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Abstract 

Background: Macrophages are key innate immune cells implicated in the pathogenesis of Behçet’s disease (BD), and 
macrophage polarization plays a pivotal role in inflammatory response. This study aimed to investigate the role of BD 
serum on the phenotypes and functions of macrophage polarization.

Methods: BD or HC serum-treated human monocyte-derived macrophages (HMDMs) were examined M1/M2 phe-
notypes using flow cytometry and ELISA. The phagocytic capacity of HMDMs and  CD4+T cell differentiation facilitated 
by HMDMs were measured by flow cytometry. Transcriptome analysis of BD and HC serum-stimulated HMDMs was 
conducted to identify differentially expressed genes. NF-κB signaling was examined using western blot to explore the 
mechanism of macrophage polarization induced by BD serum.

Results: BD serum-treated macrophages expressed a higher level of CD86, IL-12, and TNF-α and a lower level of 
CD163, which were compatible with the M1-like phenotype. Furthermore, BD serum-treated macrophages showed 
enhanced phagocytic capacity and promoted more Th1 cell differentiation. Sixty-one differentially expressed genes 
were identified between BD and HC serum-treated macrophages and were enriched in NF-κB signaling. BD serum-
treated macrophages showed upregulated p-p65 and downregulated IκBα, and NF-κB inhibitor attenuated BD serum-
stimulated M1-like phenotype.

Conclusions: BD serum promoted macrophage polarization toward a proinflammatory M1-like phenotype through 
NF-κB signaling and potentially facilitated inflammation in BD. M1 polarized macrophages may be a potential thera-
peutic target for BD.

Keywords: Behçet’s disease, Macrophage polarization, Phagocytosis, Th1 differentiation, NF-κB pathway

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Behçet’s disease (BD) is a chronic inflammatory systemic 
vasculitis, characterized by recurrent oral /genital ulcers, 
skin lesions, and organ involvements, including uveitis, 
cardiovascular, gastrointestinal, and central nervous sys-
tems [1]. BD is prevalent (20~602 per 100,000) in Silk 
road countries spanning from China to the Mediterra-
nean area [2]. BD is typically onset at young and middle 
aged [3] and progressively and recurrently impairs physi-
cal, mental, and social capacities, Quality of Life (QoL), 

Open Access

†Xiuhua Wu, Zhimian Wang, and Jing Shi contributed equally to this study.

*Correspondence:  chenhua@pumch.cn; zhengwj@pumch.cn

1 Department of Rheumatology and Clinical Immunology, Chinese Academy 
of Medical Sciences & Peking Union Medical College; National Clinical 
Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), 
Ministry of Science & Technology; State Key Laboratory of Complex Severe 
and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key 
Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, 
Beijing 100730, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-022-02938-z&domain=pdf


Page 2 of 12Wu et al. Arthritis Research & Therapy          (2022) 24:249 

and even life span, causing considerable financial costs to 
society and individuals. The pathogenesis of BD remains 
elusive, where genetic predisposition and environmental 
stressors might play together, leading to overactivation of 
the immune system and inflammatory damage of multi-
systems [4], mainly manifested by enhanced inflamma-
tory responses and overexpression of proinflammatory 
cytokines [5]. Current therapies include glucocorticoids, 
immunosuppressive agents, and emerging TNF inhibi-
tors. Therefore, an in-depth understanding of the patho-
genesis and the development of new therapeutic targets 
are essential for improving the prognosis and reducing 
the disease burden of BD.

Macrophages are key innate immune cells that initiate 
adaptive immunity by antigen presentation and cytokine 
production. Macrophages play a critical role in inflamma-
tion through phagocytosis and the production of proin-
flammatory cytokines and chemokines. Macrophages are 
categorized into two subtypes: classically activated mac-
rophages (M1 macrophages) and alternatively activated 
macrophages (M2 macrophages). M1 macrophages are 
induced by lipopolysaccharides (LPS) and interferon-γ 
(IFNγ) and produce proinflammatory cytokines, while 
M2 macrophages are induced by IL4, IL-10, or IL-13 and 
exert anti-inflammatory and promote injury healing and 
tissue repair [6]. Macrophage polarization, defined as 
phenotypic and functional plasticity of macrophages, is 
potentially implicated in autoimmune diseases, such as 
systemic lupus erythematosus (SLE), rheumatoid arthri-
tis (RA), Sjögren’s syndrome (SS), and inflammatory 
bowel diseases (IBD) [7, 8].

Recent studies suggest M1 macrophage polariza-
tion in BD [9]. TNF-α, IL-1β, IL-6, IL-8, and IL-12 are 
major proinflammatory cytokines secreted by M1 mac-
rophages and are elevated in BD [10]. M1 macrophages 
are observed in herpes simplex virus (HSV)-induced 
BD mouse model [11], and BD serum induces healthy 
donor monocytes to polarize to M1 macrophage in vitro 
[12]. However, the potential function and mechanism 
of M1 macrophage polarization in BD remains largely 
unknown. GWAS study identifies CCR1 and IL10 as risk 
loci of BD, which might promote M1 macrophage [13]. 
In this study, we performed phenotypic and functional 
investigations on BD serum-induced M1 macrophage 
polarization. Furthermore, we performed transcriptome 
analysis on macrophages to explore potential mecha-
nisms driving M1 activation of macrophages.

Methods
Patients and controls
Forty-five treatment-naïve active BD patients (27 males, 
age 33.0 ± 11.2 years, disease duration 94.4 ± 78.4 
months) were recruited from Peking Union Medical 

College Hospital (PUMCH) between March 2014 and 
December 2019 (Supplemental Table S1). All BD patients 
fulfilled the International Criteria for Behçet’s Disease 
(ICBD) [14], and active BD was defined as Behçet’s Dis-
ease Current Activity Form (BDCAF) score≥1 or with 
elevated erythrocyte sedimentation rate (ESR)/high-
sensitivity C-reactive protein (hsCRP). Forty-five gender-
and age-matched healthy volunteers (25 males, mean age 
36.8 years) were enrolled as healthy controls (HC). Serum 
samples of BD patients and paired HC were collected and 
stored at −80°C until use within 2 years. Twenty-nine 
paired BD and HC samples were used for the phenotype 
(n=12) and functional (n=17) analysis, 4 paired samples 
for bulk RNA-seq analysis, and the rest 12 paired for 
verifying the activated signaling pathway (Supplemental 
Table 1.1 and 1.2). The study was approved by the insti-
tutional review board of PUMCH, and written informed 
consent was obtained from all subjects in accordance 
with the Declaration of Helsinki.

Cells
Monocytes were isolated from HC peripheral blood 
mononuclear cells (PBMCs) with  CD14+ MicroBeads 
(Miltenyi Biotec) with a purity >95% by flow cytom-
etry (Supplemental Figure  S1A). Monocytes (1.5×106 
cells/mL) were seeded onto 24- or 48-well plates and 
were incubated in a complete DMEM medium sup-
plemented with M-CSF (50ng/ml, Sigma) for 7 days to 
differentiate into adherent HMDMs. Complete DMEM 
contains DMEM (Gibco), 10% fetal bovine serum (FBS, 
Gibco), and penicillin and streptomycin (Gibco). The 
purity of HMDMs was > 80% measured by intracellu-
lar CD68 on day 7 (Supplemental Figure  S1B). Naive 
 CD4+ T cells were isolated from HC PBMCs using 
naive  CD4+ T cell isolation kit II (Miltenyi Biotec) 
with a purity > 90% (Supplemental Figure S1C).

Macrophage polarization
Resting (M0) macrophages were defined as HMDMs 
without additional stimulation. M0 were stimulated with 
LPS (100ng/ml) plus IFNγ (20ng/ml), or IL-4 (20ng/ml) 
plus IL13 (20ng/ml) for 48 h to differentiate into M1 or 
M2 macrophages, respectively. M0 were also treated with 
10% BD or HC serum for 48 h. HMDMs were harvested 
using 0.25% trypsin-EDTA digestion for 10 min at 37°C. 
Surface CD86, CD163, and CD206 were measured with 
flow cytometry, and supernatant TNF-α,  IL-12, CXCL2 
and CXCL3 were measured by enzyme-linked immuno-
sorbent assay (ELISA) (BioLegend or MultiSciences).

Phagocytosis assay
M0, M1, M2, and BD or HC serum-treated HMDMs 
were incubated in PBS with 1% BSA at 4°C for 30 min. 
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After washing in PBS, cells were incubated with FITC-
Dextran (Santa Cruz) and shaken at room temperature 
for 30 min. Cells were harvested and washed twice with 
PBS, 1% BSA. Intracellular FITC-dextran was determined 
by flow cytometry.

Macrophage‑dependent T cell differentiation
M0, M1, and M2 conditions or BD and HC serum-
pretreated HMDMs (5×104) were harvested and incu-
bated with 2.5×105 naïve  CD4+T cells in 48-well plates, 
and polarized in 500μl complete DMEM medium with 
plate-bound anti-CD3 (5 μg/ml, BD Biosciences), solu-
ble anti-CD28 (5 μg/ml, BD Biosciences), anti-IL4 (5 μg/
ml, BioLegend), and IL-2 (10 ng/ml, BioLegend) for 5 
days. Before harvest, T cells were stimulated with Leu-
kocyte Activation Cocktail (BD Bioscience) for 4 h, and 
IFNγ+ and T-bet+  CD4+ T cells were measured by flow 
cytometry.

Flow cytometry
For macrophages staining, macrophages were pretreated 
with Fc Receptor Blocking Solution (1:20, BioLegend) 
for 10 min at room temperature and were stained with 
surface antibodies and Ghost Dye (1:1000, Tonbo Bio-
sciences) at 4°C for 30 min in dark. Macrophages were 
also fixed and permeabilized with Fixation/Permeabili-
zation Solution (BD Biosciences) and were stained with 
anti-CD68 (Y1/82A, BioLegend). For T cell intracellular 
staining, cells were fixed and permeabilized with Foxp3/
Transcription Factor Staining Buffer (eBioscience), and 
intracellular cytokine/ nuclear transcription factor stain-
ing was performed according to the manufacturer’s 
protocol.

The following monoclonal antibodies (mAbs) were 
used: FITC anti-CD86 (BU63, BioLegend), PE anti-
CD163 (GHI/61, BioLegend), APC anti-CD206 (15-2, 
BioLegend), and PerCP-Cy55 anti-CD68 (Y1/82A, Bio-
Legend), FITC anti-CD4 (A161A1, BioLegend), PE-Cy7 
anti-IFNγ (B27, BioLegend), PerCP-Cy55 anti-IL-17A 
(BL168, BioLegend), Alexa 647 anti-T-bet (O4-46, BD 
Biosciences), and PE anti-RORγt (AFKJS-9, BD Bio-
sciences). Appropriately matched isotype control mAb to 
each antigen-specific mAb was used for control.

The stained cells were immediately analyzed on FAC-
SAria II (BD Biosciences) flow cytometer, and data analy-
sis was performed with the FlowJo software (Tree Star).

Bulk RNA‑seq data analysis
Total RNA was extracted from BD or HC serum-treated 
HMDMs using TRIzol (Invitrogen). Sequencing libraries 
were generated with NEBNext® UltraTM RNA Library 
Prep Kit for Illumina® (NEB, USA) and qualified by the 
Agilent Bioanalyzer 2100 system. The clustering of the 

index-coded samples was performed using TruSeq PE 
Cluster Kit v3-cBot-HS (Illumia). The library prepara-
tions were sequenced on an Illumina Hiseq platform, and 
125 bp paired-end reads were generated.

Raw data in FASTQ format were first processed 
through in-house Perl scripts. In addition, the Q20, Q30, 
and GC contents of the clean data were calculated. All 
downstream analyses were based on clean, high-quality 
data. A reference genome index was built, and paired-end 
clean reads were aligned to the reference genome using 
HISAT2 (v2.0.5). For quantification of gene expression 
levels, featureCounts (v1.5.0) was applied to count the 
number of reads mapped to each gene. The FPKM value 
of each gene was then calculated based on the length of 
the gene and the number of reads mapped to that gene.

The count matrix was input into DESeq2 (v1.30.0) [15] 
and fitted for a general linear model with a negative bino-
mial distribution. To calculate DEGs, batch effect was 
corrected within DESeq2 and DEGs were identified by 
the functions DESeq with the adjusted p <0.05 (Wald test 
and Bonferroni correction). For PCA and heatmap dem-
onstration, the matrix was corrected by R package sva to 
remove batch effect and normalized by Function rlog in 
DESeq2. PCA was performed for top 2000 variable genes 
based on variance, and the results were visualized with 
the function pca in R package PCAtools.

Pathway enrichment analysis
The enriched pathways were assessed by hypergeometric 
testing in the Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) databases based on 
DEGs by R package clusterProfiler (v3.0.4) [16]. Signifi-
cantly enriched pathways were determined with a cutoff 
of a Benjamini–Hochberg-corrected p < 0.05.

Gene signature analysis
Gene signatures were downloaded from the KEGG 
database and C7 gene sets of the MSigDB Collec-
tions [17], including GSE16385_UNTREATED_
VS_12H_IL4_TREATED_MACROPHAGE_DN , 
GSE9509_LPS_VS_LPS_AND_IL10_STIM_IL10_KO_
MACROPHAGE_30MIN_DN, and GSE25088_CTRL_
VS_IL4_STIM_STAT6_KO_MACROPHAGE_UP gene 
sets from the previous studies [18, 19] which were 
relevant to our study. Significantly enriched pathways 
were determined with the cutoff of p value <0.05, 
Benjamini–Hochberg-corrected p < 0.25, and abso-
lute value of negative normalized enrichment score 
(NES) >1.

Western blot
HMDMs were stimulated with BD serum or HC serum 
for 0, 15, 30, and 60 min. Total proteins of 1–2×106 
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HMDMs were extracted with Minute Total Protein Extrac-
tion Kit (Invent Biotechnologies) and were quantified by 
BCA Assay Kit (Pierce). Proteins were loaded and elec-
trophoresed on a 4–20% SDS-PAGE gel and were subse-
quently transferred to a PVDF membrane (Millipore). The 
membrane was blocked with tris-buffered saline-Tween 
20 (TBST) containing 5% non-fat milk for 1 h at room 
temperature followed by incubation overnight with anti-
NF-κB p65 rabbit antibody, anti-Phospho-NF-κB p65 rab-
bit antibody, anti-IκBα rabbit antibody,  anti-JAK1 mouse 
antibody, anti-Phospho-JAK1 rabbit antibody, anti-STAT1 
rabbit antibody, anti-Phospho-STAT1 rabbit antibody or 
anti-β-actin rabbit antibody (Cell Signaling Technology) at 
4°C. The membrane was washed three times and incubated 
with HRP-conjugated secondary antibodies (EASYBIO) 
for 1 h at room temperature. The proteins were visualized 
using a ChampChemi Multiplex Fluorescence /Chemilumi-
nescence Imager (Sage Creation Science), and the optical 
density data were analyzed using ImageJ software. β-actin 
was used as the endogenous control.

Statistical analysis
Quantitative data were expressed as mean ± standard 
deviation (SD) or median (range). Categorical variables 
were represented as frequencies and percentages. Student’s 
t test was used for comparing two groups. Multiple group 
comparisons were analyzed using one-way ANOVA and 
two-way ANOVA (normally distributed data) or Kruskal-
Wallis test (non-normally distributed data). A two-sided p 
value < 0.05 was considered statistically significant. Analy-
ses were performed with SPSS V.26 (SPSS, USA).

Results
BD serum promotes M1‑like macrophage polarization
To explore the phenotype of BD serum-stimulated mac-
rophages, we treated HMDMs with BD or HC serum as 
well as M0, M1, or M2 conditions. The phenotypes of mac-
rophages are regulated by complex, dynamic environments, 
making it unlikely to define myeloid cell heterogeneity with 
a limited number of markers. Therefore, M1 and M2 mac-
rophages were defined using CD86, CD163, CD206, IL-12, 
and TNF-α as previously described [20–22], to distinguish 

M1 and M2 macrophages more accurately. We verified a 
higher level of CD86 (M0: 39.3 ± 18.3%, M1: 84.0 ± 20.2%, 
M2: 80.0 ± 16.4%) on M1 and M2 macrophages, higher 
levels of CD163 (16.1±3.4% vs 6.5±2.0%, p<0.0001) and 
CD206 (69.6 ± 7.4% vs 52.5 ± 16.1%, p<0.05) on M2 mac-
rophages, a lower level of CD163 (2.0 ± 1.8% vs 6.5 ± 2.0%, 
p<0.05) on M1 macrophages, and higher levels of IL-12 
(1612.0 ± 876.4 vs 8.3 ± 4.3 pg/ml, p<0.001) and TNF-α 
(994.8 ± 334.0 vs 22.3 ± 14.0 pg/ml, p<0.001) produced 
by M1 macrophages. Consistent with M1 macrophages, 
BD serum-treated macrophages expressed a higher level of 
CD86 (65.1 ± 16.1% vs 39.3 ± 18.3%, p<0.05), a lower level 
of CD163 (2.4 ± 1.6% vs 6.7 ± 2.1%, p<0.01), and produced 
higher levels of IL-12 (164.0 ± 100.0 vs 8.3 ± 4.3 pg/ml, 
p<0.01) and TNF-α (253.1 ± 205.2 vs 22.3 ± 14.0 pg/ml, 
p<0.05) than M0 macrophages, which were not observed in 
HC serum-treated macrophages (Fig. 1A–D, Supplemental 
Figure S2 and S3).

Furthermore, we confirmed the enhanced cellular dex-
tran uptake in M1 macrophages (M0: 31.5 ± 15.7%, M1: 
54.3 ± 17.2%, M2: 42.2 ± 13.5%) as well as in BD serum-
treated macrophages (55.6 ± 13.3% vs 31.5 ± 15.7%, 
p<0.05) but not HC serum-treated macrophages (Fig. 1E, 
Supplemental Figure S2D). Together, these findings sug-
gest BD serum-induced macrophage polarization toward 
M1-like phenotype.

BD serum stimulated macrophages to facilitate Th1 cell 
differentiation
Since macrophages are antigen-presenting cells promoting 
 CD4+ T helper (Th) cell differentiation [23], we then investi-
gated the potential differentiation of effector T cells assisted 
by BD serum-treated macrophages. We incubated naive 
 CD4+ T cells with M0, M1, M2, BD, or HC serum-treated 
macrophages and observed that M1 macrophages and BD 
serum-treated macrophages (M0: 51.6 ± 7.1%, M1: 82.1 
± 8.8%,  MBD: 66.7 ± 5.3%) promoted more IFNγ+CD4+ 
T cell differentiation than M0 macrophages (Fig.  2, Sup-
plemental Figure  S4). Meanwhile, M1 macrophages and 
BD serum-treated macrophages (M0: 40.6 ± 8.2%, M1: 
73.6 ± 6.8%,  MBD: 60.8 ± 9.5%) promoted T-bet expres-
sion (Fig. 2, Supplemental Figure S4 and S5). Additionally, 

(See figure on next page.)
Fig. 1 BD serum promotes M1-like macrophage polarization. Resting macrophages (M0) were stimulated with M1 condition (100ng/ml LPS+ 
20ng/ml IFNγ), M2 condition (20ng/ml IL-4+ 20ng/ml IL-13), BD serum or HC serum for 48 h. A–C Representative histograms (left) and summary 
(right) of CD86, CD163 and CD206 expression level of macrophages stimulated with M0 (n=6), M1 (n=6), and M2 (n=6) conditions, as well as BD 
(n=12) serum and HC (n=12) serum. Data were expressed as mean±SD and were analyzed using one-way ANOVA. D IL-12 and TNF-α production 
by macrophages stimulated with M0 (n=6), M1 (n=6), and M2 (n=6) conditions, as well as BD (n=12) serum and HC (n=12) serum. Data were 
expressed as mean±SD and were analyzed using Kruskal-Wallis test. E Representative histograms (left) and summary (right) of dextran uptake 
by macrophages stimulated with M0 (n=7), M1 (n=7), M2 (n=7) conditions, and BD (n=9) serum and HC (n=9) serum. Data were expressed as 
mean±SD and were analyzed using one-way ANOVA. *, p<0.05; **, p<0.01; ***, p<0.001, ****, p<0.001.  MBD, BD serum-treated macrophages;  MHC, 
HC serum-treated macrophages
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Fig. 1 (See legend on previous page.)
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BD serum-treated macrophages also promoted Th17 dif-
ferentiation (Supplemental Figures  S6). Collectively, these 
data suggested that BD serum-treated macrophages and M1 
macrophages promoted Th1 differentiation.

Transcriptome analysis of BD and HC serum‑treated 
macrophages
To gain insights into the mechanism of BD serum-
induced M1-like macrophage polarization, we next 

performed transcriptome analysis on macrophages 
stimulated with BD and HC serum (n=4). Principal com-
ponent analysis (PCA) of the top 2000 variable genes 
showed distinct transcriptional patterns between two 
conditions (Fig.  3A). We identified 41 upregulated and 
20 downregulated differentially expressed genes (DEGs, 
Fig.  3B,C and Supplemental Table  S2), which showed 
a transcriptionally active gene signature in BD serum-
induced macrophages. GO biological process and KEGG 

Fig. 2 BD serum-treated macrophages facilitate Th1 differentiation. Naive CD4+ T cells were incubated with M0, M1, M2, BD serum- and HC 
serum-treated macrophages in Th1 condition (5μg/ml anti-CD3, 5μg/ml anti-CD28, 5μg/ml anti-IL-4, and 10ng/ml IL-2) for 5 days. A Representative 
flow cytometry plots and B summary of IFNγ and T-bet [n(M0)=3, n(M1)=3, n(M2)=3, n(MBD)=5, n(MHC)=5] expression levels in CD4+ T cells. Data 
were shown as mean±SD. *, p<0.05; **, p<0.01; ***, p<0.001, ****, p<0.001 by one-way ANOVA.  MBD, BD serum- treated macrophages;  MHC, HC 
serum- treated macrophages

(See figure on next page.)
Fig. 3 Transcriptome analysis of BD serum- and HC serum-treated macrophages. HMDMs were stimulated with serum from four treatment-naïve 
active BD patients and matched healthy volunteers for 48 h, and total RNA was extracted for RNA-seq analysis. A Principal component analysis 
(PCA) of BD serum-treated and HC serum-treated macrophages. B Volcano plot of upregulated (red, n=41) and downregulated (blue, n=20) DEGs 
in BD serum-treated macrophages compared with HC serum-treated macrophages. C Heatmap of DEGs between BD serum- and HC serum-treated 
macrophages. D GO biological process enrichment analysis and KEGG enrichment analysis between BD serum- and HC serum-treated macrophage. 
E, F Dot plots (left) showed Gene Set Enrichment Analysis (GSEA) of BD serum- and HC serum-treated macrophage. Representative enriched gene 
sets were illustrated by heatmap (right). DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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analysis revealed enriched migration and chemotaxis-
related gene sets (Fig. 3D), including upregulated CXCL1, 
CXCL2, CXCL3, CXCL5, and CCL13 (Fig. 3C). We vali-
dated that BD serum-treated macrophages produced 
more CXCL2 and CXCL3 (Supplemental Figure  S7), 
which are characteristic of classical M1 macrophage acti-
vation [24]. KEGG and GSEA analysis showed enhanced 
inflammatory immune responses in BD serum-induced 
macrophages, including phagosome, IL-17 signal-
ing pathway, and TNF-signaling pathway (Fig.  3D–F), 
which was confirmed by the phagocytosis test (Fig. 1E), 
enhanced Th17 differentiation (Supplemental Figure S6), 
and overproduction of TNF-α in BD serum-treated mac-
rophages (Fig. 1D), respectively. A response to a molecule 
of bacterial origin (Fig. 3D) was implicated in BD serum-
induced macrophages, supporting infections as a trigger 
of BD [25]. The enriched Nod-like receptor pathway and 
NF-κB pathway (Fig.  3D–F) suggested enhanced innate 
immune responses in BD serum-induced macrophages. 
Finally, we compared our gene signature with previous 
studies [18, 19] and found it demonstrated an opposite 
pattern from M2 polarization conditions such as IL-4 and 
IL-10 stimulation (Fig. 3E). Taken together, the transcrip-
tome analysis suggested that BD serum promoted mac-
rophage polarization toward a proinflammatory M1-like 
phenotype.

BD serum polarize macrophages through the NF‑κB 
pathway
We further explored the underlying molecular mecha-
nism of M1 macrophage polarization promoted by BD 
serum. Given that NF-κB pathways were enriched in 
transcriptome analysis (Fig.  3D–F) and participated in 
M1 macrophage polarization by TLRs [26], we examined 
NF-κB pathways in BD serum- and HC serum-treated 
macrophages. BD serum, but not HC serum, induced a 
significantly higher level of phosphorylated p65 (p-p65) 
(1.4 ± 0.3 vs 0.6 ± 0.2, p<0.05) and lower level of IκBα 
(0.8 ± 0.4 vs 1.2 ± 0.3, p<0.05) in macrophages (Fig. 4A) 
at 15 min. DHE, a specific NF-κB inhibitor, attenuated 
CD86 expression (71.7 ± 5.5% vs. 56.8 ± 4. 7%, p<0.001, 
Fig. 4B; Supplemental Figure S8) and TNF-α production 
(186.8 ± 37.2 vs 53.5 ± 49.1 pg/ml, p<0.0001, Fig.  4C) 
induced by BD serum. Additionally, higher levels of 
phosphorylated-JAK1 (1.0 ± 0.3 vs 0.5 ± 0.2, p<0.05) 
and phosphorylated-STAT1 (0.6 ± 0.2 vs 0.02 ± 0.02, 
p<0.0001) were observed in BD serum-treated mac-
rophages (Supplemental Figure  S9) at 30 min, which 
provided a new therapeutic mechanism of JAK inhibitor 
tofacitinib in BD [27]. Therefore, our data supported that 
the NF-κB pathway was implicated in the M1-like polari-
zation of BD serum-treated macrophages.

Discussion
This study demonstrated the M1 polarization of mac-
rophages induced by BD serum, with enhanced ability 
of phagocytosis and facilitating Th1 differentiation. We 
found NF-κB pathway activation through transcriptome 
analysis and confirmed its regulation on BD serum-stim-
ulated M1 polarization.

Imbalanced M1/M2 macrophage polarization has been 
reported in many autoimmune diseases, including SLE, 
RA, and IBD [7, 8]. M1 phenotype and M1/M2 ratio are 
increased in an HSV-induced BD mouse model, and IL-4 
treatment reduces the M1/M2 ratio and ameliorates the 
disease [11]. Alpsoy et  al. report that M1 macrophage 
markers CD11c and CD64 are strongly expressed in mac-
rophages maintained in BD serum [12]. We observed an 
M1-like profile in BD serum-treated macrophages with 
elevated CD86, IL-12, and TNF-α and reduced CD163, 
and an M0-like profile in HC serum-treated HMDMs. 
M1 macrophages are induced by LPS, IFNγ and (or) 
TNF-α, while M2 macrophages are induced by IL4, 
IL-10, or IL-13 [6]. We and other investigators [28–30] 
have confirmed that the levels of IFNγ and TNF-α, but 
not IL-10, were higher in BD serum. However, neutral-
izing IFNγ and (or) TNF-α did not abrogate M1 polariza-
tion induced by BD serum (data not shown). In addition, 
serum levels of LPS in BD patients are positively corre-
lated with mucous disease activity [31], and the expres-
sion of LPS receptor TLR4 is higher in BD macrophages 
[32]. We speculated that higher levels of LPS and IFNγ or 
TNF-α in BD serum might orchestrate to induce M1-like 
polarization, which deserves to explore in future studies. 
Nevertheless, our study and others indicate that M1 mac-
rophage polarization is a key mechanism of BD, and tar-
geting M1 macrophages might be a therapeutic approach 
for BD.

M1 macrophages exhibit higher phagocytic activ-
ity than M0 macrophages [33]. Accordingly, we found 
BD serum-stimulated macrophages showed enhanced 
phagocytotic ability through functional experiments 
and transcriptome analysis. Moreover, macrophages 
play an important role in the activation of the acquired 
immune response. In a chronic inflammatory con-
text, M1 predominance and M2 insufficiency favor 
differentiation of T cell activation and differentiation 
[34, 35]. IL-12 and IL-23 and (or) IL-1β, produced by 
activated macrophages, induce Th1 and Th17 differ-
entiation, respectively [36, 37]. IFNγ-producing Th1 
cells and IL-17-producing Th17 cells are pathogenic in 
BD [10, 38, 39]. In this study, BD serum-treated mac-
rophages upregulated IL-12 expression and promoted 
IFNγ+T-bet+ and IL-17A+RORγt+  CD4+T cell differ-
entiation, suggesting that BD serum-induced M1-like 
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Fig. 3 (See legend on previous page.)
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macrophages contribute to the inflammation in BD via 
promotion of Th1 and Th17 differentiation.

Transcriptome data revealed DEGs related to chemo-
taxis, including CXCL1-3, CXCL5, and CCL13 in BD 
serum-treated macrophages. CXCL1-3 and CXCL5 are 
expressed by M1 macrophages and control the recruit-
ment of neutrophils during tissue inflammation [40–42], 
and BD is a systemic vasculitis featured by notable neutro-
phil infiltration [43], CXCL1-3 and CXCL5 might be the 
key chemokines produced by BD macrophages to over-
attract neutrophils. Additionally, CCL13 attracts mono-
cytes, macrophages, and T cells [44, 45]. These chemokine 

genes suggest the M1-like BD serum-induced mac-
rophages promote chemotactic activity to other immune 
cells and play a role in the pathogenesis of BD.

We found that NF-κB signaling regulated M1 mac-
rophage polarization induced by BD serum. NF-κB is 
an important prototypic signaling cascade that drives 
classical (M1) activation of macrophages [46]. After 
stimulation, IκBα is phosphorylated, ubiquitinated, 
and degraded in the cytosol via activated IKK. Subse-
quently, NF-κB transcription factors were translocated 
into the nucleus to initiate downstream effector mecha-
nisms and induction of proinflammatory mediators such 

Fig. 4 NF-κB pathway mediated BD serum-treated M1-like macrophage polarization. A Representative western blot images (upper) and summary 
(lower) of NF-κB p65, phospho-p65 and IκBα of macrophages treated with BD (n=3) serum or HC (n=3) serum. Macrophages were pretreated 
with DHE and then were stimulated with BD serum for 48 h. B Representative histograms (left) and summary (right) of CD86 expression on 
DHE-treated and untreated macrophages stimulated with BD (n=6) serum and HC (n=6) serum. C TNF-α production by DHE-treated and untreated 
macrophages stimulated with BD serum (n=6) and HC (n=6) serum. Data were shown as mean±SD. *, p<0.05; **, p<0.01, ***, p<0.001, ****, p<0.001 
by two-way ANOVA.  MBD, BD serum- treated macrophages;  MHC, HC serum- treated macrophages
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as TNF-α and IL-6 [47]. In addition, NF-κB is a central 
mediator of priming signal for nod-like receptor (NLR) 
inflammasome [48], which pathway was also enriched 
in our transcriptomic analysis. In the study, we observed 
the degradation of IκBα and phosphorylation of p65, as 
well as overexpression of TNF-α in BD serum-treated 
macrophages, which suggested NF-κB signaling acti-
vation. NF-κB inhibitor attenuated M1 polarization of 
macrophages stimulated by BD serum. NF-κB activation 
could be induced by and, in turn, result in an amplified 
inflammatory cytokine profile in BD, including TNF-α, 
IL-1β, IL-6, IL-8, and IL-12 [10,  49–52], the combined 
effect of which provides M1 polarization environment.

Glucocorticoids, which inhibit NF-κB signaling through 
induction of IκBα synthesis and inhibition of NF-κB activ-
ity, are effective for BD [53]. We inferred that glucocor-
ticoids may suppress inflammation by inhibiting M1 
macrophage polarization in BD patients. Thus, our study 
added a new layer of treatment mechanism of glucocorti-
coids, and targeting the NF-κB pathway might be a poten-
tial approach to reduce the inflammatory response of BD.

Conclusion
In summary, BD serum skews macrophage polarization 
toward the M1 phenotype by activating the NF-κB path-
way, which shows enhanced phagocytosis and drives Th1 
cell differentiation. Targeting abnormally polarized mac-
rophages may be a potential therapeutic approach for BD.
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