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Abstract

Reinforcement learning is a powerful framework for modelling the cognitive and neural 

substrates of learning and decision making. Contemporary research in cognitive neuroscience 

and neuroeconomics typically uses value-based reinforcement-learning models, which assume 

that decision-makers choose by comparing learned values for different actions. However, another 

possibility is suggested by a simpler family of models, called policy-gradient reinforcement 
learning. Policy-gradient models learn by optimizing a behavioral policy directly, without the 

intermediate step of value-learning. Here we review recent behavioral and neural findings that 

are more parsimoniously explained by policy-gradient models than by value-based models. 

We conclude that, despite the ubiquity of ‘value’ in reinforcement-learning models of decision 

making, policy-gradient models provide a lightweight and compelling alternative model of operant 

behavior.
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1. Introduction

What is value? In spite of the ubiquity of this term in the field of value-based decision 

making, there are a number of different ways of defining value, and one’s chosen definition 

has important implications for the kinds of inferences that one is likely to draw about the 

cognitive and neural processes that subserve operant behavior [1, 2, 3, 4, 5].

In typical usage, ‘value’ is an explanatory variable that quantifies the degree to which an 

individual prefers (or is willing to work for) one good or outcome over others [6, 7]. So, 

for instance, a child who consistently chooses a chocolate bar over fresh fruit would be said 

to value chocolate more highly. Value—as typically defined—is therefore a latent construct 

that scaffolds choice behavior by providing a common currency for comparison of different 

actions (often loosely identified with the similar economic concept of utility [8, 9]). In 

support of the hypothesis that choice behavior is supported by the computation of value, 
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proponents frequently note (e.g., [10]) that reward-related dopaminergic neural activity is 

consistent with a class of value-learning algorithms from the field of reinforcement learning 
(RL) [11, 12]. This argument implicitly assumes that different theoretical frameworks each 

use the term ‘value’ in the same way. However, there are important differences between 

typical usage of ‘value’ and value as defined in RL.

In RL, value is defined as expected cumulative future reward [13] (see Box 1). As such, an 

action’s value in RL is not merely a relative quantification of preference, as in the typical 

usage of ‘value’; instead, it exactly quantifies the total amount of future reward1 that an 

agent expects to receive if it takes that action. At first glance, this definition of value appears 

consonant with typical usage, since it seems reasonable that one should prefer actions with 

greater expected cumulative future reward. Crucially, however, although in RL differences 

in learned value between two actions do indeed entail differences in choice behavior, the 

converse is not true. That is, we may observe differences in an individual’s preference for 

different actions despite the agent not having learned different values (in the RL sense) 

for those actions. This is because there is an entire separate branch of RL algorithms—

policy-gradient RL—in which agents learn to choose actions by optimizing a behavioral 

policy directly, without ever taking the intermediate step of learning their values [14].

Here we give an introduction to the distinction between value-based and policy-gradient 

RL (also termed ‘indirect’ and ‘direct’ actors, respectively [15]), and review recent work 

suggesting that policy-gradient RL provides a good account of neural and behavioral data. 

We suggest that value (in the RL sense) is not strictly entailed by data from typical 

laboratory tasks, and propose that value need only be invoked as an explanatory latent 

construct for phenomena that cannot be accounted for under simpler algorithms like policy-

gradient RL. This does not exclude the possibility that the brain does compute value in 

some circumstances; however, we would argue that policy-gradient RL models are generally 

favoured by the principle of parsimony, and that ‘value’ should only be added to these 

models to explain data that cannot be explained by policy-gradient models alone.

2. Value-based RL versus policy-gradient RL

Value-based RL is a prominent computational model of the cognitive processes subserving 

simple operant behavior and of the neural substrates of these processes (e.g., [16, 17, 

18, 19]). Briefly, in a prototypical value-based RL model (Figure 1A), the agent learns 

the value of each of a set of discrete actions by trial-and-error, and chooses between 

actions by mapping these estimated values into a behavioral policy using a policy mapping 

function (see Box 1). As such, using a value-based RL model as a model of a subject’s 

behavior implicitly assumes that, at an algorithmic level of description, the subject learns 

action-values and makes choices by comparing them.

According to the principle of parsimony, however, in modelling subjects’ behavior we 

should attempt to find the model that best explains the data while minimizing model 

complexity (i.e., invoking as few latent explanatory constructs as possible) [20]. This raises 

1After accounting for the temporal discounting of future rewards.
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the question: do value-based models provide the simplest RL account of behavior, or can 

simpler models (such as policy-gradient RL; Figure 1B) account for behavior equally well?

In a policy-gradient algorithm, the agent chooses actions according to a parameterized 

policy, observes the outcomes of these actions, and then adjusts the parameters of its policy 

so as to increase the probability of actions associated with more reward and decrease the 

probability of actions associated with less reward (i.e., it adjusts the parameters of its policy 

according to the gradient2 of reward with respect to the parameters of its policy). Rather 

than the indirect algorithm of value-based RL (learning the values of different actions, and 

acting by mapping these values into a policy), policy-gradient RL is a conceptually simpler 

algorithm that directly adjusts the policy without troubling with the intermediate latent 

construct of value. Consequently, policy-gradient RL is also simpler than value-based RL in 

implementation as a cognitive model: in its simplest form, policy-gradient RL requires one 

adjustable parameter per participant (a learning rate for updates to the policy parameters), 

compared to two adjustable parameters for the simplest form of value-based RL (a learning 

rate for value updates, plus a policy mapping parameter such as the softmax inverse 

temperature β)3.

In the simplest choice setting, where a subject repeatedly chooses between a fixed set of 

actions in a single environmental state, policy-gradient RL algorithms can, in principle, 

explain behavior as well as value-based RL algorithms. For instance, the gradient-bandit 

algorithm described by Sutton and Barto [13] (based on the REINFORCE algorithm 

of Williams [23]) uses a softmax policy parameterized by a vector of preferences for 

different actions. These preferences are reminiscent of values, but unlike values they are 

not interpretable as expected discounted future reward; instead, as policy parameters, they 

directly determine choice probabilities. For instance, consider a state with three actions 

associated with reward magnitudes of 1 unit, 9 units, and 10 units, respectively. A gradient-

bandit agent that learns an optimal policy will show a low preference for the second-best 

(9-unit) option relative to the best (10-unit) option, in spite of the fact that the values of 

these two actions are relatively similar. As such, value-based and policy-gradient RL have 

different representations of actions in the environment: whereas value-based algorithms 

maintain a representation the expected future reward of different actions, policy-gradient 

algorithms can be thought of as representing actions in terms of which should be taken 

and which should be avoided. This means that policy-gradient algorithms do not represent 

the reward amounts associated with different actions. In general, however, this sparser 

representation does not prevent a policy-gradient RL agent from learning to behave in a 

manner that maximises its expected future reward.

2There exist other policy-optimization algorithms that update the policy without using a gradient, such as trust-region policy 
optimization [21], but these are beyond the scope of this article.
3In fitting value-based RL models with a softmax choice rule, these two parameters are frequently strongly anticorrelated, leading 
to difficulty in parameter identifiability [22]. We argue that this non-identifiability is a consequence of a deeper conceptual issue: to 
explain choices using a value-based algorithm, we must posit, in addition to value-learning, an additional cognitive operation by which 
learned values are mapped into a behavioral policy. However, for any given choice between different actions, there are infinitely many 
combinations of underlying action-values and policy-mapping functions that will produce identical choice probabilities. This many-to-
one correspondence is the root cause of parameter non-identifiability in value-based RL models, and is avoided in policy-gradient RL.
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In more complex choice settings, the policy optimized by the RL agent need not be 

parameterized by preferences. In environments with a continuous one-dimensional action 

space, for instance, actions might be selected according to a Gaussian policy (e.g., [24]); in 

such a case, the parameters of the agent’s policy would control the mean and variance of the 

probability distribution over actions that is produced by the policy.

3. Behavioral and neural evidence for policy-gradient RL

The greater parsimony of policy-gradient RL is one reason to prefer it over value-based RL 

as a model of simple operant behavior. A second reason is that, in some decision-making 

tasks, policy-gradient methods provide a good account of behavioral and neural data that are 

more difficult to explain with value-based RL models.

3.1. Behavioral evidence for policy-gradient RL

Two behavioral phenomena better explained by policy-gradient RL than value-based RL are 

context-dependent preference learning and continuous-action learning.

Context-dependent preference learning.—When given a choice between two options 

with equivalent reinforcement histories, but where one option was learned in a rich 

environmental context (high reward availability) and the other was learned in a lean context 

(low reward availability), humans and other animals display a marked preference for the 

lean-context option [25, 26, 27, 28]. That is, animals’ learned preferences between different 

options are a function not only of each option’s reinforcement history, but also of the 

environmental context within which each option was experienced. Since action-values in 

value-based RL are defined cardinally as expected cumulative future reward conditional on 

taking an action (i.e., action-values are not contextually modulated by the value of their 

associated environmental state), this phenomenon is difficult to account for using value-

based RL models absent additional post-hoc assumptions regarding the reward function 

(e.g., [28]).

By contrast, context-dependent preference learning emerges straightforwardly from the 

principles of policy-gradient RL. In a gradient-bandit algorithm, for instance, because the 

goal of the agent is to update action-preferences to optimize its policy (rather than to learn 

action-values), learned preferences for each action are solely a function of whether taking 

an action within its environmental state will lead to maximization of future reward. As such, 

a gradient-bandit agent will learn positive preferences for actions that are the best available 

in a state (i.e., actions that should be taken when possible), and learn negative preferences 

for actions that are the worst available in a state (i.e., actions that should be avoided). If, 

after learning, the agent is given a choice between the worst action from a rich state versus 

the best option from a lean state, it will tend to prefer the lean-state action (because of its 

positive learned preference as the best action in its state) over the rich-state action (because 

of its negative learned preference as the worst action in its state), even if the reinforcement 

histories of the two actions are identical.

Continuous-action learning.—In natural environments, behavior frequently involves 

selecting actions from a continuous action space (e.g., controlling a mouse cursor, or driving 
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a car; see [29]). Standard value-based RL models like Q-learning typically perform poorly in 

such environments, because they operate over a tabular representation of actions in which all 

actions are equally (dis)similar to one another. This tabular representation leads to inefficient 

learning in continuous action spaces, since the algorithm cannot generalize between similar 

actions (e.g., steering a car 10 degrees left is similar to steering 11 degrees left, but 

dissimilar from steering 40 degrees right). Although there exist continuous extensions 

of value-based RL involving value-function approximation (e.g., [30]), these approaches 

have historically focused on continuous state spaces rather than continuous action spaces. 

Applying value-function approximation to continuous action spaces is not straightforward, 

because actions need not only be evaluated, but also sampled according to their estimated 

value. This implies estimation of the whole function (we need evaluate only the current 

state, but to select an action we need to evaluate all possible actions), which, even for 

simple choice rules such as those considered here, is computationally intractable for most 

value-function approximators [31].

By contrast, since policy-gradient methods optimise an overall policy, rather than 

learning the values of a number of distinct actions, policy-gradient RL algorithms are 

straightforwardly applicable to continuous action spaces, providing that the functional form 

of the policy can be sampled from (e.g., a two-parameter gamma distribution for reaction 

time choices; [32]). In learning a continuous action space, a policy-gradient RL agent will 

respond to the reinforcement of an action by adjusting the policy such as to increase the 

choice probability not only of the chosen action, but also of similar actions. This leads to 

efficient generalization of learning across continuous action spaces.

In line with this proposal, recent research in the field of motor control has suggested that 

online recalibration processes for motor execution are well-explained by direct updating 

of an implicit behavioral policy [33, 34]. For instance, a recent study by Hadjiosif et al. 

[35] used mirror-reversed visual feedback in a sensorimotor adaptation task, and found 

that subjects’ patterns of post-reversal errors were well explained by a model in which an 

implicit behavioral policy was updated according to a sensory prediction error. As such, 

policy-gradient RL also represents a point of contact between models of simple operant 

behavior and models of higher-order motor control. Indeed, even apparently simple operant 

behaviours such as discrete choice can also be conceptualized as involving continuous 

actions if we consider that the latency and vigour of these choices constitute a continuously-

distributed action space [32].

3.2. Neural evidence for policy-gradient RL

Sensory and action components of midbrain dopamine responses.—Phasic 

bursts from midbrian dopamine (DA) neurons have been proposed as a neural correlate 

of the reward prediction error (RPE) signal central to RL theories [36, 11, 37, 38]. This 

hypothesis regarding the role of dopamine stands for policy-based RL as well. Indeed, the 

difference between value- and policy-based RL frameworks lies not in the dependence on 

an RPE, but in what kind of representation is updated by this teaching signal. Decades 

of evidence in classical conditioning tasks have demonstrated phasic DA responses to 

sensory stimuli that predict the delivery of a reward, consistent with the learning of 
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a‘subjective value’ for the predictive stimulus. However, in instrumental settings, DA 

activity (both phasic and tonic) has also been associated with movement signaling and 

control: phasic responses in dorsal-striatum-projecting DA neurons can trigger locomotion 

[39], and movement initiation and response vigor are bidirectionally modulated by transient 

activity in DA neurons in the substantia nigra pars compacta [40].

Action dependence of DA activity is not restricted to the substantia nigra; ventral tegmental 

area DA responses are attenuated unless the correct movement is initiated in an operant go/

no-go task [41]. More recently, close inspection of DA responses during very early learning 

in a classical conditioning task show that the timing of the initiation of licking accounts for 

phasic DA response to rewards at this stage, before more stereotypical sensory components 

of the RPE signal have emerged [42]. These results suggest that representations of action 

are, at least in these settings, central to the formation and update of reward predictions. 

That is, neural reward predictions in dopaminergic circuits appear to be deeply intertwined 

with neural representations of actions themselves. This stands in contrast with simple value-

based RL models, where the learned values of actions are represented separately and only 

transformed into a policy as needed at the time of choice (top panel, Figure 1).

Neural signatures of policy learning.—The basal ganglia are a central locus in the 

brain for the initiation and control of movement [43]. Accordingly, much of the evidence 

for policy learning in the brain hinges on the interpretation of neural activity in the striatum 

during various instrumental tasks. Representations associated with action-values have been 

reported in striatal regions [19, 44, 45]; however, unambiguous identification of these 

activity patterns as value signals rather than action preferences or other related constructs 

is complicated by the presence of temporal correlations in neural activity recorded from 

different brain regions [46].

Distinguishing value representations from other arbiters of preference, such as policy, suffers 

also from the confound that these quantities are correlated in almost all learning models. 

In fact, specific considerations in task design are necessary to establish the condition in 

which predictions from value- and policy-based accounts of learning can be disambiguated: 

policy-based methods predict updates to all (within-context) action probabilities subsequent 

to the outcome of a single action, leading to a fundamentally relative representation of 

action preference. Indeed, in a task in which information about the outcome of forgone as 

well as chosen options is provided, the BOLD signal in the striatum was consistent with 

a policy-update signal, rather than an action-value update [47]. Neural correlates of context-

dependent effects in choice implicate the medial prefrontal cortex and ventral striatum 

in the relative update of preferences [28], while dopaminergic error-signals related to 

counterfactual outcomes have been identified in human striatum [48]. These findings speak 

to interactions between chosen and non-chosen options that are the hallmark of policy-based 

RL, and suggest such learning recruits the same neural regions and mechanisms that have 

previously been closely identified with value-based learning in the brain.
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4. The intersection of value and policy

In the preceding sections, we have drawn a sharp contrast between value-based and policy-

gradient RL. However, this is a false dichotomy, since an entire class of algorithms—actor-
critic RL—marries value-based and policy-gradient RL. Although we have not discussed 

these algorithms here, they form the basis of much state-of-the-art work in computer 

science applications of reinforcement learning [49, 50, 51], alongside other methods that 

incorporate components of both value-based and policy-gradient RL (e.g., [52, 53]). In 

the domain of behavioral science, actor-critic RL has shown great promise as a model of 

diverse phenomena—including conditioned avoidance, matching behavior in response to 

variable-interval reinforcement, and mood [54, 55, 56]—that are not readily accounted for 

by either value-based or policy-gradient models alone. In neuroscience, similarly, it has been 

suggested that dopaminergic neural activity in the basal ganglia is accounted for well by 

actor-critic models [57, 58]. As such, actor-critic RL represents a potentially fruitful avenue 

for developing a general model of operant behavior that may resolve the tensions between 

value-based and policy-gradient RL that we have reviewed here.

More broadly, our advocating for policy-gradient RL as a minimal model of learning in 

operant settings does not preclude the possibility that more nuanced representations of 

outcomes—and even value as defined in RL—are recruited in various behavioral tasks. To 

be clear, there exist a number of phenomena that appear better explained by value-based and 

model-based RL models than by policy-gradient RL alone. For instance, reward expectations 

are clearly formed and exploited in classical conditioning [59, 60, 61], outcome devaluation 

procedures, suggest that a specific expectation of future outcomes is formed and used to 

guide choice in an adaptive manner [62], and sensory preconditioning studies show that 

conditioning can result in the formation of associations between different stimuli, and not 

only between stimuli and responses or stimuli and rewards [63]. Indeed, theories of model-

based learning and decision making rely on specifying the precise interaction between states, 

values and policies to account for flexible behavior in uncertain and dynamic environments 

[64, 65]. Once again, our argument is not that the brain only ever uses policy-gradient 

RL; rather, we suggest that, in modelling data, policy-gradient models should typically be 

favoured in the interests of parsimony, and that the latent construct of value should only be 

invoked to explain phenomena that are not explicable under this simpler model.

Finally, part of the disjunction between value-based and policy-based RL theories of 

behavior derives from the historical delineation between operant and classical conditioning 

paradigms, with the former assumed to pertain to policies for action, and the latter construed 

as a selective window on value learning. In general, however, the construct of policy is not 

restricted to discrete choice paradigms; indeed, any engagement in a situation that involves 

motivationally relevant outcomes will require some targeted regulation of movement, which 

implies the existence of a policy. More expansive consideration of policies that include 

continuous action spaces [29, 66], the withholding as well as execution of movements 

[67], and the inclusion of ‘internal’ actions such as the control of attentional focus [68, 

69], naturally complicate the boundary between operant and classical conditioning, merging 

perspectives from policy- and value-learning into a more integrated whole.
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Highlights

• Reinforcement learning models can be divided into value-based and policy-

gradient

• Policy-gradient RL gives a more parsimonious account of many operant 

behaviors

• These behaviors can therefore be explained without invoking the notion of 

‘value’
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Box 1:

Glossary of Reinforcement-Learning Terms

Policy: a function, often denoted π, that specifies a probability distribution over actions 

given the agent’s current state. Actions are sampled from the policy at the time of choice. 

A policy is an essential component of all RL algorithms—including value-based RL 

algorithms, which must specify a policy-mapping function (see below) that computes a 

policy given a set of action-values.

Value: expected discounted cumulative future reward. In value-based RL, values can be 

defined both for states (Vπ(s): the expected future reward associated with being in state s 
and choosing actions according to the policy π) and actions (Qπ(s, a): the expected future 

reward associated with taking action a in state s, and choosing actions according to the 

policy π thereafter).

Policy-mapping function: a function that specifies choice probabilities for a set of actions 

given their estimated values, in value-based RL algorithms. Also known as a ‘choice 

rule’. Examples include arg max, ϵ-greedy, and softmax.

• arg max: a policy-mapping function that deterministically selects the action 

with the highest estimated value

• ϵ-greedy: a policy mapping function that selects either the action with the 

highest estimated value (with probability 1 − ϵ) or a random action (with 

probability ϵ)

• softmax: a policy-mapping function that stochastically selects actions with a 

probability that increases based on their estimated value relative to the values 

of alternative options:

π(a) = eβ ⋅ Qπ(s, a)

∑a ∈ Aeβ ⋅ Qπ(s, a)
(1)

The degree of stochasticity in this mapping is controlled by the inverse 

temperature parameter β, such that all actions are equally likely when β = 

0 and the softmax function becomes the arg max function as β → ∞

Policy gradient: For RL algorithms that use a parameterized policy, the policy gradient 

is a vector that indicates how much extra reward the agent expects to receive if it made 

an incremental change to each of the parameters of its policy (technically, the gradient 

is the vector of partial derivatives of the expected reward function with respect to policy 

parameters). The gradient of a policy is the key variable estimated (or approximated) 

by policy-gradient RL algorithms, and is used to adjust the parameters of the policy in 

the direction in which expected reward is expected to increase most steeply. For this 

reason, policy-gradient algorithms must use a policy that is everywhere differentiable 

with respect to its parameters.
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Figure 1: 
Update schematics for example value-based and policy-gradient RL algorithms. Shaded 

diamond nodes denote observable variables, unshaded circular nodes denote latent variables 

that are internal to the RL agent, and arrows denote dependencies. For simplicity, in 

these algorithms we do not show the environmental state, which would be an additional 

(potentially partially) observable variable. A: in a value-based RL algorithm (such as the 

Q-learning model presented here), actions (a, chosen from a discrete set A) are a product 

of the agent’s policy π, which in turn is determined (dotted cyan arrow) by the learned 

action-values (Q). The update rule for action-values (dashed green arrow) depends on the 

action-values and received reward (r) at the previous timestep, and only indirectly on the 

policy. This algorithm has two adjustable parameters: the learning rate α and the softmax 

inverse temperature β. B: a policy-gradient algorithm (such as the gradient-bandit algorithm 

presented here; see [13]) selects actions according to a parameterised policy πθ, and updates 

the parameters θ of this policy directly (dashed magenta arrow; in the gradient-bandit 

algorithm, θ is a vector of action preferences), without the intermediate step of learning 

action-values. In the policy-gradient algorithm, by contrast with the value-based algorithm, 

the size of the update to θ depends more directly on the current policy, since the size of the 

update to each action preference is scaled by the probability of that action under the policy.
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