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Abstract
The collection of increasing amounts of data in health care has become relevant for pain therapy and research. This poses problems
for analyses with classical approaches, which is why artificial intelligence (AI) andmachine learning (ML) methods are being included
into pain research. The current literature on AI and ML in the context of pain research was automatically searched and manually
curated. Common machine learning methods and pain settings covered were evaluated. Further focus was on the origin of the
publication and technical details, such as the included sample sizes of the studies analyzedwithML.Machine learningwas identified
in 475 publications from 18 countries, with 79% of the studies published since 2019. Most addressed pain conditions included low
back pain, musculoskeletal disorders, osteoarthritis, neuropathic pain, and inflammatory pain. Most used ML algorithms included
random forests and support vector machines; however, deep learning was used when medical images were involved in the
diagnosis of painful conditions. Cohort sizes ranged from 11 to 2,164,872, with amode at n5 100; however, deep learning required
larger data sets often only available frommedical images. Artificial intelligence andML, in particular, are increasingly being applied to
pain-related data. This report presents application examples and highlights advantages and limitations, such as the ability to
process complex data, sometimes, but not always, at the cost of big data requirements or black-box decisions.
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1. Introduction

The collection of increasing amounts of data in health care and
the trend towards digitalized medicine do not leave out the care

for pain patients and the research for improved pain treatments.

Examples of larger amounts of pain-related data include so-

called "omics" information, medical images, or more nuanced

information related to clinical phenotype, resulting from the

recognition that pain is a complex characteristic that can only be

partially captured by intensity.26 The expectation of this growing

data set is better and more precise therapy for pain. However,

large data sets with complex composition, occasionally combin-

ing multiple modalities from numerical data to images or patient-

generated descriptions of symptoms, pose problems in their

analysis, which ultimately aims to extract information from the

data that can be transformed into knowledge about pain.

The developments in informatics and data analysis that have
paralleled data collection in recent decades are available for analysis
of pain-related data. Although artificial intelligence (AI) is widely
discussed, the most relevant set of methods includes machine
learning, which can be considered a subfield of AI and is its main
methodological foundation to date. Definitions are subject to debate,
but AI can be described as a branch of computer science that deals
with the automation of human activities that are generally classified as
intelligent behavior.60 These activities include understanding human
language, representing and using knowledge, reasoning, planning,
problem solving, risk assessment, and learning from experience or to
extract information from the data that are useful for deriving new
knowledge.Machine learning is currently themost popularmethodof
AI and can be described as a set of methods that can automatically
detect pattern, such as subgroups in the data and then use the
detectedpatterns to assign futuredata to thecorrect subgroup.9,15,68
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Machine learning is increasingly being used in pain research,
according to a query of the PubMed database (Fig. 1). In this
scientometric analysis, after a brief recapitulation of the principles
and main workflow of machine learning, the publications on the
applicationofmachine learningmethods andAIwill be summarized
in the current context of pain research. Commonly used machine
learning and artificial intelligence methods and the pain settings
most frequently addressed with these methods to date will be
highlighted, followed by a brief discussion of implications of their
use in research and care for patients with pain.

1.1. Workflow andmainmethods of machine learning–based
data analysis

Analyzing a data set with machine learning follows a workflow
(Fig. 2) that begins with preprocessing the data. Main tasks of
machine learning include the discovery of structures in the data,
which is performed using so-called unsupervised methods (see
below), and the acquisition of the ability to assign the correct label
to a case in the data set based on numerical information about
certain properties of the data instance, eg, a clinical diagnosis,
which is performed using so-called supervised methods. Other
applications include exploring dependencies between variables
and outcomes through regression analysis. Further tasks include
describing these structures in an understandable way based on
the given features, ie, the variables in the data set.

Extracting knowledge from data can also be performed
through natural language processing, such as in the systematic
analysis of patient satisfaction after total joint arthroplasty using
patient comments67 or by mining large databases and combining
the knowledge they contain from different sources. For example,
functional genomics-based drug discovery51 using the Gene
Ontology knowledge base2 at https://www.geneontology.org/
combinedwith theDrugBank database94 at https://go.drugbank.
com. The following sections briefly describe some of the major
approaches; additional methods are addressed with summaries
of the application of machine learning to pain-related data, based
on the frequency of their use in this context.

1.2. Data preprocessing

Data preprocessing is a crucial step in machine learning and should
start with visualization of the data because visual inspection by an
expert still seems tobe themost directway todetect anomalies such
as implausible values in biomedical data and to improve the
discussion of the data between the data scientist and the medical
expert. Data preprocessing includes, among others, the analysis of
the distribution of the variables, appropriate transformations,
followed by the removal of outliers and the imputation of missing

values. For the latter, in addition to classical univariatemethods such
as substitution by specific scalars (eg, mean or median), there are
machine learning–based methods that replace missing values with
values learned from the available data in a multivariate fashion, in-
cluding distance-basedmodels, such as k-nearest neighbors11 and
classification and regression trees (CART),6 or ensemble models,
such as random forests,5,31 which we have recently summarized
elsewhere.62 In addition, data processing for machine learning may
involve specific transformation methods that optimize the data
structure for distance-based subgroup or cluster detection, such as
pooled variable scaling for cluster analysis74 or data transformation
optimized for Euclidean distance.89

1.3. Structure discovery

One of the most important forms of machine learning aims at
extracting information and ultimately knowledge from data. An
important task in this context is the discovery of structures in the
data, such as subgroups or other useful insights that were not
directly obvious. The computer-aided detection of structures in
data, eg, classes or subgroups such as subtypes of diseases, is
often referred to as “unsupervisedmachine learning” (Fig. 3). This
means that one cannot evaluate the learning success based on
an a priori known result, eg, a predefined subgroup structure,
because finding such a structure defined by the (dis-) similarities
within the data is the actual task of the analysis. Thus,
unsupervised machine learning strategies involve techniques
that allow the user to evaluate the data after sufficient preparation
without any previous knowledge. The quality of the achieved
subgroup separation/cluster solution is therefore mainly quanti-
fied by formal criteria or its usefulness. Examples of algorithms
used for clustering include k-means centroid localization based
on Euclidian distance,61 Ward hierarchical92 clustering, density-
based spatial clustering of applications with noise (DBSCAN),66

or self-organizing maps (SOMs).38 Of note, as mentioned
previously,58 there are 2 types of SOMs, with one using a small
number of neurons that are identified with clusters and a second
type of which one feature is the usage of a large number of
neurons up to thousands (for details about the number of
neurons, refer to 53), termed emergent SOM (ESOM), where
emergence, ie, the appearance of higher-level structures due to
microscale interactions, can be observed by looking at structures
like ridges or valleys consisting of groups of neurons.87 An
example is provided in Figure 4.

1.4. Dimensionality reduction and feature selection

Reducing data dimensionality before training machine
learning–based classifiers by filtering out uninformative or

Figure 1. Bar chart of the number of publications per year. The figure has been created using the software package R (version 4.2.0 for Linux; https://CRAN.R-
project.org/)73 and the library “ggplot2” (https://cran.r-project.org/package5ggplot2).93
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redundant variables is a standard procedure to limit compu-
tational load, simplify models for easier interpretation by field
researchers, improve data compatibility with classifier models,
or avoid other dimensionality drawbacks. This process is re-
ferred to as feature selection27 and is a preliminary step of the
training of supervised algorithms. The reason for mentioning
feature selection with unsupervised algorithms is its possible
use for structure discovery. The approach assumes that if a
classifier can be trained to assign a patient to the correct class
better than by guessing, then the variables needed by the
classifier to accomplish this task contain relevant information
about the addressed class structure. In this way, the most in-
formative variables can be identified. In this use of feature se-
lection, creating a powerful classifier is not the final goal, but
feature selection takes precedence over classifier performance.
It is worth noting that in multivariate applications, the best pre-
dictors may not be variables that differ significantly between
classes, or may even be variables that lack statistical
significance.49

Approaches to feature selection80 include both univariate and
multivariate methods, in which informative features can be obtained
by, for example, recursive feature elimination or sequential feature
selection. Particular implementations include the regression-based
least absolute shrinkage and selection operators81 or make use of
usually well-performing machine learning methods such as random
forests5,31 and combine themwith statistical tests as in the “Boruta”
method41 or computed ABC analysis to obtain the informative
features with item categorization.59

1.5. Regression and classification

The main tasks of the so-called “supervised” methods include
classification and regression. In regression, the target variable is
present in a numerical scale and various regression models are
fitted to the data to obtain the best hyperplane passing through the
data points. In this way, the numerical value of the target variable
can be predicted for future cases unseen during fitting of the
regression model. In classification, the target variable is present as
a class label, eg, men or women. The task is to assign a set of
features (variables and properties) to a particular class label of the
instances of the data set (eg, patients ormedical images). Theclass
may be present as a previous classification, eg, patients vs
controls, or may be the result of the unsupervised analysis
mentioned above, eg, cluster membership. ML classification
methods use examples of data to tune algorithms to optimize the
prediction or classification of new, unseen cases (Fig. 3). The
machine acquires the ability to correctly label a case in the data set
based on information about certain properties of the data instance,
eg, pain intensity in a patient, concentration of a molecule in the
blood, etc. Learning is performed by repeating the task with
increasing success. This type of machine learning is referred to as
supervised because the learning success is evaluated based on an
a priori known outcome, such as diagnostic classes. Important
examples of such algorithms are support vector machines,10

random forests,5,31 k-nearest neighbors,11,19 or convolutional
neural networks.46

Supervisedmethods are powerful in assigning cases to the correct
group based on given variables. They mimic the clinical diagnosis

Figure 2. Frequent workflow of analyzing a data set withmachine learning. Preprocessed data can be subjected to structure detection including subgroup or class
detection, or directly when previous classes are known or classes are not addressed, to classification, regression, or information retrieval, depending on the
characteristics of the data and the actual analytical goals. All steps do not always have to be present. The selection of the example methods has been adapted to
the mentions in this report. Classification methods can be applied to predetermined classes (previous classes) of interest, eg, patients vs controls, or a class
structure can be detected using machine learning, eg, clusters or subgroups of patients that are not known at the outset. Types and subtypes of methods are
connected by lines. If a standard sequence of steps is relevant, arrows are drawn. Convolutional NN, convolutional neural network; DBSCAN, density-based
spatial clustering of applications with noise; ESOM, emergent self-organizing map; GAN, generative adversarial network; ICA, independent component analysis;
k-NN, k-nearest neighbors; MLP, multilayer perceptron; PCA, principal component analysis; SOM, self-organizing map; SVM, support vector machine; U-matrix,
unified distance matrix. The figure was created using Microsoft PowerPoint (Redmond, WA) on Microsoft Windows 11 running in a virtual machine powered by
VirtualBox 6.1.34 (Oracle Corporation, Austin, TX) as a guest on Linux and then further modified with the free vector graphics editor “Inkscape” (version 1.2 for
Linux, https://inkscape.org/).

7 (2022) e1044 www.painreportsonline.com 3

https://inkscape.org/
www.painreportsonline.com


made based on variousmedical information from the patient, such as
interviews, questionnaires, laboratory tests, medical images, etc.
However, the training of supervised algorithms requires previous
knowledge of the (diagnostic) class structures in the data set.
Supervised algorithms fall therefore short if subgroups of patients
(stratification) are not known. This knowledge can be obtained using
unsupervised algorithms described in the following section.

1.6. Scientometric analyses of publication activities on
machine learning in pain research

1.6.1. Query of machine learning approaches used in pain
research

Programming was performed in the R language34 using the R
software package,73 version 4.2.0 for Linux, available free of
charge from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/. The R code with which this
scientometric analysis on machine learning has been created is
available at https://github.com/JornLotsch/AI4pain.

The use of AI andmachine learning in pain researchwas queried
from the PubMed database at https://pubmed.ncbi.nlm.nih.gov/
on May 6, 2022. The search was performed in the classical way
directly on the PubMed website and again using the R library
“RISmed” (https://cran.r-project.org/package5RISmed),39 using

the search string given in Box 1. Subsequently, the abstracts of the
retrieved articles were filtered by automated search to see whether
they contained the queried terms in the intended way, eg, “artificial
intelligence” instead of “intelligence” and “artificial” separated from
each other in the text. Only reports that passed this filtering were
retained.

The above search resulted in 475 hits. The earliest articles were
published in 1988. Their research topics included computer-aided
diagnosis of low back pain compared with physician diagnosis,64

an expert system for medical education of patients with low back
pain,69 and a proposal to use a robotic system for nonpainful
dermatologic treatment of port wine stain birthmarks exposure.78

However, 79% of the retrieved studies were published since 2019
and 68% since 2020. Thus, the use of ML for pain has increased
rapidly over the last decade (Fig. 1).

1.7. Frequent machine learning methods used with pain-
related data

According to the mention in the abstracts of the retrieved articles
found, regression, deep learning, random forests, support vector
machines, and hierarchical clusteringweremost frequently applied
to pain-related data (Table 1). Regression models are commonly
used for statistical analyses of biomedical data. They are

Figure 3. Schematic overview of the main types and implementations of machine learning (ML). (A and B) Workflow of ML approaches. ML approaches to (A)
unsupervised structure discovery, including (left part) the unsupervised detection of relevant structures in the data and the identification of key variables that
characterize the detected subgroup structure (feature selection), and (B) machine learning approaches aimed at developing automated diagnostic tools or
biomarkers through supervised training of algorithms to assign a case to the correct subgroup and to identify the relevant variables informative to this task (feature
selection) to be usedwith new data that the algorithm has not seen during training, with the task ofmaking a class assignment such as a diagnosis. Thematrix heat
plots have been intentionally created to symbolize different expressions of features (columns) among 2 classes of individuals (rows), with darker colors symbolizing
higher values in the variables. The figure was created using Microsoft PowerPoint (Redmond, WA) on Microsoft Windows 11 running in a virtual machine powered
by VirtualBox 6.1.34 (Oracle Corporation, Austin, TX) as a guest on Linux and then further modified with the free vector graphics editor “Inkscape” (version 1.2 for
Linux, https://inkscape.org/).
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implemented in virtually all software packages used in the present
research field and should be sufficiently well known. It should be
noted, however, that in the abstracts the methods used are often
not fully listed. The search results may therefore be not complete,
unlike the examples in the paragraphs above which are based on
the main body of the texts including the figures. Nevertheless, the
most common methods are consistent with the general observa-
tion of common ML approaches for biomedical data.

1.8. Unsupervised methods

Unsupervised machine learning strategies include techniques that
allow users to evaluate data without previous knowledge after
sufficient preparation. Unsupervised techniques help decompose
complex data structures for further learning or provide insights that
were not obvious at first glance. Based onmentions in the abstracts
of the articles found, clustering seems to be the most commonly
used unsupervised analysis of pain-related data (Table 1). Hierar-
chical clustering, often implemented as the Ward method,92 and
partition-based clustering implemented as k-means clustering61,84

were among most commonly used methods. Although both
methods are implemented in most statistical software packages,
including user-friendly point-and-click solutions, using them in a
formal way without realizing that clustering algorithms typically
specify a shape model for the structure of a cluster can result in
spurious clusters. In k-means clustering, for example, an iterative
procedure partitions the cases into k clusters such that each
observation belongs to the cluster with the closest center. This
implicitly assumes a hyperspheric cluster form, which can lead to
incorrect cluster associations of samples or imposition of cluster
structures that are not present in the data.88 This can be avoided if
other methods such as emergent self-organizing feature maps
(ESOMs)38 are used in combination with the so-called U-matrix86

(Fig. 4). Although k-means and classical hierarchical clustering
methods search for clusters over distancesbetweendata points and
are sensitive to the scaling of the data, as for example in the case of
Euclidean distance, which induces a breakpoint for distances within
(inner) clusters vs distances between (inter) clusters at a value of 1
due to the squaring function in its definition, ESOMs can additionally
obtain clusters over the density of data points in high-dimensional
space.85 Distances between data points are also considered with
density-basedspatial clusteringof applicationswith noise (DBSCAN)
as another recent clustering method.18

One of the most commonly used classical data projection
methods for dimensionality reduction and improving structure
recognition is principal component analysis (PCA),70 which was
among the most frequently mentioned unsupervised methods in
the abstracts of retrieved articles (Table 1). It uses a rotation of the
data to project the data onto a subspace of so-called principal
components. The first principal component has the largest
possible variance in the data. Each subsequent orthogonal
component is selected according to the largest possible
remaining variance. Although PCA is part of the routine data
analysis workflow andwas probably even usedmore frequently in
the articles found, without mention in the abstract, alternative
projection methods should usually be considered, as shown in a
generic example data set comparing PCA projection with ESOM
(Fig. 4). Moreover, the abbreviation “PCA” is used ambiguously in
scientific publications on pain, eg, for “principal component
analysis”32,70 as a data analysis method and also for “patient-
controlled analgesia” as a drug delivery method. In 3 reports of
machine learning results in pain research, PCA was used only in
the latter meaning, and Table 1was corrected accordingly after a
negative search for “principal component analysis” in the full text.

1.9. Supervised methods

Apart from regression analysis, different types of classifiers were
most commonly used in supervised analysis of pain-related data,
with “deep learning” (for an overview, refer to 14) being the most
frequently mentioned. This refers to a set of algorithms with
different architectures that have in common that they use artificial
neural networks to uncover the internal structures of the data,
following the idea of constructing a network of firing computa-
tional units resembling neuron branches that sequentially perform
mathematical operations and pass the data from layer to
layer.29,65 Technically, artificial neural networks are based on
linear combinations, using a scalar input that, with the help of a
compiled model consisting of activation function steps and
optimization procedures, undergoes various transformations as it
passes through, for example, a multilayer perceptron, and, at the
end, provides an output, such as a class label.82 The use of
different activation functions (eg, a sigmoidal or a rectifying linear
unit function) allows computations to be performed through the
network.13,29,30 Typical architectures include convolutional neu-
ral networks (CNNs). Convolutional neural networks are typically
used for image segmentation and classification problems based
on transformation of imaging data like U-net for example.76 Some
semisupervised methods rely on autoencoders79 and are used to
train classifiers based on hidden feature exploration.96 Other self-
supervised learning architectures can be connected to re-
inforcement learning (RL) (for a review, refer to 35). Compared
with regular supervised machine learning, RL does not rely on
showing input and output but on the experience an agent is facing
towards its environment. Reinforcement learning is based on a
“trial-and-error” reward learning performed through an agent
subjected to a set of discrete states and actions.

Some of the deep learning architectures belong to the so-called
generative ML models, which aim to learn the true data distribution
of a training set to generate new data points that validly extend the
existing data set. For example, generative adversarial networks
(GANs12) have been shown to be extremely powerful for certain
tasks such as the GAN in image processing.12 Generative
adversarial networks consist of 2 main parts, the generative
network and the discriminative network. Although the generative
network learns from the data distribution and produces new valid
data, the discriminative network has the task of distinguishing the
generated data from the real data. Throughmutual interaction, both

Text box 1.Search string used in an automated query of
the PubMed database

(https://pubmed.ncbi.nlm.nih.gov) using the R library “RISmed” (https://

cran.r-project.org/package5RISmed).39 Of note, adding “ai” to the search

string was not useful because.8,000 hits were then found, most of which

simply contained the 2 letters in that order, as in “pain”. Because scientific

journals require that all abbreviations be spelled out the first time they are

used, including in the abstract, the absence of “ai” in the search string

containing “artificial intelligence” is not a limitation.

((machine-learning) OR (machine learning) OR (machine-learned) OR

(machine learned) OR (artificial intelligence) OR (explainable AI) OR

(explainable artificial intelligence) OR (XAI) OR (knowledge discovery) OR

(deep learning)) AND ((chronic) OR (persisting) OR (persistent) OR (lasting)

OR (neuropathic) OR (nociceptive) OR (nociplastic) OR (mixed) OR

(neurogenic) OR (back) OR (neck) OR (migraine) OR (arthritis) OR (osteoart*)

OR (joint) OR (rheumatic) OR (orchialgia) OR (inflammatory) OR (muscu-

loskeletal) OR (muscle) OR (visceral) OR (widespread) OR (somatoform) OR

(fibromyalgia) OR (cancer) OR (postoperative) OR (perioperative)) AND

((pain) OR (painful) OR (analgesi*)) NOT (review[Publication Type])
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parts successively improve their performance. In a pain context,
GANs have been used for automated diagnosis of metacarpopha-
langeal synovitis from musculoskeletal ultrasound images taken
from patients with rheumatoid arthritis.8 The data included
physician-made synovitis grading and 446 ultrasound images from
446 patients. A high-resolution GAN was developed and trained to
assign patients to the correct synovitis grading, ie, the problemwas
transformed into a classification task. The images were

decomposed into 7,152 data set instances in the training set and
1,791 data set instances in the validation subset drawn from the
whole data set.Within theGAN, the generator analyzed the features
of the images, downsampled them and generated new images that
were passed to the discriminator part of the GAN. The GAN
achieved 83% accuracy on the task to grade the synovitis from the
ultrasound images and outperformed 2 other types of deep learning
neural networks that achieved 78% to 79% accuracy.

Figure 4. Example of data structure detection after a data projection as a frequent first step. A generic data set was used containing 8 3 8 pixel scans of
handwritten digits 0, …, 9 from the data set collection of the Python package “scikit-learn” (https://scikit-learn.org/stable/).71 The pixels were numerically
converted to gray values. (A) First 10 digits in the data set given as an example. (B) Matrix plot of the complete data set of scanned handwritten digits from 1,797
individuals. The 64 pixels of which each digit is comprised are arranged in rows of 64 numerical gray-values. The complete data set has little meaningful structure
among the gray values, analogous to many biomedical data sets, including pain-related data, where measurements from patients are included instead of gray
values but an immediate subgroup structure cannot be seen. The task in detecting a data structure is to identify classes/subgroups/clusters in the data set, such
as identifying in this example that the data set in panel B contains gray values of 10 classes of handwritten digits. (C) Principal component analysis (PCA)-based
projection of the data set onto a 2-dimensional plane using principal component (PC) 2 vs PC1. The dot plot is color coded for the classes, ie, the different digits. On
the PCA projection, the 9 different digits are partially separable, such as “0” (red) forming a separate cluster at the top, suggesting that the projection enhances the
detection of a class structure in the data set that was obscured in panel B. However, without knowing the ground truth as in the present example, it would be
difficult to see that the data set contains 9 different classes. (D) Alternative data projection using machine learning in the form of a self-organizing map of artificial
neurons. The panel shows results of projection of data onto an emergent self-organizing map (ESOM85,90) neurons, providing a 3-dimensional U-matrix
visualization of distance-based structures of the gray values after projection of the data points onto a toroid grid of 9,000 neurons where opposite edges are
connected using a Gauss-formed neighborhood function and 25 training epochs for the SOM. The dots represent the so-called “best-matching units” (BMUs), ie,
neurons on the grid that after ESOM learning carried a data vector that was most similar to a data vector of a sample in the data set. The U-matrix visualization was
colored as a top view of a topographicmapwith brown (up to snow-covered) heights and green valleys with blue lakes.Watersheds indicate borderlines between 2
different clusters separated by the white “mountain ridge” at the left of the U-matrix. (E) Separation between the classes is better visible in a 3D presentation of the
U-matrix in panel D. The ESOMprojection detectedmost of the classes separately; however, the separationwas also not perfect andwith “9” seems to be split into
2 classes, which might hint at indeed to main versions of writing “9”. In this example, this was not further analyzed, but in biomedical data, this might lead to the
discovery of a so far unknown subgroup. The figure has been created using the software package R (version 4.2.1 for Linux; https://CRAN.R-project.org/)73 and
the library “ggplot2” (https://cran.r-project.org/package5ggplot2)93 and our library “Umatrix” (https://cran.r-project.org/package5Umatrix).53

6 J. Lötsch et al.·7 (2022) e1044 PAIN Reports®

https://scikit-learn.org/stable/
https://cran.r-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=Umatrix


Further often used supervised algorithms that have gained
importance in particular in non–image-based analyses and in
smaller data set were random forests and support vector
machines, which are generally known as well-performing algo-
rithms applicable to a wide range of data. In random forest
analysis,5,31 sets of different, uncorrelated, and often very simple
decision trees are createdwith conditions on variables (features) as
vertices and classes as leaves. Each tree in the random forest votes
for a class, and the final classification assigned to a data point is
obtained as the majority of these class votes. The number of trees
ranges from about 100 to more than 2,000. Their complexity can
also be controlled, often using the square root of the number of
variables included as the default value. Support vector machines
areMLclassifierswhich use kernel functions to assign data to given
classes.10 Kernel functions calculate distances in a hyperspace
where the original data are mapped into. This hyperspace is
typically much higher dimensional (up to infinity) than the feature
space of the data. In some cases, the classification is easier in the
hyperspace than in the data’s space.28

1.10. Pain settings addressed with machine
learning methods

Machine learning algorithms have been trained to assign complex
features to a known class of patients with pain or to identify risk
factors and predict the severity and clinical course of pain.
Representative examples where the ML approach has led to
particularly relevant clinical advances are presented below,
without describing all 475 references found. The most common
types or causes of pain addressed with ML methods included
(low back) pain, musculoskeletal pain, and osteoarthritis pain
(Table 2). Less frequently cited, but with more than 10 reports
each, are neuropathic and inflammatory pain, followed by
widespread pain and fibromyalgia.

1.11. Machine learning targeting medical images in the
context painful diseases

High-performance machine learning algorithms were often
trained with medical images acquired in the context of a painful
condition, ie, pain was not the direct target when learning such
approaches for low back pain or arthritis pain. The pain context
was obtained through additional analyses. Therefore, these
reports are included, however, in a separate subchapter.
However, there are more complex forms of pain, and the
International Association for the Study of Pain definition does
not speak of “images” but of subjective perception and even of
just possible tissue damage.

1.12. Machine learning approaches to imaging in the context
of low back pain

In the context of low back pain, nerve ingrowth may occur along
granulation tissue in disk fissures. This has been used to classify
those fissures and the pain caused by a discography. The data
set included magnetic resonance and computed tomography
images of 86 pain-positive discograms and a similar number of
intraindividual control disks, acquired from 30 patients.43 A
random forest algorithm was trained in a Python91 programming
environment to differentiate between individual disks with fissures
that did or did not extend into the outer layers of the annulus
fibrosus and between disks with positive and negative pain
provocation on discography. The image diagnostic task was
successfully completed with a very high hit precision of 99% on
average in repeated tasks and 97%accuracy. However, pain was
only captured at 71% precision and 69% accuracy.

Although the amount of data was limited and only a single
algorithm was used, the results show that machine learning
performs better in discriminating medical images based on data
such as contrast levels, edges, gray tones, etc., than in trying to
discriminate clinical function parameters such as pain, which are
rarely expressed in such images. It is therefore not surprising that
medical imaging also features prominently in many reports on
machine learning and AI-based approaches to pain manage-
ment. However, it should be remembered that tissue damage
and pain are not identical.83 Therefore, it cannot be assumed that
an accurate AI-based diagnosis of the degree of tissue damage
from medial images can be translated into a similarly accurate
diagnosis of pain, but this requires training with more specific
information about the pain itself.

Table 2

Types and etiologies of pain cited in abstracts of the 475 reports
on artificial intelligence (AI) andmachine learning in pain research
queried in PubMed.

Pain types Hits Pain duration Hits Clinical settings Hits

Neuropathic 27 Chronic 195 Back pain 94

Nociceptive 20 Acute 46 Musculoskeletal 64

Nociplastic 0 Osteoarthritis 57

Mixed 0 Neuropathic 24

Inflammatory 23

Widespread 10

Fibromyalgia 10

Visceral 3

Idiopathic 1

The numbers are the result of a full-text search of the abstracts for the keywords listed in the table.

Table 1

Types of machine learningmethods named in abstracts of the 475
reports on artificial intelligence (AI) and machine learning in pain
research queried in PubMed.

Method Hits

Regression 94

Deep learning 68

Random forests 67

Support vector machines 55

Hierarchical clustering 47

Convolutional neural networks 25

k-nearest neighbors 18

Natural language processing 12

Principal component analysis (PCA) 9

k-means clustering 8

Self-organizing maps (SOMs) 7

(Multilayer) perceptron 6

Independent component analysis 4

Autoencoder 3

Reinforcement learning 2

Generative adversarial networks (GANs) 1

Density-based spatial clustering of applications
with noise (DBSCAN)

1

The numbers are the result of a full-text search of the abstracts for the keywords listed in the table.
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1.13. Machine learning approaches to imaging in the context
of osteoarthritis pain

A deep learning approach is used to quantify the severity of
osteoarthritis using radiographs of the knee to predict patients’
perception of pain.72 Clinical and radiographic data were
analyzed from the Osteoarthritis Initiative (OAI; https://nda.nih.
gov/oai/). This is a multicenter longitudinal study of participants
aged 45 to 79 years who had knee osteoarthritis or were at high
risk for developing knee osteoarthritis. The data set was divided
into a training group of 2,877 subjects and a validation group of
1,295 subjects with 25,049 and 11,320 individual observations,
respectively. Previous classifications were available based on
radiologists’ assessment of images for radiological features of
osteoarthritis, including summary measures of severity.

A convolutional neural network was trained to predict the pain-
related osteoarthritis-specific Knee Injury and Osteoarthritis Out-
come Score77 for each knee based on each radiograph. During
training, the network was also tuned to predict 19 radiological
features. The network was implemented in the Python pro-
gramming language91 and run on an Nvidia graphics processing
unit (Nvidia Corporation, Santa Clara, CA). The authors examined
pain disparity, defined as a coefficient for the binary racial or
socioeconomic group. That is, the difference in average pain
between racial and socioeconomic groups when controlling for
severity. The primary outcome was racial differences in pain
between Black (16% of patients in the validation group) and non-
Black patients (84%, of whom 97% were White). The previously
unexplained proportion of racial differences in pain could be
dramatically reduced. Compared with radiologist-measured sever-
ity scores, which accounted for only 9% (95% confidence interval,
CI: 3%–16%) of racial differences in pain, algorithmic predictions
accounted for 43% of differences, or 4.7-fold (95% CI: 3.2–11.8-
fold), with similar results for lower-income and lower-educated
patients. This suggests that much of the pain experienced by
underserved patients is due to factors within the knee that are not
reflected in standard radiographic measures of severity that a
radiologist observes. The ability of the algorithm to reduce
unexplained disparities was attributed to the racial and socioeco-
nomic diversity of the training group. The authors concluded that
because algorithmic severity measures better capture the pain of
underserved patients and severity measures influence treatment
decisions, algorithmic predictions could potentially address dispar-
ities in access to treatments such as arthroplasty.

1.14. Machine learning targeting pain and its relief

1.14.1.Machine learning approaches tomusculoskeletal and
back pain

The use of intelligent algorithms has been proposed as a novel way
to increase adherence to exercise therapy for chronic musculo-
skeletal disorders, which could improve clinical outcomes. For
example, in n 5 161 patients who were asked about their self-
perceived benefits of using an artificial intelligence–equipped mo-
bile app for self-treatment of chronic neck and back pain,50 an
increase in timespent daily on therapeutic exercisewas achieved. A
decrease in theuseof other interventionswas foundwhenusing the
artificial intelligence–equipped mobile app. The median Numerical
Rating Scale score was 6 (interquartile range, IQR: 5–8) before and
4 (IQR: 3–6) after using the AI-embedded mobile app (95% CI:
1.18–1.81). Participants who used the AI-embedded mobile app
for more than 6months reported a reduction of 3 points. Low back
pain as the target of a ML analysis was reported from a study that
aimed at a biomarker based on MRI data on cerebral cortical

thickness and fMRI data on cortical resting state compared with
activation, acquired in n 5 27 healthy volunteers and in patients
with low back pain (n5 24).44 A support vector machine classifier
achieved an accuracy of the low back pain diagnosis of 74.51%
and an ROC-AUC 5 0.787 (95% CI: 0.66—0.91).

1.14.2. Machine learning approaches to postoperative pain

Prevention of persistent pain after surgery through early
identification of high-risk patients is a clinical need. Using
supervised ML, parameters predicting persistence of signifi-
cant pain were identified in a cohort of 1,000 women followed
up for 3 years after breast cancer surgery.56 Key subgroups of
subjects with “persistent pain” and “nonpersistent pain”
phenotypes were identified by a diagnostic tool consisting of
21 nonhierarchical rules that included psychological, de-
mographic, and clinical factors. If at least 10 of the 21 rules
were true, persistent pain was predicted with a cross-validated
accuracy of 86% and a negative predictive value of approx-
imately 95%. This can be used to identify patients for whom
complex and time-consuming preventive therapies are un-
necessary, allowing them to return to normal life more quickly
after breast cancer surgery. Another analysis found that a short
questionnaire with fewer than 10 psychological items provided
nearly similar diagnostic accuracy in identifying patients with or
at risk for persistent pain.55 This short questionnaire was
developed by applying supervised machine learning feature
selection, implemented as random forest analysis, followed by
computed ABC analysis,59 to data obtained from standard
questionnaires with more than 50 items.

1.15. Other pain-related research topics addressed by
means of machine learning

Another application of ML is the recognition of pain-related facial
expressions.20 Pain intensity was assessed in 1,189 adult patients
undergoing surgery, and 2,971 photographs of facial expressions
were included, most of which (44%) were taken when patients
were not in pain, while only 13.5% of photographs were taken
when patients were in severe pain of$7 on an 11-point Numerical
Rating Scale. After splitting the data set into training/testing/
validation subsets, a convolutional neural network was trained to
predict pain intensity based on facial expression. This succeeded
with only a modest 45% to 53% accuracy. However, this
outperformed human experts who achieved an above average
accuracy in predicting pain intensity of only 14.9%. The algorithm
predicted severe pain based on facial expression with a sensitivity
of 17.0% and a specificity of 41.1%.

Data mining in the Gene Ontology knowledge base using
computational functional genomics methods enabled the reduction
of a set of n 5 540 genes, whose importance in pain has been
demonstratedmainly by studies in transgenic mice, which queried in
the Pain Genes database (http://www.jbldesign.com/jmogil/enter.
html)42 to a subset of only 29 top-scoring genes that can be
considered key genes in the functional biology of pain.48 This subset
described the function of the entire set of pain-related genes,
expressed as a polyhierarchy of Gene Ontology terms describing
pain-related biological processes, with a recall and precision of 70%
using only 5% of the original genes. Furthermore, knowledge
discovery in the Gene Ontology database combined with recent
findings on the genetic background of persistent pain in humans
pointed to inflammatory and immuneprocesses as a keymechanism
in persistent pain.40 Specifically, 110 genes reportedly associated
with themodulation of persistent pain in different clinical settingswere
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clustered using so-called emergent self-organizing artificial neuron
(ESOM) maps,85 ie, an extension of self-organizing maps38 by
visualizing distances between data points to improve cluster
detection.88 Subsequent computational enrichment analysis
revealed 2 groups of biological processes, the immune system and
nitric oxide signaling, emerged as key players in sensitization to
persistent pain. This is highly biologically plausible and consistentwith
other lines of pain research. What is remarkable about this finding is
that it was obtained purely using computational methods of
knowledge discovery that have yielded results similar to elaborate
clinical or preclinical studies.

1.16. Sample sizes in artificial intelligence and machine
learning analyses of pain-related data

ML is often intuitively associated with large sample sizes, which
leads to disregarding these methods for analyzing smaller data
sets on the grounds. To some extent, this is not true. ML requires
examples of the relevant structures in an empirical data set. This
can be a very small set (“needles”). Adding more data (the
“haystack”) can degrade the accuracy of a diagnostic tool. With
careful selection of the data used for learning, even small samples
can yield powerful diagnostic tools. In addition, data needs may
be low for knowledge discovery in the sense described above,
which focuses not on a biomarker or diagnostic tool but on
identifying informative features for a pain-related phenotype.

Sample sizes were extracted manually from abstracts of
articles found in PubMed by the above search. The work was
performed independently by 2 authors and then cross-checked,
with discrepancies discussed and corrected, followed by a final
review by a third author. The reported case numbers ranged from
11 to 2,164,872, with a peak distribution at sample sizes of
approximately n 5 100 (Fig. 5). The smallest sample analyzed
with ML was a data set of ambient sensor data in which pain-
related behaviors of persons with chronic pain were sought.23

However, the analyzed data consisted of much more smart-
home sensor data, so ML was not performed on only 11 data set
instances. Other studies with small sample sizes were also
imaging-based and the number of data instances analyzed was
oftenmuch larger than the sample sizes of subjects included. The
smallest ML approach where the analyzed data instances
corresponded to the reported small sample size was predicting
the length of hospital stays fromnursing reports of n5 33 patients
using a recurrent neural network long short-term memory with 2
hidden layers, which provided about 75%accuracy.37 The largest
study addressed cardiovascular risk and included pain only as a
feature contributing to the prediction.3 The second largest study,
however, was closely related to pain research analyzing health-
care data from 392,492 patients with long-term back pain
problems. Regression models, random forests, and support
vector machines were combined with a transformer-based deep
learning model to detect opioid use disorder in these patients.22

The often high classification performance of deep learning
algorithms comes at the expense of large data sets, while random
forests, support vector machines, classification and regression
trees, k-nearest neighbors, Bayesian classifiers, and others
perform quite well even with small data sets. Deep learning seems
to be particularly useful in image analysis, where it can outperform
the aforementioned algorithms, as several examples in the pain
context above have shown. Of the 68 articles found for the present
analyses in which deep learningwasmentioned in the abstract, the
sample sizes ranged from 2,170 to 2,766,434. However, the
cohort sizes and the size of the analyzed data sets are not
necessarily identical. For articles whose abstractsmentioned small

sample sizes associated with deep learning, a full-text review
generally indicated that thedata sets used for trainingwere imaging
data of average sample sizes of 231,000 images. Generative
adversarial networks however are examples for unsuperviseddeep
learning involving the use of a discriminator next to a generator.
This circumstance is a valuable advantage considering that the
state-of-the-art GAN also involves data augmentation based on
restructuring of the training data (eg, deep convolutional and
conditional GAN) to handle smaller sample sizes.95,97

1.17. Geographical distribution of publication activities on
machine learning in pain research

The results of the above PubMed database search were further
evaluated for bibliometric analyses on scientific activities in the field.
The retrieved contributions were from 18 countries, according to
the affiliation of the first authors, which was the determining factor
for country assignment in the PubMed database. This may
underestimate the joint contributions of other countries with the
United States.21 Indeed, the United States occupies a prominent
place in a cartogram24 of worldwide publications related to ML in
pain research (Fig. 6), ie, a thematicmap inwhich distortion is used
to convey information, for example, by distorting the outline
polygons of all countries in such a way that the areas are
proportional to the number of publications. The United Kingdom,
the Netherlands, Germany, Switzerland, Ireland, and New Zealand
were also prominent source countries for contributions to ML and
AI in the pain context.

2. Discussion

The use of machine learning methods in pain research is an
accelerating trend worldwide, with the main area of application
being human-derived and, in particular, patient data. This may
indicate that these methods provide the necessary tools to directly
address clinical pain and extract the desired knowledge from
complex clinical information available in large data sets collected in
the context of modern digital medicine. The present review of
published articles in which pain is the immediate target of interest or
is associated by the authors with the analysis of, for example,
medical images, supports the view that machine learning is
particularly efficient with large data sets; however, cohort sizes in
pain-related studies peaking at n 5 100 also suggest that the
methods can be applied to smaller data sets. In particular, when the
goal is not to train a clinically applicable automatic diagnostic tool
but to discover knowledge, such as subgroupdetection or selection
of relevant information for subgroup assignment, a subset of
machine learning methods has been shown to be efficient.
Nevertheless, data needs are a limitation of machine learning, and
the impact of using algorithms trained with patient data in clinical
practice on patient care is receiving increasing attention among
which the concept of “explainable AI”1 as one approach to the latter
has been already applied in pain research.16,54

3. Limitations of machine learning methods

3.1. Data requirements

The limitations of ML are the large sample sizes that are often
required, although the above analyses showed that cohort sizes
around n 5 100 were most common (refer to Fig. 5). One of the
reasons why image-based analysis resulted in comparatively high
classification performance, as in 43 where image diagnosis was
performed with 97% accuracy while only 69% accuracy was
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achieved for image diagnosis, is the large amount of information
contained in the image data. The present generic example of
handwritten digits 0, …, 9 (Fig. 4) illustrates this. The digits were
scanned by 1,797 people, and 64 pixels were determined for each
digit, ie, 64 variableswere available fromeachperson, and the entire
data matrix had the size of 115,008 data points. If the information
was a pain score rather than images, the data set would contain
only 1,797 data points. Thus, medical images are comprehensively
captured by numerical information. By contrast, pain-related
information is captured less comprehensively, often through pain
scores and questionnaires selected to capture specific character-
istics of pain according to the study objectives. Questionnaire sum
scores provide even less information, and therefore, it may be better
to analyze questionnaire data by item, aswe have shown previously
on psychological assessments in persistent pain.55

In addition to the requirements of often large data sets,
supervised methods require labeled data, which is further in-
creasing the costs for machine learning projects because labeling
can be very expensive if performed by a physician. Medical
diagnoses require time and often expensive additional testing such
as imaging, laboratorymarkers, or various “omics” tests. A technical
weakness is overfitting, which is not a particular feature of ML but
occurs in basically all modeling approaches when a model is fitted
to a data set such that it captures the current data almost perfectly
but fails at generalization, ie, when applied to other data sets of the
same type. When overfitting has occurred, the algorithm has

“learned by rote” to assign a case to the correct class and therefore
fails when a similar but not identical data set is addressed. Several
precautions against this effect are standard procedures in training
of algorithms, such as splitting the data into disjoint training and test
subsets and permuting the training or test subsets.

3.2. Pathology dependency

Algorithms are limited to what they were trained with, ie, if an
important facet of the problem was missing from the training data,
or if a feature in the data set gained major importance during
training but was otherwise of little interest, the algorithmmay fail on
future data although it seems to be technically successful.
Unfortunately, it is not always quite clear what exactly the AI has
learned. As mentioned in a related context,57 a classic and often-
cited example is the fooling of neural networks trained to
automatically detect camouflaged tanks in photographs of tanks
in trees and photographs of trees without tanks.17 The network
failed on a new set of photographs, and it turned out that it had
been trained with photographs of camouflaged tanks taken on
cloudy days while the new photographs had been taken on sunny
days, and the neural network had learned to recognize the weather
instead of distinguishing tanks from trees. The fact that machine
learning algorithms only work with the information they have been
trained with also implies that the exact same variables are needed
when applied to a different data set unless they have been

Figure 5. Sample sizes refer to reports on AI andmachine learning in pain research. Sample sizes weremanually extracted from the summaries of the 475 queried
reports. The figure shows the distribution of sample sizes as a count density plot, drawnwith the default settings of the built-in kernel density function of the R library
“ggplot2”, overlaid with a histogram with binning for each power of 10. The figure has been created using the software package R (version 4.2.0 for Linux; https://
CRAN.R-project.org/)73 and the library “ggplot2” (https://cran.r-project.org/package5ggplot2).93

10 J. Lötsch et al.·7 (2022) e1044 PAIN Reports®

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/package=ggplot2


eliminated during feature selection, and new variables can only be
included if the algorithms are re-trained. This also applies to the fact
thatwhen the algorithm is trainedwith imaging information, it is only
applicable to imaging data. The shortcomings of this approach are
not new because machine learning has been used, but it has also
been clinically advisable in the past to base a medical decision not
only on medical images but also by observing a broader spectrum
of symptoms in the context of a patient.

Also related to the fact that algorithms are limited to the
information used to train them is the difference between structural
tissue changes and pain. This is true not only for peripheral
morphological changes in osteoarthritis and low back pain, as
shown in the examples above, but also for morphological
differences in the brain. For example, social norms influence pain
reporting behavior,75 and if this is not accounted for in data
analysis, image-based training of algorithms may result in
different accuracies of class assignment for pain reports although
the same morphological information was addressed. However,
this is not a particular technical weakness of ML but lies in the
study design and the decision of which data are collected and
included in the analysis. Similarly, it has been pointed out that
physical pain can be easily inferred from a particular pattern of

activated brain regions.33 This underscores that machine learning
in the biomedical context, including pain research, should ideally
be a concerted multidisciplinary effort to which computer
scientists, biologists, physicians, and relevant other experts
contribute with intensive discussions during project work.

3.3. Classification vs prediction

In many applications, machine learning provided classifications
rather thanpredictions. In the sense of forecasting future events, the
results are often reported as predictions. That is, the machine is
trained to classify a case, eg, as “patient” or “healthy subject,” or as
at risk versus not at risk. The algorithm does not predict risk directly
but assigns a patient to the subgroup of patients at a certain risk. It
should also be noted that algorithms when used as a classifier may
need reevaluation over time. The importance of variables for class
assignmentmaychange over timeas additional factors emerge that
provide more relevant or modified information used for class
assignment, or as factors interacting with the algorithm’s target,
such as pain, have undergone modulations that cause previously
important variables, such as a genetic background, to become less
important or to be modulated in their impact on the target. For

Figure 6.Bibliometric exploration of PubMed listed publications on the topic of AI andmachine learning in pain research. Results of a computed PubMed database
analysis of year and country of origin of publications not listed as reviews. Cartogramof the publication activity per county standardized at the average population of
the respective country during the analyzed period, plotted as spatial plots with Gaussian blur as described in 24. Boundaries of regions are transformed to be
proportional to publication counts. The figure has been created using the software package R (version 4.2.0 for Linux; https://CRAN.R-project.org/)73 and the
libraries “ggplot2” (https://cran.r-project.org/package5ggplot2)93 and “Rcartogram” (https://github.com/omegahat/Rcartogram).45
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example, genetic factors explained 63% of the variance in chronic
pain at a first assessment in twins and 11% of the variance in
chronic pain 12 years later.7 AEmodels based on paths were used
for the analysis (Cholesky decomposition4) with “A” denoting
additive genetic factors and “E” denoting environmental factors. In
the second analysis performed ondata on chronic pain acquired 12
years later, no additional factors to those found in the first analysis
were found. By contrast, for nongenetic influences, environmental
factors explained 37% of the variance in first assessment but 89%
of the variance in chronic pain assessed 12 years later.

3.4. Differences between machine learning and statistics

Although the usage of mathematical expressions is a combined
feature shared by statistics and ML, both fields can be
distinguished more or less. Statistical reasoning is built on an
initial working hypothesis and focused on answering questions
about the data based on descriptive exploration or induction
using appropriate tests of significance. It analyzes whether the
data sets come from the same distribution and were generated
by the same data-generating process, or whether different
processes underlie the observed data. Statistics decide
whether experiments have a significant effect on the measured
data based on a predefined hypothesis. In some contrast to
this, ML is not necessarily dependent on a working hypothesis
and is rather focused on answering questions referring to
performance, about the data and model architectures, as well
as about respective rules themselves. ML can be used to derive
hypotheses from the data. It infers diagnostic capabilities or
even discovers unknown structures from the data without bias,
ideally leading to a better understanding of the underlying rules
shaping the data. Moreover, for machine learning, the ability to
assign cases to the correct classes is sufficient, and information
from variables is crucial for this task that may even lack
statistically significant differences between the classes; it has
been shown that higher significance does not automatically
mean greater relevance and variables important for correct
class assignment may sometimes not significantly differ among
classes.49 In a very simplified version (Fig. 7), statistics can be

described as using data and algorithms, ie, statistical tests, to
obtain answers about the research object of interest. Machine
learning uses data and already available answers about the
research object, eg, a previous classification, to obtain trained
algorithms. Those can then be applied to new, unclassified
cases to achieve a correct class assignment based on the
characteristics of the cases. Thus, the outcome of statistics is
an answer about the research object while the result of
(supervised) ML is a trained algorithm. On that basis, deeper
information about the data can be exploited. Subsequent
learning about the research subject has been shown in several
examples in this report (refer to, for example, the chapter on
feature selection or the remarks on knowledge discovery
or XAI).

3.5. Role of machine leaning in medical diagnostics and
pain treatment

Machine learning and “AI” are currently often presented
together with the expectation that these methods will take over
certain tasks from physicians. Ethical and legal challenges of
artificial intelligence–driven health care are the subject of much
discussion in lay and scientific forums; an example of a publi-
cation by that very name is 25. This report is not intended to
contribute to this discussion because its focus is on the review
and context of machine learning in pain research. Nevertheless,
a few points may be mentioned. First, trustworthiness must be
considered both in the sense of demonstrably correct func-
tioning of AI for medical (diagnostic) tasks and in the sense of
transparency of the decision, as addressed in the concept of
explainable AI (XAI).1,52 Second, final medical decisions should
remain with the physician, and even their critical discussion and
correction requires a human interacting with the patient, not a
robot. However, AI can be of great value to both physicians and
patients if, for example, it takes over repetitive medial tasks,
improves diagnosis, or makes treatment suggestions based on
evidence and likelihood of success. One successful approach
may be to combine artificial and human intelligence, as recently
demonstrated in diagnosing breast cancer from radiographies,

Figure 7. Simplified comparison between statistics and machine learning, based on the arrangement of the 3 elements “data,” “algorithms,” and “answers” to
each other and on the final aim of the analysis (marked in blue). In statistics, algorithms are selected to be applied to the data to obtain an answer to a scientific
question and that answer is the target of the analysis, whereas in machine learning, those answers may already be known and in its supervised form the trained
algorithm is the target of the analysis. The figure was created using Microsoft PowerPoint (Redmond, WA) on Microsoft Windows 11 running in a virtual machine
powered by VirtualBox 6.1.36 (Oracle Corporation, Austin, TX) as a guest on Linux and then furthermodifiedwith the free vector graphics editor “Inkscape” (version
1.2 for Linux, https://inkscape.org/).
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where the combination was better than diagnoses made by
either physicians or AI alone.47

4. Conclusions

Machine learning applications to pain have increased dramati-
cally in the last decade, with more than half of the publications in
recent few years. The current enthusiasm for ML and AI must be
accompanied by a careful consideration of the shortcomings of
these methods,36 of which some have been highlighted in this
report. Nevertheless, the correct application of the right methods
to the right data is a pervasive principle in science that is not
specific to ML. However, at the current, early stage, ML methods
are less well known than classical statistics, which places
additional demands on the review process of scientific reports.
AI andML are being used in a broader context that is also relevant
to pain. This includes their application in drug discovery and
development and other areas of pharmacological research. In
addition, AI techniques are being used in virtual reality
approaches that have been introduced in recent years in the
scientific development of novel approaches to pain management
(for a review, refer to 63). ML is not limited to training and applying
classifiers as biomarkers or other diagnostic tools. An important
application is the discovery of structures in the data that directly
addresses complex pain phenotypes, the properties character-
izing these phenotypes and their underlying complex mecha-
nisms including omics information and others. The present
scientometric analysis was generated using programmed in-
formation mining and human experts with biomedical, biological,
and data science backgrounds. The combination of artificial and
human intelligence is probably among the most promising
approaches for the advancement of pain research.
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Inconnues—application de la Méthode a la Résolution D’un Système
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Classification and automated interpretation of spinal posture data using a
pathology-independent classifier and explainable artificial intelligence
(XAI). Sensors (Basel) 2021;21.

[17] Dreyfus HL, Dreyfus SE. What artificial experts can and cannot do. AI
SOCIETY 1992;6:18–26.

[18] Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for
discovering clusters in large spatial databases with noise. Proceedings of the
second international conference on knowledge discovery and data mining.
Portland, Oregon: AAAI Press, 1996. pp. 226–31.

[19] Fix E, Hodges JL. Discriminatory analysis. Nonparametric discrimination:
consistency properties. Int Stat Rev/Revue Internationale de Statistique
1951;57:238–47.

[20] Fontaine D, Vielzeuf V, Genestier P, Limeux P, Santucci-Sivilotto S, Mory
E, Darmon N, Lanteri-Minet M, Mokhtar M, Laine M, Vistoli D; for the Dsg.
Artificial intelligence to evaluate postoperative pain based on facial
expression recognition. Eur J Pain 2022;26:1282–91.

[21] Fontelo P, Liu F. A review of recent publication trends from top publishing
countries. Syst Rev 2018;7:147.

[22] Fouladvand S, Talbert J, Dwoskin LP, Bush H, Meadows AL, Peterson
LE, Roggenkamp SK, Kavuluru R, Chen J. Identifying opioid use disorder
from longitudinal healthcare data using a multi-stream transformer. AMIA
Annu Symp Proc 2021;2021:476–85.

[23] Fritz RL, Wilson M, Dermody G, Schmitter-Edgecombe M, Cook DJ.
Automated smart home assessment to support pain management:
multiple methods analysis. J Med Internet Res 2020;22:e23943.

[24] Gastner MT, Newman ME. From the Cover: diffusion-based method for
producing density-equalizing maps. Proc Natl Acad Sci U S A 2004;101:
7499–504.

[25] Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial
intelligence-driven healthcare. Front Surg 2022;9;862322.

[26] Gilron I, Chaparro LE, Tu D, Holden RR, Milev R, Towheed T, DuMerton-
Shore D, Walker S. Combination of pregabalin with duloxetine for
fibromyalgia: a randomized controlled trial. PAIN 2016;157:1532–40.

[27] Guyon I, Andr E. An introduction to variable and feature selection. J Mach
Learn Res 2003;3:1157–82.

[28] Hastie T, Rosset S, Tibshirani R, Zhu J. The entire regularization path for
the support vector machine. J Machine Learn Res 2004:1391–415.

[29] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief
nets. Neural Comput 2006;18:1527–54.

[30] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with
neural networks. Science 2006;313:504–7.

[31] Ho TK. Random decision forests. proceedings of the third international
conference on document analysis and recognition. Volume 1. IEEE
Computer Society, 1995; 278.

7 (2022) e1044 www.painreportsonline.com 13

https://github.com/JornLotsch/AI4pain
www.painreportsonline.com


[32] Hotelling H. Analysis of a complex of statistical variables into principal
components. J Educ Psychol 1933;24:498–520.

[33] Iannetti GD, Salomons TV, Moayedi M, Mouraux A, Davis KD. Beyond
metaphor: contrasting mechanisms of social and physical pain. Trends
Cogn Sci 2013;17:371–8.

[34] Ihaka R, Gentleman RR. A language for data analysis and graphics.
J Comput Graphical Stat 1996;5:299–314.

[35] Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey.
J Artif intelligence Res 1996;4:237–85.

[36] Kapoor S, Narayanan A. Leakage and the reproducibility crisis in ML-
based science. arXiv, 2022. arXiv:2207.07048 [cs.LG].

[37] Kim K, Han Y, Jeong S, Doh K, Park HA, Lee K, ChoM, Ahn S. Prediction
of postoperative length of hospital stay based on differences in nursing
narratives in elderly patients with epithelial ovarian cancer. Methods Inf
Med 2019;58:222–8.

[38] Kohonen T. Self-organized formation of topologically correct feature
maps. Biol Cybernet 1982;43:59–69.

[39] Kovalchik S. RISmed: Download content from NCBI databases, 2020.
[40] Kringel D, Lippmann C, Parnham MJ, Kalso E, Ultsch A, Lötsch J. A
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[58] Lötsch J, Ultsch A. Current projection methods-induced biases at
subgroup detection for machine-learning based data-analysis of
biomedical data. Int J Mol Sci 2019;21.
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