
Matching 3D Facial Shape to Demographic Properties by 
Geometric Metric Learning: A Part-Based Approach

Soha Sadat Mahdi*,
Department of Electrical Engineering-PSI, KU Leuven and UZ Leuven, MIRC. P. Claes is also 
with the Department of Human Genetics, KU Leuven

Nele Nauwelaers*,
Department of Electrical Engineering-PSI, KU Leuven and UZ Leuven, MIRC. P. Claes is also 
with the Department of Human Genetics, KU Leuven

Philip Joris,
Department of Electrical Engineering-PSI, KU Leuven and UZ Leuven, MIRC. P. Claes is also 
with the Department of Human Genetics, KU Leuven

Giorgos Bouritsas,
Department of Computing, Imperial College London

Shunwang Gong,
Department of Computing, Imperial College London

Susan Walsh,
Department of Biology, Indiana University-Purdue University-Indianapolis

Mark D. Shriver,
Department of Anthropology, Penn State University

Michael Bronstein,
Department of Computing, Imperial College London

Peter Claes
Department of Electrical Engineering-PSI, KU Leuven and UZ Leuven, MIRC. P. Claes is also 
with the Department of Human Genetics, KU Leuven

Abstract

Face recognition is a widely accepted biometric identifier, as the face contains a lot of information 

about the identity of a person. The goal of this study is to match the 3D face of an individual 

to a set of demographic properties (sex, age, BMI, and genomic background) that are extracted 

from unidentified genetic material. We introduce a triplet loss metric learner that compresses 

facial shape into a lower dimensional embedding while preserving information about the property 

of interest. The metric learner is trained for multiple facial segments to allow a global-to-local 

part-based analysis of the face. To learn directly from 3D mesh data, spiral convolutions are used 

along with a novel mesh-sampling scheme, which retains uniformly sampled points at different 
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resolutions. The capacity of the model for establishing identity from facial shape against a list 

of probe demographics is evaluated by enrolling the embeddings for all properties into a support 

vector machine classifier or regressor and then combining them using a naive Bayes score fuser. 

Results obtained by a 10-fold cross-validation for biometric verification and identification show 

that part-based learning significantly improves the systems performance for both encoding with 

our geometric metric learner or with principal component analysis.

Keywords

Deep Metric Learning; Face to DNA; Geometric Deep Learning; Multi Biometrics; Soft 
Biometrics

I. INTRODUCTION

Recent advances in DNA phenotyping of the human face have increased interest in the field 

and attracted the attention of forensic biologists and anthropologists [1]. E.g., in forensics 

the prediction of the facial appearance of an unknown person from biological material found 

at a crime scene could be matched with known faces of subjects of interest, e.g., suspects. 

This process is referred to as facial recognition from DNA. However, directly predicting 

the unknown face from DNA remains a challenging and unsolved problem. Nevertheless, 

the human face contains substantial information about both genetic and environmental 

factors related to the identity of a person. This makes the face a widely used and accepted 

subject for biometric analysis. In a recently proposed paradigm shift to facial recognition 

from DNA, a biometric system that aims to predict DNA-related properties from facial 

images with known identity was proposed [2]. These properties can then be matched to 

the properties extracted from the DNA of an unidentified individual. The difference to 

predicting an unknown face from DNA, as in DNA phenotyping, is that given existing faces 

(e.g., from a facial gallery of known identities) are now classified into DNA-based properties 

and classes.

Following the paradigm shift, this paper is an extension of work originally presented at 

ICPR 2020 [3] in which a 2-step neural based pipeline for matching 3D facial shape 

to multiple demographic properties was proposed. The properties that were considered 

can either be decoded directly - sex, genomic background (GB) - or inferred indirectly 

(e.g., using epigenetics) – age, Body Mass Index (BMI) - from DNA. The first step 

of the pipeline consisted of a triplet loss metric learner to compress facial shape into a 

lower dimensional embedding while preserving information about the property of interest. 

The second step was a multi-biometric fusion by a fully connected neural network. 

The fusion network predicted whether a 3D face, represented by its lower dimensional 

encoding, and a given set of demographic properties belonged to the same individual or 

not. Although results proved this pipeline to be an effective approach for face to DNA 

mapping, the impact of different localized facial regions was understudied. The proposed 

method took the face as a whole into account and neglected the fact that the human face 

comprises multiple integrated parts that are distinct from each other based on their anatomy, 

embryological origin, and function. Inspired by this biological background information, the 
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main contribution of this extension is the implementation of a global-to-local part-based 

approach that improves the metric learning step of the previously proposed pipeline. In 

other words, the lower dimensional metric embeddings are learned by a geometric metric 

learner (GML) for multiple facial segments. The embeddings of all segments are then 

concatenated to form a final representation for each property. Other technical contributions 

of this extension include: 1) an improved implementation of the GML using an updated 

convolution technique which facilitates more efficient training of the GMLs; 2) an added a 

singular value decomposition layer to the GML for imposing orthogonality on the metric 

space as to avoid redundant information across dimensions and 3) an identification analysis 

which is carried out in addition to the previously used verification analysis for the evaluation 

of the models.

II. RELATED WORK

A. Metric Learning

In many computer vision problems, projecting raw data into a compact yet meaningful 

space is crucial. Metric learning refers to the task of learning a semantic representation 

of data, based on the similarity measures defined by optimal distance metrics [4]. With 

the recent success of deep learning techniques, researchers of the field have introduced 

multiple deep metric learning tools [5], [6], [7], [8], [9]. Among those commonly used for 

face recognition, verification or person re-identification [7], [10], [11], are Siamese [12] 

and Triplet networks [13], which are twin or triple architectures with identical subnetworks. 

Some studies [14], [15], [16] suggest that the combination of a classification and verification 

loss can have a superior performance specifically for person re-identification. However, 

[17] claims that triplet loss and its variants outperform most other published methods by 

a large margin. The importance of a proper triplet mining strategy is a topic of discussion 

in the literature. [13] uses an online mining strategy of the negative samples that ensures a 

consistently increasing difficulty throughout the training within a face recognition system. In 

[7], however, a moderate mining for person re-identification is incorporated. Inspired by the 

literature, in this work, triplet architectures are adopted to learn compact embeddings of 3D 

facial meshes.

B. Geometric Deep Learning

This work studies 3D mesh data, which means regular deep learning techniques are not 

directly applicable. One option suggested in literature is to transform the data to the 

Euclidean domain and use UV- or voxel-representations [18], [19], [20]. However, these 

transformations often involve a loss of data quality. Another option is to learn from the point 

cloud as in [21], but since this approach ignores the local connectivity of the mesh, it also 

comes with significant information loss. Instead of transforming the data to suit existing 

techniques, it is also possible to adapt those techniques to accept the data in its original 

form. To this end, Geometric Deep Learning was introduced.

Geometric Deep Learning is a term that refers to methods that are designed for applying 

deep learning techniques onto non-Euclidean domains such as graphs and manifolds [22]. 

The application of deep learning methods to non-Euclidean data poses several problems. 
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The first challenge is in defining a convolutional operator for graphs or meshes. Within 

geometric deep learning, there are two tracks to address this problem. On the one hand, 

spectral methods [23] involve those that are based on the frequency domain. The main 

drawbacks of these methods for shape analysis are that 1) the filters are basis dependent 

and can vary significantly for small perturbations on the shape, and 2) that there is no 

guaranteed spatial localization of the filters. However, these drawbacks can be tackled by 

spectrum-free approaches [24], [25] that represent the filters via a polynomial expansion 

instead of operating explicitly in the frequency domain [22]. On the other hand, spatial 

methods [26], [27] define a local system of coordinates along with a set of weighting 

functions. This results in a patch-operator that can be applied to each vertex of the graph or 

manifold. The second challenge is defining a pooling operator. Several graph coarsening or 

mesh decimation methods that are suitable for this task were proposed by [28], [29], [30].

In [31] an elegant and simple spatial convolution operator in the shape of a spiral defined on 

a mesh is introduced. This spiral acts as an anisotropic filter that slides over the mesh similar 

to convolutional filters on Euclidean domains. In [32] this technique was successfully 

applied to develop a generative model that is able to learn 3D deformable shapes with 

fixed topology such as facial and body scans. In a follow-up paper [33] a more efficient 

training and definition of the spiral convolutions was introduced. In this work, we extend 

the use of the last approach to discriminative models that are trained to differentiate between 

facial shapes based on DNA-related soft traits or properties.

C. Part-Based Learning

In the literature, part-based approaches have been employed, mostly for 2D images, in 

which separate models are trained for local regions such as the eyes, nose, mouth and chin, 

along with the entire face [34], [35], [36], [37]. Defining local regions on high resolution 

3D facial meshes is challenging. A data-driven, hierarchical 3D facial surface segmentation 

using spectral clustering was presented in [38]. The segmentation was based on ~ 8,000 

3D facial images of individuals from an unselected/non-clinical European population. The 

segmentation sequentially splits the vertices of the facial surface into smaller subsets called 

segments, such that covariation within segments is maximized and covariation between 

segments is minimized. We use this segmentation to extract metric embeddings for each 

segment separately.

D. Face-to-DNA Matching

In recent work [2], Sero et al. introduced a novel approach for matching between 

different identifiers (facial shape and DNA). Multiple face-to-DNA classifiers were trained, 

followed by a classification-based score-level fusion. In the first step, binary support vector 

machine (SVM) classifiers of 3D facial images were trained for the following DNA-related 

properties: sex, age, BMI, genomic background represented by 987 principal components, 

and individual genetic loci that are discovered to be associated with facial variation in a 

genome-wide association scan (GWAS). The face was analyzed in a global-to-local way 

by performing a hierarchical segmentation of the facial shape. For each segment, a PCA 

model was built to construct unsupervised multi-dimensional shape features. Association 

studies based on canonical correlation analysis were performed to investigate the correlation 
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between each of the segments and each of the demographic properties. Significant segments 

were then used to train the SVM classifiers which generate matching scores for each of 

the properties. Subsequently, the scores of different properties were fused into an overall 

matching score using a classification-based naive Bayes biometric fuser. The output of the 

biometric fuser indicates how likely it is that a given face and set of properties belong to 

the same individual. This work has proven that matching different identifiers can lead to a 

successful biometric system. In our previous paper [3], we proposed an alternative approach 

as a 2-step neural-based pipeline for 3D data that is efficiently trainable with fewer data 

partitions, and at the same time improves the performance of the existing biometric system. 

In essence, this work is an integration of the part-based approach in [2] with the more 

advanced GML from [3].

III. MATERIALS AND METHODS

A. Dataset

The dataset used in this paper originated from studies at Pennsylvania State University 

(PSU) and Indiana University-Purdue University Indianapolis (IUPUI). A total sample size 

of n = 2,145 is used. The dataset includes texture-free 3D facial images, self-reported 

properties such as sex, age and BMI at the time of the collection, and genotypic data from 

individuals. The majority are female (68%), the age range is from 5 years old to 80 years 

old with an average of 27.39 years, and the BMI ranges from 11.87 kg/m2 to 62.11 kg/m2 

with an average of 25.03 kg/m2. Recruited individuals are genetically heterogeneous, which 

implies that they originate from different background populations and admixtures thereof 

(e.g., European, Afro-American).

Study participants were sampled under Institutional Review Board (IRB) approved protocols 

(PSU IRB #44929, #45727, #2503, #4320, #32341 and IUPUI #1409306349) and were 

genotyped by 23andMe (23andMe, Mountain View, CA) on the v4 genome-wide SNP 

(single nucleotide polymorphism) array and on the Illumina Multi-539 Ethnic Global Array 

(MEGA), respectively. Genotypes were imputed to the 1000 Genomes (1KGP) Project 

Phase 3 reference panel. SHAPEIT2 was used for prephasing of haplotypes and the Sanger 

Imputation Server PBWT pipeline was used for imputation. SNPs are elements along your 

DNA that vary from one person to another. In [39], Li et al. proposed a method that projects 

SNP data onto a low dimensional SUGIBS space which captures the largest covariances 

in the data. Even though the construction of such a space is unsupervised, it results in a 

layout that co-aligns with population background. For this work, a 25-dimensional SUGIBS 

space based on the genetic data from the 1KGP was constructed using approximately 3.7M 

SNPs. Subsequently, the participants from our dataset were projected onto that space (Fig. 

1). This resulted in an array of 25 components representing genomic background for each 

participant.

The 3D images were captured using 3DMD or Vectra H1 3D imaging systems. Participants 

were asked to close their mouths and keep a neutral expression. A spatially dense 

registration is performed on the images using MeshMonk [40]. Images are purified by 

removing hair and ears. Afterwards, five landmarks are roughly positioned on the corners 

of the eyes, nose tip and mouth corners to guide a rigid surface registration of an 
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anthropometric mask using the Iterative Closest Point (ICP) algorithm. Then, the mask, 

that consists of 7,160 quasi-landmarks, is registered to the faces, using non-rigid ICP, which 

leads to obtaining meshes with the same topology across the dataset. Meshes are then 

symmetrized by averaging them with their reflected image. Finally, Generalized Procrustes 

Analysis is performed to eliminate differences in scale, position and orientation [41].

B. Methodology

Our proposed triplet loss network takes a 3D facial shape and a property as input. The 

network encodes the face into a lower dimensional embedding which is structured according 

to the property of interest, meaning that the embeddings of faces with a similar label are 

closer to each other than those with different labels. The encodings of the faces are then used 

as input to train an SVM classification or regression model. Finally, the SVM scores for the 

different properties are combined and matched with properties extracted from DNA using a 

naive Bayes score fuser (Fig. 2). The output of the score fuser is a matching score which 

represents the probability that the properties extracted from face and DNA match, or belong 

to the same individual, or not.

1) Triplet Selection: A separate triplet network is trained for sex, age, BMI, and GB. 

The networks are trained with triplets of (anchor, positive, negative), where anchor and 

positive are samples from the same class, while the negative sample is from a different class. 

However, this definition is not easily applicable to properties represented by continuous 

values (age, BMI and GB). Inspired by Jeong et al. [42], samples for age and BMI are 

considered positive when their label is within a certain distance from the label of the 

anchor, and negative otherwise. The distance thresholds for age (T = 10) and BMI (T 

= 2) were selected after experimenting with multiple values between [1:20] for age and 

[1:5] for BMI. The continuous GB components were transformed to binary vectors by a 

threshold of zero. GB is the only multi-component property. To take the correlation between 

different components (Fig. 3a) into account, a single triplet network is trained for all 25 

components jointly. In each training batch, triplets are generated with respect to one specific 

component. This component is selected according to a weighted random number generator, 

where weights are the inverse of their prediction accuracy at the previous epoch. Selecting a 

proper triplet mining strategy can have a significant impact on efficiency and accuracy of the 

training. After experimenting with different triplet mining strategies, random mining showed 

superior performances for all properties.

2) Network Design: We use geometric deep learning to learn directly from the 3D 

facial meshes and optimally utilize the data structure. The spiral convolution is used as a 

convolution operator, since, in contrast to most traditional graph neural networks, it produces 

anisotropic filters, and is especially powerful for shapes represented on a fixed topology. 

We use spiral convolutions as defined in [33]. For each vertex of the mesh, a spiral is 

defined by stepping to a random neighbor and then proceeding to form an outward spiral in 

counterclockwise direction until a fixed length of nine vertices is reached. This spiral will 

operate similar to a standard convolution filter. Regular 1D convolutions can be expressed as

Mahdi et al. Page 6

IEEE Trans Biom Behav Identity Sci. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(f ∗ g)i = ∑
j = 0

J − 1
fi − jgj + b (1)

where f is the signal to which filter g with size J is applied and b is an added bias. For the 

spiral convolution, a weight is assigned to each point of the spiral. Using these weights, the 

spiral can act as a filter applied to each point of the mesh:

(f ∗ g)i = ∑
j ∈ spirali

fjgj + b
(2)

The weights of the spiral filters are learned by the network in the backpropagation step.

Aside from the convolution operator, a pooling operator for meshes must be introduced. 

Until now, most implementations for geometric deep learning rely on established mesh 

decimation techniques that reduce the number of vertices such that a good approximation of 

the original shape remains, but they result in irregularly sampled meshes at different steps of 

resolution. We in [3], however, developed a 3D Mesh down- and up-sampling scheme that 

retains the property of equidistant mesh sampling. This is done so under the assumption that 

convolutional shape filters might benefit from the constant vertex density along the surface, 

such that they become more equally applicable on different regions of the shapes under 

investigation. This may improve the learning process, alongside the generalizability of the 

shape filters. The sampling scheme is based on the remeshing technique proposed in [43] 

and is computed by the following steps (Fig. 4)

i. The 3D mesh is mapped to a 2D unit square by means of a conformal mapping 

[44][45]. The boundary constraints forces all vertices at the boundary of the 

mesh to be mapped to one of the sides of the unit square.

ii. The vertices of the original 3D meshes are distributed equidistantly over the 

surface of the shapes. However, as a consequence of the conformal mapping, 

some regions more than others, such as the nose (indicated by a red circle in Fig. 

4), are sampled more densely in the 2D representation. In an attempt to correct 

for this, and therefore to avoid losing information in these regions, the points are 

redistributed over the Image plane. A vector field is created to move the points 

towards a better distribution. Points lying close to each other, will push their 

neighbors away, while points far away from each other will pull their neighbors 

closer. Further details on the redistribution process are provided in [3].

iii. The irregular 2D mesh is transformed to the Euclidean domain by interpolation 

with barycentric coordinates, resulting in three arrays containing x-, y- and 

z-values for each point.

iv. New meshes at different levels of resolution are constructed by defining a low-

resolution base mesh which is then further refined. The base mesh consists of 

five vertices: four vertices at the corners of a unit square and one central vertex 

that is placed at the tip of the nose in the output of step (ii). Each side of the 

square serves as an edge and all corners are connected to the central vertex. The 
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refinement is done with loop subdivision [46] by splitting each triangular face of 

the mesh into four smaller triangles by connecting the midpoints of the edges. 

Figure 5 shows meshes at different levels of resolution.

v. Finally, the meshes generated in step (iv) are reformed to represent the original 

facial shape by linear interpolation over the x-, y- and z-values in the output 

arrays of step (iii).

Since all faces in the database are represented on the same topology, the first two steps are 

executed only once on a canonical template mesh. Then, the Euclidean representation (step 

(iii)) is computed for every individual in the dataset and used to reconstruct the original 

shapes in step (v). These steps are executed once, as a preprocessing step before training.

The GML network (Fig. 5) consists of four spiral convolutional layers, comprising 64, 64, 

64, and 128 filters, respectively. Each spiral convolutional layer is followed by a mesh 

sampling step. To further reduce the dimensionality, a fully connected layer is added after 

the last convolutional layer. Finally, a low-rank singular value decomposition (SVD) [47] 

is applied to the output of the fully connected layer. The output of the SVD projection is 

a compact latent space with uncorrelated dimensions, inspired by the orthogonality of the 

spaces constructed by PCA.

3) Part-Based Learning: To implement the GML for facial segments, we adopted 

the first three levels of the modular segmentation from [38], leaving us with seven facial 

segments as shown in Fig. 3b. A 3D face is described as a manifold triangle mesh 

M = (V , ℰ, Φ), where V = vi i = 1
8, 321 is a set of 8,321 vertices defining the mesh geometry, 

and ℰ and Φ are sets of edges and faces which define the mesh topology. Since all meshes 

in the dataset are represented on the same topology, ℰ and Φ are fixed. Each segment c 
is a subset of the full face and is defined as c = V c, ℰc, Φc ∣ V c ⊆ V , ℰc ⊆ ℰ, Φc ⊆ Φ
where ℰc and Φc are fixed and predefined. In the part-based approach, each 3D segment 

is processed separately by the GML. This means that for every facial mesh M, a set of 

embeddings is learned for each segment. Localized GMLs were implemented using 3D 

mesh-padding. More specifically, for the ith individual, the facial data for training a GML 

on segment c, which is noted as Mc
i, consists of the corresponding vertices of the segment c 

padded with the vertices of the average face of all groups Mμ. This is defined as

Mci =
vci, εc, ϕc
vμ, ℰ\εc, Φ\ϕc

Using a part-based approach requires fusion of information across multiple facial segments. 

We use feature-level fusion by concatenating embeddings from all segments into one 

long vector. To maintain consistency, we keep the same number of dimensions for each 

part-based GML. This means, for sex, age, and BMI, a 4-dimensional embedding and for 

GB an 8-dimensional embedding is learned for each segment. There are seven segments in 

the first three levels of the hierarchical segmentation, therefore our final embeddings are 

28-dimensional for sex, age, and BMI, and 56-dimensional for GB. Once embeddings are 
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learned and fused for all properties, their concatenation serves as input to the next step of the 

pipeline which is consists of SVM classification followed by a naive Bayes score fuser.

4) Biometric Score Fusion: In this paper, we improve the GML introduced in 

[3] by proposing a part-based GML to increase the capacity and richness of the low 

dimensional embeddings for each property. However, this means that the dimensionality 

of the concatenated part-based embeddings is seven times higher than for the full face only. 

To replicate the second step of our previously proposed neural pipeline [3] and train a 

fusion-net, the concatenated embeddings must be stacked together to form an even larger 

embedding vector as the input to the multilayer perceptron. This causes the number of 

model parameters of the fusion-net to increase significantly for the part-based approach. 

Unfortunately, we found that those larger models were prone to overfitting and practically 

hard to train with a limited dataset. Moreover, this extension does not only consider 

biometric verification, as in [3], but also evaluates the model in a biometric identification 

scenario. A replication of the pipeline presented in [3] (Suppl. 2), indicates that, as opposed 

to the biometric verification results, the identification results using the fusion-net are slightly 

lower than those for the linear fuser. This is not unexpected since the fusion-net was 

designed and trained specifically to validate or reject a match between two inputs, which 

resonates with the definition of a verification test. Therefore, due to the impractical training 

and low contribution of the fusion-net in previous experiments, we evaluate and compare the 

capacity of the part-based model in this paper with linear SVMs and a naive Bayes score 

fuser instead.

To implement the linear fuser, an SVM classification or regression model is trained that 

takes the stacked output embeddings of the part-based-GMLs of a property as input 

and provides a score value for that property. SVMs are used for both classification and 

regression, as they were the best performing models among multiple tested techniques which 

included linear discriminant analysis, SVM and K-nearest-neighbor for classification, and 

linear regression, SVM and regression trees for regression (data not shown). After training 

an SVM model for each property, the SVM scores are concatenated into one property vector 

which is then compared to a property vector extracted from DNA using a naive Bayes score 

fuser. To train the score fuser, a two-class classification is defined that predicts whether 

a combination of property vectors is a true (genuine) or false (imposter) match. In other 

words, the score fuser predicts whether the properties extracted from face and DNA belong 

to the same individual or not.

5) Training and Evaluation Strategy: In order to evaluate our model, the dataset is 

divided into 10 folds (i) for cross-validation. For each fold, 10% of the data is devoted 

to the test set (testi), and the remaining is used for training the GML, the SVM classifier/

regressor and the naive Bayes score fuser. Hence, the training data is further split into three 

non-overlapping partitions traini
1 (60%), traini

2 (20%), and traini
3 (20%). We perform four 

experiments to evaluate both independent and combined effects of using our proposed GML 

and the part-based approach.

i. Full face PCA: The first experiment consists of three steps: 1) obtaining a 

lower dimensional representation of the 3D faces, 2) training classification 
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and regression models for prediction of the properties, and 3) training a 

score fuser that combines prediction scores for different properties into a final 

matching score. 1) In the first step, the facial meshes are compressed into a 

compact representation by applying PCA to training set traini
1. The result is 

a 20-dimensional embedding space, which corresponds to a captured variance 

of 95.3%. 2) Next, traini
2 is used to train four independent SVMs for the 

four properties, respectively. Classification of sex and GB is done by binary, 

linear SVMs, and linear SVM regressors are used to predict age and BMI. 

Classification scores are calculated from the signed distance between each 

sample to the SVM decision boundary. Regression scores are signed values 

calculated from T- (|predicted-ground truth|), in which T refers to the distance 

threshold of 10 for age and 2 for BMI. 3) Finally, traini
3 is used for training 

a naive Bayes score fuser which fuses scores from all properties into a single 

matching score. Step 2) and 3) remain unchanged for all four experiments, while 

the approach to compress data into a lower dimensional representation (step 1)) 

will differ across experiments.

ii. Part-based PCA: The second experiment represents the related approach 

proposed in [2] and is designed to measure the influence of the part-based 

approach. In this experiment, as extension to experiment 1, a PCA space 

is constructed for each of the seven facial segments. The embeddings for 

the different segments are then concatenated to form a 140-dimensional 

representation. This combined embedding then serves as the input to the SVM 

classifiers and regressors.

iii. Full face GML: The next experiment focuses on compressing 3D facial data 

using the GML and is therefore representative for the related method proposed 

in [3]. For each of the four properties, a GML is trained to construct a latent 

space that is structured according to the property of interest. The constructed 

latent spaces are 4-dimensional for sex, age, and BMI, and 8-dimensional for 

GB. Concatenating the latent spaces together results in a single 20-dimensional 

representation.

iv. Part-based GML: The final experiment combines (ii) and (iii) to obtain a 

compression of the facial shape using both the GML and the part-based learning 

and is therefore representative of the proposed extensions in this work compared 

to [2] and [3]. To this end, 28 independent GMLs are trained, representing 

each of the four properties and each of the seven facial segments. The resulting 

embeddings of all models are concatenated into a 140-dimensional embedding.

All experiments are evaluated for seven independent tests, each with a different set of 

properties included. First, the performance is investigated for each property separately (4 

out 7 tests). Then, age, BMI and GB are gradually added to sex in order build stronger 

multibiometric systems (remaining 3 out of 7 tests).

It is worth mentioning that the impact of (1) the updated spiral definition and (2) the 

orthogonality of the embeddings is not quantitatively evaluated because (1) the improved 
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spiral definition primarily aids the efficiency of the training, thus causing shorter training 

times, but does not significantly change the functionality or performance of the network; and 

(2) we found that the imposed orthogonality of the embeddings had no significant influence 

on the outcome of the network. However, we still believe that this added orthogonality is 

an improvement of the network structure, since it guarantees that the embedding space is 

optimally used by minimizing redundant information.

IV. RESULTS AND DISCUSSION

Matching a known person to an unidentified DNA sample can be done in different ways. 

The most accurate approach is DNA profiling, in which DNA samples from different 

sources (e.g., crime scene and suspect) are compared to each other. However, in some cases, 

the DNA sample of a person of interest is not available. An alternative approach in such 

cases is to predict the phenotype based on the DNA which is called DNA phenotyping. 

Due to many unknowns in the facial effects of both genetic and non-genetic factors 

on facial morphology, predicting faces from DNA has not been successful so far. To 

tackle this problem, we create an intermediate latent space to which primary identifiers, 

which are characteristics that can reliably define a person’s identity, are projected [2], 

[3]. The projected identifiers are then matched against each other in the intermediate 

space. The primary identifiers of this study are facial shape and DNA. The intermediate 

embedding space is the space of properties inferred from both DNA and facial shape, which 

are sex, age, BMI, and GB. Since we match different identifiers (faces and DNA), the 

accuracies are expected to be inferior compared to DNA profiling where DNA is matched 

to DNA. Moreover, it is important to note that the properties that make up the intermediate 

embedding space are known as soft biometrics, meaning that they do not carry sufficient 

information for identification purposes. However, these soft traits can improve biometric 

performance if combined or accompanied by primary identifiers.

The results in this extension are evaluated in both biometric verification and identification 

scenarios. Biometric verification is a one-to-one comparison, which evaluates whether a 

given combination of an embedding and a property is either a match or a no-match, by 

testing the matching score against a threshold. The results are shown on a receiver operator 

characteristic (ROC) curve, which plots the true positive (TP) rate against the false positive 

(FP) rate for decreasing threshold. A large area under the curve (AUC) and low equal error 

rate (EER) indicate better performance. Sensitivity is the probability that a positive example 

is correctly classified as positive, and the specificity indicates the chances of correctly 

denying a negative example. Biometric identification is a one-to-many comparison, which 

retrieves an ordered list of individuals based on the matching scores. The results are shown 

on a cumulative match characteristic (CMC) curve, which plots the probability of observing 

the correct identity in the top k-ranks.

Table I provides the EER and the AUC for verification, and Rank 1%, 10%, and 20% 

performance for identification. The individual curves for all experiments can be found in 

Suppl. 1. In a first instance, we observe a significant impact of analyzing the localized 

facial segments for both PCA and the GML. The comparison between experiments iii 

and iv confirms that the part-based extension improves the metric learner proposed in 
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[3]. Moreover, comparing experiment iv to the best performing approach of [3] (Suppl. 

2b) shows that a part-based GML combined with a linear fuser generates a stronger 

biometric system than a full face GML followed by neural fusion. Additionally, the results 

for experiment iv are generally better than those for experiment ii, which reflects the 

methodology of [2]. This finding is consistent with that of [3] where it was shown that a 

supervised metric learner outperforms linear PCA for the encoding of facial shapes in a 

biometric setting. Fig. 6 (right) illustrates that both the use of a GML and the addition of 

localized facial segments contribute to stronger biometric systems and that the combination 

of the two yields the best results. This can be seen from the ROC curves which are 

pushed up- and leftwards, indicating increased sensitivity and specificity, and the CMC 

curves which show a similar trend. As expected, the overall performance increases by 

combining multiple properties together (Fig. 6, left). Further research should be undertaken 

to investigate the addition of other properties, as they could lead to even stronger biometric 

systems. Possible examples of such properties are iris texture [48], independent genetic 

loci affecting facial shape [2], or texture driven attributes such as hair, skin and eye color. 

Furthermore, the current GML requires topologically normalized 3D mesh data. This is a 

limitation for future studies which can be addressed by exploring alternatives for learning 

from random 3D point clouds instead. However, we do anticipate that larger datasets will be 

necessary to deal with the added data variability and complexity.

V. CONCLUSION

This paper proposed a neural network that can be used for matching 3D facial shapes to 

demographic properties. The network is a metric learner which extracts important facial 

information with regard to the properties of interest. The metric learner is implemented 

using geometric deep learning techniques, deploying spiral convolutions in combination 

with an equidistant mesh sampling. The main contribution of this paper is the use of 

a hierarchical segmentation of the face to train part-based metric learners and combine 

global and local analysis of the face. Using a part-based scheme, localized information 

of the face is forcefully injected into the model by multiple modular encoders. This 

means that localized shape variation, that might be lost in the context of the full face, 

remains available. The proposed part-based model is followed by an SVM classifier and a 

naive Bayes score fuser. The resulting model was evaluated in biometric verification and 

identification scenarios. The results show that both the metric learner and the part-based 

approach contribute to create a stronger biometric system.
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Fig. 1. 
Scatterplot showing the first four GB components for our dataset (gray) and labeled 1KGP 

reference dataset. Populations: EUR = European, EAS = East Asian, AMR = Ad Mixed 

American, SAS = South Asian, AFR = African.
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Fig. 2. 
Pipeline for matching facial shape with DNA-related properties. The GMLs extract low-

dimensional embeddings from facial shape, which are then passed onto SVMs. The scores 

obtained by the SVMs are matched with DNA-related properties using a naive Bayes score 

fuser.
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Fig. 3. 
Correlation matrix for genomic background components. (b) The first three levels of the 

hierarchical segmentation of the face
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Fig. 4. 
Steps for generating the mesh sampling scheme. The red circle indicates a densely sampled 

region as a result of the conformal mapping in step (i). To avoid losing information in these 

regions, the points are redistributed over the image plane in step (ii). The result of step (iii) 

is displayed as an RGB image where different colors represent different dimensions (R = 

x-values, G = y-values, B = z-values).
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Fig. 5. 
GML network architecture consisting of four spiral convolutional layers, each followed by a 

down-sampling step, one fully connected layer and a low-rank singular value decomposition.
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Fig. 6. 
Verification and identification curves for (left) the part-based geometric metric learner (iv) 

for an increasing number of properties injected into the system, and (right) the cumulative 

biometric system for the four different experiments.
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