,

f(x) ≥ f(y) + ∇f(y), x − y + μ
2 ∥ x − y ∥2 , ∀x, y ∈ ℝd . (2)

We let ℱμ, L ℝd  denote the class of functions f that satisfy the above two conditions

hereafter, and let x* denote the unique minimizer of f. We let q ≔ μ
L  denote the reciprocal of

the condition number of a function f ∈ ℱμ, L ℝd . We also let ℱ0, L ℝd  denote the class of

smooth convex functions f that satisfy the above two conditions with μ = 0, and let x* denote

a minimizer of f.

Some algorithms discussed in this paper require knowledge of both μ and L, but in many

cases estimating μ is challenging compared to computing L.1 Therefore, this paper focuses

on the case where the parameter μ is unavailable while L is available. Even without knowing

μ, the adaptive restart approach in [5] and the proposed approach in this paper both exhibit

linear convergence rates.

We next review known accelerated first-order algorithms for solving (M).

2.2 Accelerated First-order Algorithms

This paper focuses on accelerated first-order algorithms of the form shown in Alg. 1. The

fast gradient method (FGM) [2,3,4] (with γk = 0 in Alg. 1) accelerates the gradient method

(GM) (with βk = γk = 0) using the momentum term βk(yk+1 − yk) with negligible additional

computation. The optimized gradient method (OGM) [10,14] uses an over-relaxation term

γk(yk+1 − xk) = −γkα∇f(xk) for further acceleration.

2.2.1 Fast Gradient Method (FGM)—For the function class ℱ0, L ℝd , the following

coefficients are the standard choice for FGM [4, 2]:

α = 1
L, βk = tk − 1

tk + 1
, γk = 0, tk =

1, k = 0,
1
2 1 + 1 + 4tk − 1

2 , otherwise, (3)

where βk (3) increases from 0 towards 1 as k → ∞, and the resulting primary iterates {yk}

satisfy the following bound [4, Thm. 4.4]:

1For some applications even estimating L is expensive, and one must employ a backtracking scheme [4] or similar approaches. We
assume L is known throughout this paper. An estimate of μ could be found by a backtracking scheme as described in [16, Sec. 5.3].
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f yk − f x* ≤ L x0 − x*
2

2tk − 1
2 ≤ 2L x0 − x*

2

(k + 1)2 . (4)

For the function class ℱμ, L ℝd  with known q > 0, a typical choice for the coefficients of

FGM [3, Eqn. (2.2.11)] is:

α = 1
L, βk = 1 − q

1 + q, γk = 0, (5)

for which the primary iterates {yk} of FGM satisfy the following linear convergence bound

[3, Thm. 2.2.3]:

f yk − f x* ≤ (1 − q)k (1 + q)L x0 − x*
2

2 . (6)

Although FGM converges faster than GM [3], The convergence rate of FGM is not optimal

for both function classes ℱ0, L ℝd  and ℱμ, L ℝd , and finding optimal algorithms for such

classes is of interest. We next review the recently proposed OGM [10,14] (built upon

[11]) that has an optimal worst-case cost function convergence rate for the function class

ℱ0, L ℝd  for large-scale problems [12].

2.2.2 Optimized Gradient Method (OGM)—For function class ℱ0, L ℝd , the usual

coefficients for OGM are [10]:

α = 1
L, βk = θk − 1

θk + 1
, γk = θk

θk + 1
, θk =

1, k = 0,
1
2 1 + 1 + 4θk − 1

2 , k = 1, …, N − 1,

1
2 1 + 1 + 8θk − 1

2 k = N,

(7)

for a given total number of iterations N. For these coefficients, the last secondary iterate xN

of OGM satisfies the following bound for ℱ0, L ℝd  [10, Thm. 2]:

f xN − f x* ≤ L x0 − x*
2

2θN
2 ≤ L x0 − x*

2

(N + 1)(N + 1 + 2) , (8)

which is twice smaller than the bound (4) of FGM and is optimal for first-order methods

(with fixed or dynamic step sizes) for the function class ℱ0, L ℝd  under the large-scale

condition d ≥ N + 1 [12].

In addition, for the following coefficients [14] that are independent of N:

Kim and Fessler Page 4

J Optim Theory Appl. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α = 1
L, βk = tk − 1

tk + 1
, γk = tk

tk + 1
, tk =

1, k = 0,
1
2 1 + 1 + 4tk − 1

2 , k = 1, …, (9)

the primary iterates {yk} of OGM satisfy the following bound [14, Thm. 4.1]:

f yk − f x* ≤ L x0 − x*
2

4tk − 1
2 ≤ L x0 − x*

2

(k + 1)2 (10)

for ℱ0, L ℝd . Here, as k → ∞, βk and γk in (9) increase from 0 and 5 − 1
2 ≈ 0.618 to both

1, respectively. Note that the coefficients in (7) and (9) differ only at the last iteration N.

Interestingly, OGM-type acceleration with the coefficients (9) was studied for accelerating

the proximal point method long ago in [17, Appx.].

It is yet unknown whether some choice of OGM coefficients will yield a linear convergence

rate for the general function class ℱμ, L ℝd  that is faster than the rate (6) for FGM; this

topic is left as an interesting future work.2 Towards this direction, Sec. 3 studies OGM

for strongly convex quadratic problems, improving upon FGM. Sec. 4 uses this quadratic

analysis to analyze an adaptive restart scheme for OGM.

3 Analysis of OGM for Quadratic Functions

This section analyzes the behavior of OGM for minimizing a strongly convex quadratic

function. We optimize the coefficients of OGM for such quadratic function, yielding a linear

convergence rate that is faster than that of FGM. The quadratic analysis of OGM in this

section is similar in spirit to the analyses of a heavy-ball method [19, Sec. 3.2] and FGM

[20, Appx. A] [5, Sec. 4].

The resulting OGM requires the knowledge of q, and we show that using the coefficients (7)

or (9) instead (without the knowledge of q) will cause the OGM iterates to oscillate when

the momentum is larger than a critical value. This analysis stems from the dynamical system

analysis of FGM in [5, Sec. 4].

3.1 Quadratic Analysis of OGM

This section considers minimizing a strongly convex quadratic function:

f(x) = 1
2x⊤Qx − p⊤x ∈ ℱμ, L ℝd

(11)

where Q ∈ ℝd × d is a symmetric positive definite matrix, p ∈ ℝd is a vector. Here, ∇f(x)

= Qx − p is the gradient, and x* = Q−1 p is the optimum. The smallest and the largest

eigenvalues of Q correspond to the parameters μ and L of the function respectively. For

2Very recently, [18] developed a new first-order method with known q that achieves a linear convergence rate 1 − q 2
 for the cost

function decrease that is faster than the linear rate 1 − q  in (6) for FGM.
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simplicity, for the quadratic analysis we consider the version of OGM that has constant

coefficients (α, β, γ).

Defining the vectors ξk ≔ xk
⊤, xk − 1

⊤ ⊤ ∈ ℝ2d and ξ* = x*
⊤, x*

⊤ ⊤ ∈ ℝ2d, and extending the

analysis for FGM in [20, Appx. A], OGM with constant coefficients (α, β, γ) has the

following equivalent form for k ≥ 1:

ξk + 1 − ξ* = T (α, β, γ) ξk − ξ* , (12)

where the system matrix T (α, β, γ) of OGM is defined as

T (α, β, γ) ≔ (1 + β)(I − αQ) − γαQ −β(I − αQ)
I 0 ∈ ℝ2d × 2d

(13)

for an identity matrix I ∈ ℝd × d. The sequence   ξk ≔ yk
⊤, yk − 1

⊤ ⊤
k ≥ 1 also satisfies the

recursion (12), implying that (12) characterizes the behavior of both the primary sequence

{yk} and the secondary sequence {xk} of OGM with constant coefficients.

The spectral radius ρ(T (·)) of matrix T(·) determines the convergence rate of the algorithm.

Specifically, for any ε > 0, there exists K ≥ 0 such that [ρ(T)]k ≤ ∥T k∥ ≤ (ρ(T) + ε)k for all k
≥ K, establishing the following convergence bound:

ξk + 1 − ξ* ≤ (ρ(T (α, β, γ)) + ε)k ξ1 − ξ* . (14)

We next analyze ρ(T(α, β, γ)) for OGM.

Considering the eigen-decomposition of Q in T(·) as in [20, Appx. A], the spectral radius of

T (·) is:

ρ(T (α, β, γ)) = max
μ ≤ λ ≤ L

ρ Tλ(α, β, γ) , (15)

where for any eigenvalue λ of matrix Q we define a matrix Tλ(α, β, γ) ∈ ℝ2 × 2 by plugging in

λ and 1 instead of Q and I in T(α, β, γ) respectively. Similar to the analysis of FGM in [20,

Appx. A], the spectral radius of Tλ(α, β, γ) for OGM is:

ρ Tλ(α, β, γ) = max r1(α, β, γ, λ) , r2(α, β, γ, λ) (16)

=
1
2 (1 + β)(1 − αλ) − γαλ + Δ(α, β, γ, λ) , Δ(α, β, γ, λ) ≥ 0,

β(1 − αλ), otherwise,

where r1(α, β, γ, λ) and r2(α, β, γ, λ) denote the roots of the characteristic polynomial of

Tλ(·):
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r2 − ((1 + β)(1 − αλ) − γαλ)r + β(1 − αλ), (17)

and Δ(α, β, γ, λ) ≔ ((1 + β)(1 − αλ) − γαλ)2 − 4β (1 − αλ) denotes the corresponding

discriminant. For fixed (α, β, γ), the spectral radius ρ(Tλ (α, β, γ)) in (16) is a continuous

and quasi-convex3 function of λ; thus its maximum over λ occurs at one of its boundary

points λ = μ or λ = L.

The next section optimizes the coefficients (α, β, γ) of OGM to provide the fastest

convergence rate, i.e., the smallest spectral radius ρ(T(·)) in (15).

3.2 Optimizing OGM Coefficients

We would like to choose OGM coefficients that provide the fastest convergence for

minimizing a strongly convex quadratic function i.e., to solve

arg min
α, β, γ

ρ(T (α, β, γ)) = arg min
α, β, γ

max ρ Tμ(α, β, γ) , ρ TL(α, β, γ) . (18)

Note that it is yet unknown which form of first-order algorithm with fixed coefficients is

optimal for decreasing a strongly convex quadratic function (e.g., [18]), so our focus here is

simply to optimize the coefficients within the OGM algorithm class.

Similar coefficient optimization was studied previously for GM and FGM, which is

equivalent to optimizing (18) with additional constraints on (α, β, γ). GM corresponds

to the choice β = γ = 0, for which it is well known that optimizing (18) over α yields

the optimal GM step size α = 2
μ + L . Similarly, FGM with the standard choice (5) results

from optimizing (18) over β for the choice4 α = 1
L  and γ = 0. Another version of FGM

corresponds to the choice γ = 0, for which optimizing (18) over (α, β) yields coefficients

α = 4
μ + 3L , β = 3 + q − 2 q

3 + q + 2 q , in [20, Prop. 1].

Although a general unconstrained solution to (18) would be an interesting future direction,

here we focus on optimizing (18) over (β, γ) for the choice α = 1
L . This choice simplifies the

problem (18) and is useful for analyzing an adaptive restart scheme for OGM in Sec. 4.

3It is straightforward to show that ρ(Tλ(α, β, γ)) in (16) is quasi-convex over λ. First, β(1 − αλ) is quasi-convex over
λ (for Δ(α, β, γ, λ) < 0). Second, the eigenvalue λ satisfying Δ(α, β, γ, λ) ≥ 0 is in the region where the function
1
2 |(1 + β)(1 − αλ) − γαλ | + Δ(α, β, γ, λ)  either monotonically increases or decreases, which overall makes the continuous

function ρ(Tλ(α, β, γ)) quasi-convex over λ. This proof can be simply applied to other variables, i.e., ρ(Tλ(α, β, γ)) is quasi-convex
over either α, β or γ.
4For FGM with (5), the value of ρ(TL(1/L, β, 0)) is 0, and the function ρ(Tμ(1/L, β, 0)) is continuous and quasi-convex over β (see

footnote 3). The minimum of ρ(Tμ(1/L, β, 0)) occurs at the point β = 1 − q
1 + q  in (5) satisfying Δ(1/L, β, 0, μ) = 0, verifying the

statement that FGM with (5) results from optimizing (18) over β given α = 1
L  and γ = 0.
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3.3 Optimizing the Coefficients (β, γ) of OGM When α = 1/L

When α = 1
L  and λ = L, the characteristic polynomial (17) becomes r2 + γr = 0. The roots

are r = 0 and r = −γ, so ρ(TL(1/L, β, γ)) = |γ|. In addition, because ρ(Tμ(1/L, β, γ)) is

continuous and quasi-convex over β (see footnote 3), it can be easily shown that the smaller

value of β satisfying the following equation:

Δ(1/L, β, γ, μ) = ((1 + β)(1 − q) − γq)2 − 4β(1 − q) (19)

= (1 − q)2β2 − 2(1 − q)(1 + q + qγ)β + (1 − q)(1 − q − 2qγ) + q2γ2 = 0

minimizes ρ(Tμ(1/L, β, γ)) for any given γ satisfying |γ| ≤ 1. The optimal β is

β⋆(γ) ≔ (1 − q(1 + γ))2/(1 − q), (20)

which reduces to β = β⋆(0) = 1 − q
1 + q  in (5) for FGM (with γ = 0). Substituting (20) into

(16) yields ρ Tμ 1/L, β⋆(γ), γ = 1 − q(1 + γ) , leading to the following simplification of (18)

with α = 1
L  and β = β⋆(γ) from (20):

γ⋆ ≔ arg min
γ

max |1 − q(1 + γ) | , | γ | . (21)

The minimizer of (21) satisfies 1 − q(1 + γ) = ± γ, and with simple algebra, we get the

following solutions to (18) with α = 1
L  (and (21)):

β⋆ ≔ β⋆ γ⋆ = γ⋆ 2

1 − q =
2 + q − q2 + 8q 2

4(1 − q) , γ⋆ = 2 + q − q2 + 8q
2 , (22)

for which the spectral radius is ρ⋆ ≔ ρ T 1/L, β⋆, γ⋆ = 1 − q 1 + γ⋆ = γ⋆.

Table 1 compares the spectral radius of the new optimally tuned OGM to existing optimally

tuned GM and FGM. Simple algebra shows that the spectral radius of OGM is smaller

than those of FGM, i.e., 2 + q − q2 + 8q
2 ≤ 1 − 2 q

3 + q ≤ 1 − q. Therefore, OGM based on (22)

achieves a worst-case convergence rate of ∥ξk − ξ*∥ that is faster than that of FGM for a

strongly convex quadratic function.

To further understand the behavior of OGM for each eigen-mode, Fig. 1 plots ρ(Tλ(1/L,

β, γ)) for μ ≤ λ ≤ L for q = 0.1 as an example, where (β⋆, γ⋆) = (0.4, 0.6). Fig. 1 first

compares the OGM spectral radius values with optimally tuned coefficients (α, β, γ) = (1/L,

β⋆(γ⋆), γ⋆) from (22) to those of the optimally tuned β⋆(γ) in (20) for other choices of γ =

0, 0.4, 0.8. The optimal choice (β⋆, γ⋆) (upper red curve in Fig. 1) has worst-case spectral

radius values at both the smallest and the largest eigenvalues, unlike other choices of γ (with
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β⋆(γ)) where either ρ(Tμ (1/L, β, γ)) or ρ(T L(1/L, β, γ)) are largest. The other choices thus

have a spectral radius larger than that of the optimally tuned OGM.

Fig. 1 also illustrates spectral radius values for different choices of β for given γ = γ⋆,
showing that suboptimal β value will slow down convergence. OGM with (α, β, γ) = (1/L,

0, γ) is equivalent to GM with α = 1
L (1 + γ), and Fig. 1 illustrates this choice for comparison.

Interestingly, GM has some modes for mid-valued λ values that will converge faster than

in the accelerated methods, but its overall convergence rate is worse. Apparently no one

algorithm can have superior convergence rates for all modes.

Although using the optimized coefficients (β⋆, γ⋆) leads to OGM having the smallest

possible overall spectral radius ρ(T(·)), the upper red and blue curves in Fig. 1 illustrate that

this “tuned” OGM will have modes for large eigenvalues that converge slower than with

OGM with γ = 0 (i.e., FGM). This behavior may be undesirable when such modes dominate

the overall convergence behavior. Interestingly, Sec. 3.4 describes that the convergence of

the primary sequence {yk} of OGM is not governed by such modes unlike the secondary

sequence {xk} of OGM. Fig. 1 reveals change points across λ meaning that there are

different regimes; Sec. 3.4 elaborates on this behavior building upon a dynamical system

analysis of FGM [5, Sec. 4].

3.4 Convergence Properties of OGM When α = 1/L

[5, Sec. 4] analyzed a constant-step FGM as a linear dynamical system for minimizing a

strongly convex quadratic function (11), and showed that there are three regimes of behavior

for the system; low momentum, optimal momentum, and high momentum regimes. This

section similarly analyzes OGM to better understand its convergence behavior when solving

a strongly convex quadratic problem (11), complementing the previous section’s spectral

radius analysis of OGM

We use the eigen-decomposition of Q = VΛV⊤ with Λ ≔ diag{λi}, where the

eigenvalues {λi} are in an ascending order, i.e., μ = λ1 ≤ λ2 ≤ ⋯ ≤ λd = L.

And for simplicity, we let p = 0 without loss of generality, leading to x* = 0. By

defining wk ≔ wk, 1, ⋯, wk, d
⊤ = V ⊤yk ∈ ℝd and vk ≔ vk, 1, ⋯, vk, d

⊤ = V ⊤xk ∈ ℝd as the

mode coefficients of the primary and secondary sequences respectively and using (12), we

have the following d independently evolving identical recurrence relations for the evolution

of w·,i and v·,i of the constant-step OGM respectively:

wk + 2, i = (1 + β) 1 − λi/L − γλi/L wk + 1, i − β 1 − λi/L wk, i, (23)

vk + 2, i = (1 + β) 1 − λi/L − γλi/L vk + 1, i − β 1 − λi/L vk, i,

for i = 1, …, d, although the initial conditions differ as follows:

w1, i = 1 − λi/L w0, i, v1, i = (1 + β + γ) 1 − λi/L − (β + γ) v0, i (24)
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with w0,i = v0,i. The convergence behavior of the ith dynamical system of both w·,i and v·,i in

(23) is determined by the characteristic polynomial (17) with α = 1
L  and λ = λi. Unlike the

previous sections that studied only the worst-case convergence performance using the largest

absolute value of the roots of the polynomial (17), we next discuss the convergence behavior

of OGM more comprehensively using (17) with α = 1
L  and λ = λi for the cases where 1) λi

= L and 2) λi < L.

1) λi = L: The characteristic polynomial (17) of the mode of λi = L reduces to r2 + γr = 0

with two roots 0 and −γ regardless of the choice of β. Thus we have monotone convergence

for this (dth) mode of the dynamical system [21, Sec. 17.1]:

wk, d = 0k + cd( − γ)k, vk, d = 0k + cd( − γ)k, (25)

where cd and cd are constants depending on the initial conditions (24). Substituting w1,d =

0 and v1,d = −(β + γ)v0,d (24) into (23) yields cd = 0 and cd = v0, d 1 + β
γ , illustrating that

the primary sequence {wk,d} reaches its optimum after one iteration, whereas the secondary

sequence {vk,d} has slow monotone convergence of the distance to the optimum, while

exhibiting undesirable oscillation due to the term (−γ)k, corresponding to overshooting over

the optimum.

2) λi < L: In (22) we found the optimal overall β⋆ for OGM. One can alternatively explore

what the best value of β would be for any given mode of the system for comparison. The

polynomial (17) has repeated roots for the following β, corresponding to the smaller zero of

the discriminant Δ(1/L, β, γ, λi) for given γ and λi:

βi
⋆(γ) ≔ 1 − (1 + γ)λi/L

2/ 1 − λi/L . (26)

This root satisfies β⋆ = β⋆ γ⋆ = β1
⋆ γ⋆  (22), because λ1 is the smallest eigenvalue. Next we

examine the convergence behavior of OGM in the following three regimes, similar to FGM

in [5, Sec. 4.3]:5

– β < βi
⋆(γ): low momentum, over-damped,

– β = βi
⋆(γ): optimal momentum, critically damped,

– β > βi
⋆(γ): high momentum, under-damped.

If β ≤ βi
⋆(γ), the polynomial (17) has two real roots, r1,i and r2,i where we omit (1/L, β, γ, λi)

in r·,i = r·(1/L, β, γ, λi) for simplicity. Then, the system evolves as [21, Sec. 17.1]:

wk, i = c1, ir1, i
k + c2, ir2, i

k , vk, i = c1, ir1, i
k + c2, ir2, i

k , (27)

5For simplicity in the momentum analysis, we restricted the choice of β within [0 1], containing the βk values of FGM in (3), (5) and
OGM in (7), (9). This restriction simply discards the effect of a larger solution β of Δ(1/L, β, γ, λi) = 0 in the analysis, which is larger
than 1.
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where constants c1,i, c2,i, c1, i and c2, i depend on the initial conditions (24). In particular,

when β = βi
⋆(γ), we have the repeated root ri⋆(γ) ≔ 1 − (1 + γ)λi/L, corresponding to critical

damping, yielding the fastest monotone convergence among (27) for any β s.t. β ≤ βi
⋆(γ).

This property is due to the quasi-convexity of ρ(Tλ(1/L, β, γ)) over β. If β < βi
⋆(γ), the

system is over-damped, which corresponds to the low momentum regime, where the system

is dominated by the larger root that is greater than ri⋆(γ), and thus has slow monotone

convergence. However, depending on the initial conditions (24), the system may only be

dominated by the smaller root, as noticed for the case λi = L in (25). Also note that the

mode of λi = L is always in the low momentum regime regardless of the value of β.

If β > βi
⋆(γ), the system is under-damped, which corresponds to the high momentum regime.

This means that the system evolves as [21, Sec. 17.1]:

wk, i = ci β 1 − λi/L
kcos kψi(β, γ) − δi , (28)

vk, i = ci β 1 − λi/L kcos kψi(β, γ) − δi ,

where the frequency of the oscillation is given by

ψi(β, γ) = cos−1 (1 + β) 1 − λi/L − γλi/L / 2 β 1 − λi/L , (29)

and ci, δi, c i and δ i denote constants that depend on the initial conditions (24); in particular

for β ≈ 1, we have δi ≈ 0 and δ i ≈ 0 so we will ignore them.

We categorize the behavior of the ith mode of OGM for each λi based on the above

momentum analysis. Regimes with two curves and one curve in Fig. 1 correspond to the

low- and high-momentum regimes, respectively. In particular, for β = β⋆(γ) in Fig. 1,

most λi values experience high momentum (and the optimal momentum for λi satisfying

β⋆(γ) = βi
⋆(γ), e.g., λi = μ), whereas modes where λi ≈ L experience low momentum. The

fast convergence of the primary sequence {wk,d} in (25) generalizes to the case λi ≈ L,

corresponding to the lower curves in Fig. 1. In addition, for β smaller than β⋆(γ) in Fig. 1,

both λ ≈ μ and λ ≈ L experience low momentum so increasing β improves the convergence

rate.

Based on the quadratic analysis, we would like to use appropriately large β and γ
coefficients, namely (β⋆, γ⋆), to have fast monotone convergence (for the dominating

modes). However, such values require knowing the function parameter q = μ/L that is

usually unavailable in practice. Using OGM (with coefficients (7) and (9)) without knowing

q will likely lead to oscillation due to the high momentum (or under-damping) for strongly

convex functions. The next section describes restarting schemes inspired by [5] that we

suggest to use with OGM to avoid such oscillation and thus heuristically accelerate the rate
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of OGM for a strongly convex quadratic function and even for a convex function that is

locally well-conditioned.

4 Restarting Schemes

Restarting an algorithm (i.e., starting the algorithm again by using the current iterate as the

new starting point) after a certain number of iterations or when some restarting condition is

satisfied has been found useful, e.g., for the conjugate gradient method [22,23], called “fixed

restart” and “adaptive restart” respectively. The fixed restart approach was also studied for

accelerated gradient schemes such as FGM in [24, Sec. 11.4] [16]. Recently adaptive restart

of FGM was shown to provide dramatic practical acceleration without requiring knowledge

of function parameters [5,6,7]. Building upon those ideas, this section reviews and applies

restarting approaches for OGM. A quadratic analysis in [5] justified using a restarting

condition for FGM; this section extends that analysis to OGM by studying an observable

quantity of oscillation that serves as an indicator for restarting the momentum of OGM.

4.1 Fixed Restart

Restarting an algorithm every k iterations can yield a linear rate for decreasing a function in

ℱμ, L ℝd  [24, Sec. 11.4] [16, Sec. 5.1]. We examine this restart approach for OGM here. Let

x j,i denote the jth outer iteration and ith inner iteration of an OGM variant that is restarted

every k (inner) iterations. Specifically, this OGM uses x j+1,0 = x j,k to initialize the next (j +
1)th outer iteration. Combining the OGM bound (8) and the strong convexity inequality (2)

yields the following linear rate of cost function decrease for k inner iterations of OGM:

f xj, k − f x* ≤
L xj, 0 − x*

2

k2 ≤ 2L
μk2 f xj, 0 − f x* . (30)

This bound is smaller than the 4L/μk2 bound for FGM with fixed restart (using the FGM

bound (4)). Here, an optimal restarting interval k that minimizes the bound (30) for a given

total number of steps jk is kfixed  ≔ e 2/q.

There are two drawbacks of the fixed restart approach [5, Sec. 3.1]. First, computing

the optimal interval kfixed requires knowledge of q that is usually unavailable in practice.

Second, using a global parameters q may be too conservative when the iterates enter locally

well-conditioned region. Therefore, adaptive restarting [5] has been found useful in practice,

which we review next and then apply to OGM. The above two drawbacks also apply to the

algorithms in Sec. 2 that assume knowledge of the global parameter q.

4.2 Adaptive Restart

To circumvent the drawbacks of fixed restart, [5] proposes the following two adaptive restart

schemes for FGM:

– Function scheme for restarting (FR): restart whenever

f yk + 1 > f yk , (31)
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– Gradient scheme for restarting (GR): restart whenever

− ∇f xk , yk + 1 − yk < 0. (32)

These schemes heuristically improve convergence rates of FGM with coefficients (3)

and both performed similarly [5,7]. Although the function scheme guarantees monotonic

decreasing function values, the gradient scheme has two advantages over the function

scheme [5]; the gradient scheme involves only arithmetic operations with already computed

quantities, and it is numerically more stable.

These two schemes encourage algorithm restart whenever the iterates take a “bad” direction,

i.e., when the function value increases or the negative gradient and the momentum have

an obtuse angle, respectively. However, a convergence proof that justifies their empirical

acceleration is yet unknown, so [5] analyzes such restarting schemes for strongly convex

quadratic functions. An alternative scheme in [7] that restarts whenever the magnitude of

the momentum decreases, i.e., ∥yk+1 − yk∥ < ∥yk − yk−1∥, has a theoretical convergence

analysis for the function class ℱμ, L ℝd . However, empirically both the function and

gradient schemes performed better in [7]. Thus, this paper focuses on adapting practical

restart schemes to OGM and extending the analysis in [5] to OGM. First we introduce a new

additional adaptive scheme designed specifically for OGM.

4.3 Adaptive Decrease of γ for OGM

Sec. 3.4 described that the secondary sequence {xk} of OGM might experience overshooting

and thus slow convergence, unlike the primary sequence {yk}, when the iterates enter a

region where the mode of the largest eigenvalue dominates. (Sec. 6.1.2 illustrates such an

example.) From (25), the overshoot of xk has magnitude proportional to γ, yet a suitably

large γ, such as γ⋆ (21), is essential for overall acceleration.

To avoid (or reduce) such overshooting, we suggest the following adaptive scheme:

– Gradient scheme for decreasing γ (GDγ): decrease γ whenever

∇f xk , ∇f xk − 1 < 0. (33)

Because the primary sequence {yk} of OGM is unlikely to overshoot, one could choose to

simply use the primary sequence {yk} as algorithm output instead of the secondary sequence

{xk}. However, if one needs to use the secondary sequence of OGM (e.g., Sec. 5.2), adaptive

scheme (33) can help.

4.4 Observable OGM Quantities

This section revisits Sec. 3.4 that suggested that observing the evolution of the mode

coefficients {wk,i} and {vk,i} can help identify the momentum regime. However, in practice

that evolution is unobservable because the optimum x* is unknown, whereas Sec. 3.4

assumed x* = 0. Instead we can observe the evolution of the function values, which are

related to the mode coefficients as follows:
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f yk = 1
2 ∑

i = 1

d
λiwk, i

2 , f xk = 1
2 ∑

i = 1

d
λivk, i

2 , (34)

and also the inner products of the gradient and momentum, i.e.,

− ∇f xk , yk + 1 − yk = − ∑
i = 1

a
λivk, i wk + 1, i − wk, i , (35)

∇f xk , ∇f xk − 1 = ∑
i = 1

d
λi

2vk, ivk − 1, i . (36)

These quantities appear in the conditions for the adaptive schemes (31), (32), and (33).

One would like to increase β and γ as large as possible for acceleration up to β⋆ and

γ⋆ (22). However, without knowing q (and β⋆, γ⋆), we could end up placing the majority

of the modes in the high momentum regime, eventually leading to slow convergence with

oscillation as described in Sec. 3.4. To avoid such oscillation, we hope to detect it using

(34) and (35) and restart the algorithm. We also hope to detect the overshooting (25) of the

modes of the large eigenvalues (in the low momentum regime) using (36) so that we can

then decrease γ and avoid such overshooting.

We focus on the case where β > β1(γ) for given γ, when the most of the modes are in the

high momentum regime. Because the maximum of ρ(Tλ(1/L, β, γ)) occurs at the points λ =

μ or λ = L, we expect that (34), (35), and (36) will be quickly dominated by the mode of the

smallest or the largest values. Using (25) and (28) leads to the following approximations:

f yk ≈ 1
2μc1

2βk(1 − μ/L)k cos2 kψ1 , (37)

f xk ≈ 1
2μc1

2βk(1 − μ/L)k cos2 kψ1 + 1
2Lcd

2γ2k

− ∇f xk , yk + 1 − yk ≈ − μc1c1βk(1 − μ/L)k cos kψ1
× β(1 − μ/L) cos (k + 1)ψ1 − cos kψ1 ,

∇f xk , ∇f xk − 1 ≈ μ2c1
2βk − 1

2(1 − μ/L)k − 1
2 cos kψ1 cos (k − 1)ψ1

− L2cd
2γ2k − 1,

where ψ1 = ψ1(β, γ). It is likely that these expressions will be dominated by the mode of

either the smallest or largest eigenvalues. We next analyze each case separately.
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4.4.1 Case 1: the Mode of the Smallest Eigenvalue Dominates—When the mode

of the smallest eigenvalue dominates, we further approximate (37) as

f yk ≈ 1
2μc1

2βk(1 − μ/L)k cos2 kψ1 , f xk ≈ 1
2μc1

2βk(1 − μ/L)k cos2 kψ1 ,
− ∇f xk , yk + 1 − yk

(38)

≈ − μc1c1βk(1 − μ/L)k cos kψ1 cos (k + 1)ψ1 − cos kψ1

= 2μc1c1βk(1 − μ/L)k cos kψ1 sin (k + 1/2)ψ1 sin ψ1/2

≈ 2μc1c1 sin ψ1/2 βk(1 − μ/L)k sin 2kψ1

using simple trigonometric identities and the approximations β(1 − μ/L) ≈ 1 and sin(kψ1)

≈ sin((k + 1/2)ψ1). The values (38) exhibit oscillations at a frequency proportional to ψ1(β,

γ) in (29). This oscillation can be detected by the conditions (31) and (32) and is useful in

detecting the high momentum regime where a restart can help improve the convergence rate.

4.4.2 Case 2: the Mode of the Largest Eigenvalue Dominates—Unlike the

primary sequence {yk} of OGM, convergence of the secondary sequence {xk} of OGM

may be dominated by the mode of the largest eigenvalue in (25). By further approximating

(37) for the case when the mode of the largest eigenvalue dominates, the function

value f xk ≈ 1
2Lcd

2γ2k decreases slowly but monotonically, whereas f(yk) ≈ f(x*) = 0 and

〈−∇f(xk), yk+1 − yk〉 ≈ 0. Therefore, neither restart condition (31) or (32) can detect such

non-oscillatory observable values, even though the secondary mode {wk,d} of the largest

eigenvalue is oscillating (corresponding to overshooting over the optimum). However, the

inner product of two sequential gradients ∇f xk , ∇f xk − 1 ≈ − L2cd
2γ2k − 1, can detect

the overshoot of the secondary sequence {xk}, suggesting that the algorithm should adapt by

decreasing γ when condition (33) holds. Decreasing γ too much may slow down the overall

convergence rate when the mode of the smallest eigenvalue dominates. Thus, we use (33)

only when using the secondary sequence of OGM as algorithm output (e.g., Sec. 5.2).

5 Proposed Adaptive Schemes for OGM

5.1 Adaptive Scheme of OGM for Smooth and Strongly Convex Problems

Alg. 2 illustrates a new adaptive version of OGM that is used in our numerical experiments

in Sec. 6. When a restart condition is satisfied in Alg. 2, we reset tk = 1 to discard the

previous momentum that has a bad direction. When the decreasing γ condition is satisfied

in Alg. 2, we decrease σ to suppress undesirable overshoot of the secondary sequence {xk}.

Although the analysis in Sec. 3 considered only strongly convex quadratic functions, the
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numerical experiments in Sec. 6 illustrate that the adaptive scheme is also useful more

generally for smooth convex functions in ℱ0, L ℝd , as described in [5, Sec. 4.6].

5.2 Adaptive Scheme of the Proximal Version of OGM for Nonsmooth Composite Convex
Problems

Modern applications often involve nonsmooth composite convex problems:

arg min
x

F(x) ≔ f(x) + ϕ(x) , (39)

where f ∈ ℱ0, L ℝd  is a smooth convex function (typically not strongly convex) and

ϕ ∈ ℱ0, ∞ ℝd  is a convex function that is possibly nonsmooth and “proximal-friendly” [25],

such as the ℓ1 regularizer ϕ(x) = ∥x∥1. Our numerical experiments in Sec. 6 show that a new

adaptive version of a proximal variant of OGM can be useful for solving such problems.

To solve such problems using first-order information, [4] developed a fast proximal

gradient method, popularized under the name fast iterative shrinkage-thresholding algorithm

(FISTA), that directly extends FGM with coefficients (3) for solving (39) while preserving

the O(1/k2) rate of FGM. Variants of FISTA with adaptive restart were studied in [5, Sec.

5.2].

Inspired by the fact that OGM converges faster than FGM, [15] studied a proximal variant6

of OGM (POGM) with coefficients (7). It is natural to pursue acceleration of POGM by

using variations of any (or all) of the three adaptive schemes (31), (32), (33), as illustrated in

Alg. 3 where the proximity operator is defined as proxℎ(z) ≔ arg minx
1
2 ∥ z − x ∥2 + ℎ(x) .

As a function restart condition for POGM, we use F(xk+1) > F(xk) instead of F(yk+1) > F(yk),

because F(yk) can be un-bounded (e.g., yk can be unfeasible for constrained problems).

For gradient conditions of POGM, we consider the composite gradient mapping G(xk) in

Alg. 3 that differs from the standard composite gradient mapping in [16]. We then use the

gradient conditions 〈−G(xk), yk+1 − yk〉 < 0 and 〈G(xk), G(xk−1)〉 < 0 for restarting POGM or

decreasing γ of POGM respectively. Here POGM must output the secondary sequence {xk}

because the function value F(yk) of the primary sequence may be unbounded. This situation

was the motivation for (33) (or 〈G(xk), G(xk−1)〉 < 0) and Sec. 4.3. When ϕ(x) = 0, Alg. 3

6Applying the proximity operator to the primary sequence {yk} of OGM, similar to the extension of FGM to FISTA, leads to a poor
worst-case convergence bound [15]. Therefore, [15] applied the proximity operator to the secondary sequence of OGM and showed
numerically that this version has a convergence bound about twice smaller than that of FISTA.
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reduces to an algorithm that is similar to Alg. 2, where only the location of the restart and

decreasing γ conditions differs.

The worst-case bound for POGM in [15] requires choosing the number of iterations N
in advance for computing θN (7), which seems incompatible with adaptive restarting of

POGM. Like (7) in Alg. 1, the fact that θN (7) is larger than the standard tN in (9) at

the last iteration helps to dampen (by reducing the values of β and γ) the final update to

guarantee fast convergence in the worst-case. (This property was studied for smooth convex

minimization in [14].) We could perform one last update using θN after a restart condition

is satisfied, but this step appears unnecessary because restarting already has the effect of

slowing down the algorithm. Thus, we did not include any such extra update in Alg. 3 in our

experiment in the next section.

6 Numerical Results

This section shows the results of applying OGM (and POGM) with adaptive schemes

to various numerical examples including both strongly convex quadratic problems and

non-strongly convex problems.7 The results illustrate that OGM (or POGM) with adaptive

schemes converges faster than FGM (or FISTA) with adaptive restart. The plots show the

decrease of F(yk) of the primary sequence for FGM (FISTA) and OGM unless specified. For

POGM, we use the secondary sequence {xk} as an output and plot F(xk), since F(yk) can be

unbounded.

6.1 Strongly Convex Quadratic Examples

This section considers two types of strongly convex quadratic examples, where the mode of

either the smallest eigenvalue or the largest eigenvalue dominates, providing examples of the

analysis in Sec. 4.4.1 and 4.4.2 respectively.

6.1.1 Case 1: the Mode of the Smallest Eigenvalue Dominates—Fig. 2 compares

GM, FGM and OGM, with or without the knowledge of q, for minimizing a strongly convex

quadratic function (11) in d = 500 dimensions with q = 10−4, where we generated A (for Q

= A⊤A) and p randomly. In Fig. 2, ‘GM’ and ‘GM-q’ denote GM with α = 1
L  and α = 2

μ + L

7Software for the algorithms and for producing the figures in Sec. 6 is available at https://gitlab.eecs.umich.edu/michigan-fast-
optimization/ogm-adaptive-restart.
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respectively. ‘FGM’ and ‘FGM-q’ denote step coefficients (3) and (5) respectively. ‘OGM’

and ‘OGM-q’ denote step coefficients (9) and (22) respectively. As expected, knowing q
accelerates convergence.

Fig. 2 also illustrates that adaptive restart helps FGM and OGM to nearly achieve the

fast linear converge rate of their non-adaptive versions that know q. As expected, OGM

converges faster than FGM for all cases. In Fig. 2, ‘FR’ and ‘GR’ stand for function restart

(31) and gradient restart (32), respectively, and both behave nearly the same.

6.1.2 Case 2: the Mode of the Largest Eigenvalue Dominates—Consider the

strongly convex quadratic function with Q = q 0
0 1 , q = 0.01, p = 0 and x* = 0. When

starting the algorithm from the initial point {x0} = (0.2, 1), the secondary sequence {xk}

of OGM-GR8 (or equivalently OGM-GR-GDγ (σ = 1.0)) is dominated by the mode of

largest eigenvalue in Fig. 3, illustrating the analysis of Sec. 4.4.2. Fig. 3 illustrates that

the primary sequence of OGM-GR converges faster than that of FGM-GR, whereas the

secondary sequence of OGM-GR initially converges even slower than GM. To deal with

such slow convergence coming from the overshooting behavior of the mode of the largest

eigenvalue of the secondary sequence of OGM, we employ the decreasing γ scheme in (33).

Fig. 3 shows that using σ < 1 in Alg. 2 leads to overall faster convergence of the secondary

sequence {xk} than the standard OGM-GR where σ = 1. We leave optimizing the choice of σ
or studying other strategies for decreasing γ as future work.

6.2 Non-strongly Convex Examples

This section applies adaptive OGM (or POGM) to three non-strongly convex numerical

examples in [5, 7]. The numerical results show that adaptive OGM (or POGM) converges

faster than FGM (or FISTA) with adaptive restart.

6.2.1 Log-Sum-Exp—The following function from [5] is smooth but non-strongly

convex:

f(x) = η log ∑
i = 1

m
exp 1

η ai⊤x − bi .

It approaches maxi = 1, …, m ai⊤x − bi  as η → 0. Here, η controls the function smoothness

L = 1
η λmax A⊤A  where A = a1⋯am

⊤ ∈ ℝm × d. The region around the optimum is

approximately quadratic since the function is smooth, and thus the adaptive restart can be

useful without knowing the local condition number.

For (m, d) = (100, 20), we randomly generated ai ∈ ℝd and bi ∈ ℝ for i = 1, …, m, and

investigated η = 1, 10. Fig. 4 shows that OGM with adaptive restart converges faster than

FGM with the adaptive restart. The benefit of adaptive restart is dramatic here; apparently

8Fig. 3 only compares the results of the gradient restart (GR) scheme for simplicity, where the function restart (FR) behaves similarly.
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FGM and OGM enter a locally well-conditioned region after about 100 − 200 iterations,

where adaptive restart then provide a fast linear rate.

6.2.2 Sparse Linear Regression—Consider the following cost function used for

sparse linear regression:

f(x) = 1
2 ∥ Ax − b ∥2

2 , ϕ(x) = τ ∥ x ∥1 ,

for A ∈ ℝm × d, where L = λmax(A⊤A) and the parameter τ balances between the

measurement error and signal sparsity. The proximity operator becomes a soft-thresholding

operator, e.g., proxζk + 1ϕ(x) = sgn(x) max |x | − ζk + 1τ, 0 . The minimization seeks a sparse

solution x*, and often the cost function is strongly convex with respect to the non-zero

elements of x*. Thus we expect to benefit from adaptive restarting.

For each choice of (m, d, s, τ) in Fig. 5, we generated an s-sparse true vector xtrue by

taking the s largest entries of a randomly generated vector. We then simulated b = Axtrue

+ ε, where the entries of matrix A and vector ε were sampled from a zero-mean normal

distribution with variances 1 and 0.1 respectively. Fig. 5 illustrates that POGM with adaptive

schemes provide acceleration over FISTA with adaptive restart. While Sec. 3.4 discussed

the undesirable overshooting behavior that a secondary sequence of OGM (or POGM) may

encounter, these examples rarely encountered such behavior. Therefore the choice of σ in the

adaptive POGM was not significant in this experiment, unlike Sec. 6.1.2.

6.2.3 Constrained Quadratic Programming—Consider the following box-

constrained quadratic program:

f(x) = 1
2x⊤Qx − p⊤x, ϕ(x) = 0, l ≼ x ≼ u,

∞, otherwise,,

where L = λmax(Q). The algorithms ISTA (a proximal variant of GM), FISTA and POGM

use the projection operator: prox 1
Lϕ(x) = proxζk + 1ϕ(x) = min max x, l , u . Fig. 6 denotes

each algorithm by a projected GM, a projected FGM, and a projected OGM respectively.

Similar to Sec. 6.2.2, after the algorithm identifies the active constraints the problem

typically becomes a strongly convex quadratic problem where we expect to benefit from

adaptive restart.

Fig. 6 studies two examples with problem dimensions d = 500, 1000, where we randomly

generate a positive definite matrix Q having a condition number 107 (i.e., q = 10−7), and a

vector p. Vectors l and u correspond to the interval constraints −1 ≤ xi ≤ 1 for x = {xi}. The

optimum x* had 47 and 81 active constraints out of 500 and 1000 respectively. In Fig. 6, the

projected OGM with adaptive schemes converged faster than FGM with adaptive restart and

other non-adaptive algorithms.
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7 Conclusions

We introduced adaptive restarting schemes for the optimized gradient method (OGM) that

heuristically exhibits a fast linear convergence rate when the function is strongly convex or

even when the function is not globally strongly convex. The method resets the momentum

when it makes a bad direction. We provided a heuristic dynamical system analysis to justify

the practical acceleration of the adaptive scheme of OGM, by extending the existing analysis

of FGM. On the way, we described new optimized constant step coefficients for OGM for

strongly convex quadratic problems. Numerical results illustrate that the proposed adaptive

approach practically accelerates the convergence rate of OGM, and in particular, performs

faster than FGM with adaptive restart. An interesting open problem is to determine the

worst-case bounds for OGM (and FGM) with adaptive restart.
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Fig. 1.
Plots of |r1(1/L, β, γ, λ)| and |r2(1/L, β, γ, λ)| over μ ≤ λ ≤ L for various (Left) γ values

for given β = β⋆(γ), and (Right) β values for given γ = γ⋆, for a strongly convex quadratic

problem with q = 0.1, where (β⋆, γ⋆) = (0.4, 0.6). Note that the maximum of |r1(1/L, β,

γ, λ)| and |r2(1/L, β, γ, λ)|, i.e. the upper curve in the plot, corresponds to the value of

ρ(Tλ(1/L, β, γ)) in (16).
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Fig. 2.
Minimizing a strongly convex quadratic function - Case 1: the mode of the smallest

eigenvalue dominates. (FGM-FR and FGM-GR are almost indistinguishable, as are OGM-

FR and OGM-GR.)
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Fig. 3.
Minimizing a strongly convex quadratic function - Case 2: the mode of the largest

eigenvalue dominates for the secondary sequence {xk} of OGM. Using GDγ (33) with σ < 1
accelerates convergence of the secondary sequence of OGM-GR, where both the primary

and secondary sequences behave similarly after first few iterations, unlike σ = 1.
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Fig. 4.
Minimizing a smooth but non-strongly convex Log-Sum-Exp function.
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Fig. 5.
Solving a sparse linear regression problem. (ISTA is a proximal variant of GM.)
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Fig. 6.
Solving a box-constrained quadratic programming problem.
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Table 1

Optimally tuned coefficients (α, β, γ) of GM, FGM, and OGM, and their spectral radius ρ(T(α, β, γ)) (15).

These optimal coefficients result from solving (18) with the shaded coefficients fixed.

Algorithm α β γ ρ(T(α, β, γ))

GM
2

μ + L 0 0
1 − q
1 + q

FGM

1
L

1 − q
1 + q 0 1 − q

4
μ + 3L

3 + q − 2 q
3 + q + 2 q 0 1 − 2 q

3 + q

OGM
1
L

2 + q − q2 + 8q 2

4(1 − q)
2 + q − q2 + 8q

2
2 + q − q2 + 8q

2
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