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Abstract

Bacteriophages, infecting bacterial hosts in every environment on our planet, are a driver of adaptive evolution in bacterial communities.
At the same time, the host range of many bacteriophages—and thus one of the selective pressures acting on complex microbial systems
in nature—remains poorly characterized. Here, we computationally inferred the putative host ranges of 40 cluster P mycobacteriophages,
including members from 6 subclusters (P1–P6). A series of comparative genomic analyses revealed that mycobacteriophages of subcluster
P1 are restricted to the Mycobacterium genus, whereas mycobacteriophages of subclusters P2–P6 are likely also able to infect other
genera, several of which are commonly associated with human disease. Further genomic analysis highlighted that the majority of cluster
P mycobacteriophages harbor a conserved integration-dependent immunity system, hypothesized to be the ancestral state of a genetic switch
that controls the shift between lytic and lysogenic life cycles—a temperate characteristic that impedes their usage in antibacterial applications.
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Introduction
Less than 1% of the virosphere on our planet has been character-

ized to date (Geoghegan and Holmes 2017). An important part of

this virosphere is bacteriophages (i.e. bacteria-infecting viruses),

which are impacting bacterial genome evolution and community

dynamics in every environment (Howard-Varona et al. 2017).
Bacteriophages can establish lytic or lysogenic infections—the

former leading to cell destruction while the latter being

“dormant,” with bacteriophages replicating as prophages within

the host without the production of virions (Howard-Varona et al.

2017). Temperate bacteriophages can switch between lytic and

lysogenic life cycles, for example through the usage of

integration-dependent immunity systems that establish lysogeny

by suppressing lytic growth through an interplay between 3 pro-

teins: integrase (Int), repressor (Rep), and Cro [for an in-depth dis-

cussion on these and other genetic switches, see the commentary

by Broussard and Hatfull (2013)]. In integration-dependent im-

munity systems, the decision on whether lytic or lysogenic

growth will take place depends by and large on the activity of Int

as modulated by targeted proteolysis (Broussard et al. 2013).

Under conditions where integrases are broken down (i.e. in the

presence of a C-terminal ssrA-like protease degradation tag in

Int), integration fails to occur. Instead, the viral form of Rep is
generated and subsequently degraded due to the presence of its
own C-terminal ssrA-like tag. The lytic protein Cro is freely
expressed and stops repressor function (Hochschild et al. 1986).
Conversely, when integrases escape proteolysis due to either de-
creased levels of proteases (such as ClpXP) or high multiplicity of
infection (i.e. a high ratio of bacteriophages to infection targets),
integration of bacteriophage genetic material will occur. This
leads to the expression of an active (truncated) form of Rep that
lacks the ssrA-like tag, causing a downregulation of Cro expres-
sion, which ultimately leads to lysogenic establishment and pro-
phage induction. Thereby, the integration into the host genome is
mediated by recombination between the bacteriophage attach-
ment site (attP) and the bacterial attachment site (attB) in the
host genome. Attachment sites are recognized by Int—an integral
part of the attP–Int cassette required for integrase-mediated site-
specific recombination (Singh et al. 2013). Thereby, Int is either a
tyrosine recombinase (which requires additional host cofactors
such as the one present in Mycobacterium smegmatis; Pedulla et al.
1996; Pe~na et al. 1999; Lewis and Hatfull 2003; Chen et al. 2019) or
a serine recombinase (which functions without any cofactors but
recognizes shorter attP sequences than the tyrosine recombinase;
Groth and Calos 2004).
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Mycobacteriophages are a group of both lytic and temperate

bacteriophages that infect mycobacterial hosts—including the

causative agents for several human diseases such as tuberculosis

(M. tuberculosis) or leprosy (M. leprae), separated into 31 clusters

(A–Z and AA–AE) based on their nucleotide similarity and geno-

mic architecture (Pope et al. 2011). Out of these, temperate cluster

P bacteriophages are of particular interest to the scientific com-

munity to, for example study the evolution of genetic switches as

several members of this cluster have been shown to harbor an

unusual switch in which the bacteriophage attachment site is lo-

cated within the repressor gene (e.g. Broussard et al. 2013; Doyle

et al. 2017).
Interestingly, many mycobacteriophages have the ability to

broaden their host range to infect either different strains or

completely new mycobacterial species (Jacobs-Sera et al. 2012). In

contrast to lytic bacteriophages, which are frequently exploited

as antimicrobial agents (Sharma et al. 2017), the life cycle of tem-

perate bacteriophages often impedes their usage, particularly

with regard to bacteriophage therapy, due to the risk of transfer-

ring virulence factors through genomic pathogenicity islands

(Malachowa and Deleo 2010; Xia and Wolz 2014). Thus, host

ranges of many temperate bacteriophages remain poorly charac-

terized, despite their important impact on bacterial evolution. To

advance our knowledge on the topic, and as part of a course-

based undergraduate research experience at Arizona State

University, we analyzed the genomes and computationally in-

ferred the host ranges of 40 cluster P mycobacteriophages.

Materials and methods
Comparative genomic analyses
A multiple sequence alignment of 40 cluster P mycobacterio-

phages previously isolated in M. smegmatis mc2155

(Supplementary Table 1) was generated via MAFFT v.7.407 (Katoh

and Standley 2013) and subsequently used to construct a

neighbor-joining tree in MEGA X (Kumar et al. 2018) using a boot-

strap test of phylogeny with 10,000 replicates. Additional whole-

genome and gene-specific trees were generated, including 16

bacteriophages from clusters G1, I1, and N for which integration-

dependent immunity systems had previously been identified (ei-

ther experimentally or through the computational identification

of an attP site within the repressor gene; Supplementary Table 2).

Trees were visualized using FigTree v.1.4.4 (http://tree.bio.ed.ac.

uk/software/figtree/; last accessed 2022 April 24) and the

Interactive Tree Of Life (Letunic and Bork 2019). Sequence relat-

edness was determined using pairwise average nucleotide iden-

tity scores calculated using the DNA Master “Genome

Comparison” tool v.5.23.6 and plotted using the ggplot2 function

(Wickham 2016) in R v.4.0.2. All software were executed using

default settings.

Identification of attP and attB sites
Following Pham et al. (2007), NCBI BLASTn (Altschul et al. 1990)

was used to compare the 300-bp region surrounding the 50-end of

the immunity repressor gene in each cluster P mycobacterio-

phage (Supplementary Table 1) against the genomes of 14 puta-

tive mycobacterial host species (Supplementary Table 3) to

determine the plausibility of attP/attB sites. In addition, Tandem

Repeats Finder v.4.09 (Benson 1999) was used to search for inte-

grase binding sites near the attP common core.

Host prediction
Following the best practices suggested by Versoza and Pfeifer

(2022), both exploratory and confirmatory methods were used to

computationally predict host ranges for 40 closely related cluster

P mycobacteriophages (Supplementary Table 1). First, the explor-

atory tool PHERI v.0.2 (Balá�z et al. 2020) was used to predict bacte-

rial host genera. Among the currently available exploratory host

range prediction tools, PHERI was the most user-friendly and

well-documented, making it ideally suited for course-based

Fig. 1. Neighbor-joining trees. Neighbor-joining trees generated in
MAFFT (Katoh and Standley 2013) using the multiple-sequence
alignment of (a) 40 cluster P mycobacteriophages (Supplementary Table
1) and (b) 16 cluster G1, I1, and N bacteriophages with a previously
identified integration-dependent immunity system (Supplementary
Table 2), with 10,000 bootstrap replicates. c) Gene-specific tree based on
the immunity repressor sequences of the bacteriophages included in (b).
Colors highlight membership in subclusters P1–P6.
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undergraduate research experiences. Next, WIsH v.1.1 (Galiez

et al. 2017)—a bacterial host range predictor that compares virus

and host sequence composition—was used to estimate the likeli-

hood of these 40 cluster P bacteriophages to infect 14 putative

mycobacterial host species with particular relevance to human

health and disease (Supplementary Table 3). WIsH was selected

as the representative for confirmatory host range prediction tools

as it was an easily applicable alternative to alignment-based tools

which frequently underpredict phage–host interactions

(Zielezinski et al. 2021). Lastly, following Crane et al. (2021),

PHASTER (Arndt et al. 2016) was used to search the genome of

these putative host species for prophages to determine whether

cluster P mycobacteriophages might be able to integrate into the

host.

Results and discussion
Comparative genomic analyses between 40 cluster P mycobacter-

iophages (32 subcluster P1, 1 subcluster P2, 1 subcluster P3, 2 sub-

cluster P4, 2 subcluster P5, and 1 subcluster P6; Supplementary

Table 1) demonstrated a close relatedness at the sequence

level (Fig. 1a), with cluster assignments supported by pairwise

average nucleotide identities between the bacteriophages

(Supplementary Fig. 1). With the exception of Tortellini (P2),

Xavia (P3), and ThulaThula (P5), cluster P bacteriophage genomes

harbor a conserved integration-dependent immunity system,

comprised of an immunity repressor flanked by a tyrosine inte-

grase, an excise gene, and an antirepressor (Supplementary Fig.

2) that governs the transition from the lytic to lysogenic state by
binding and inactivating the lysogenic repressor (Lemire et al.

2011; Kim and Ryu 2013). It has previously been hypothesized

that conserved integration-dependent immunity systems form

the ancestral state of more complex genetic switches (Broussard

and Hatfull 2013), such as those present in k bacteriophages

(Oppenheim et al. 2005). Interestingly, a neighbor-joining tree

generated from whole-genome sequences of 16 cluster G1, I1,
and N bacteriophages containing an integration-dependent im-

munity system (Supplementary Table 2) places cluster P4–P6 bac-

teriophages as sister taxa to the G1, I1, and N subclusters

(Fig. 1b)—a tree topology supported by the gene-specific tree

based on the immunity repressor sequences (Fig. 1c).
To explore the impact of cluster P mycobacteriophages on bac-

terial communities, their host ranges were computationally pre-

dicted using a combination of exploratory and confirmatory

tools, together with 14 putative mycobacterial host species rele-
vant to human health and disease. Using the exploratory

Table 1. Exploratory host range prediction.

Phage Subcluster Mycobacterium Gordonia Clostridioides Corynebacterium Rhizobium Clostridium

Arib1 P1 �

Atcoo P1 �

Bartholomew P1 �

Bogie P1 �

Brusacoram P1 �

Bunnies P1 �

CactusJack P1 �

Camster P1 �

Donovan P1 � �

FirstPlacePfu P1 �

Fishburne P1 �

Glaske P1 �

GreaseLightnin P1 �

HUHilltop P1 �

Jebeks P1 �

Jung P1 �

KilKor P1 �

Ksquared P1 �

Majeke P1 �

Malithi P1 � �

Mangethe P1 �

Megiddo P1 �

Necropolis P1 �

Phalm P1 �

Phegasus P1 �

Phineas P1 �

Shipwreck P1 �

StevieRay P1 �

StressBall P1 �

Techage P1 �

Thespis P1 �

Willsammy P1 �

Zilizebeth P1 �

Tortellini P2 � � � �

Xavia P3 � � � �

BigNuz P4 � �

Nazo P4 � �

Phayonce P5 � �

ThulaThula P5 � � �

Purky P6 � �

Putative host genera of the 40 cluster P bacteriophages included in this study (Supplementary Table 1) as predicted by PHERI (Balá�z et al. 2020).
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method, all but 1 P1 bacteriophages (Donovan) appear restricted
to the Mycobacterium genus (Table 1). In contrast, bacteriophages
of subclusters P2–P6 are likely also able to infect the nonpatho-
genic microbes Gordonia and Rhizobium as well as hosts of the gen-
era Clostridiodes, Clostridium, and Corynebacterium, frequently
associated with human disease, including diphtheria
(Corynebacterium diphtheriae) as well as several hospital-acquired
infections (see reviews by Bernard 2012 and Mangutov et al. 2021).
As the ability to bind to new receptors is a key step in host-range
evolution (Meyer et al. 2012), mutations within tail protein genes
might explain the predicted expanded host range of subclusters
P2–P6. At the species level, confirmatory results (Fig. 2) suggest
that, in addition to M. smegmatis mc2155 used to isolate the
bacteriophages, subcluster P1 mycobacteriophages are likely able
to infect Mycobacterium fortuitum—which can cause infections
in the skin, lymph nodes, and joints of immunocompromised

individuals (Sethi et al. 2014), as well as Mycobacterium gilvum, and

Mycobacterium intracellulare—which can cause pulmonary infec-
tions and lymphadenitis in immunocompromised individuals

(Han et al. 2005). In contrast, bacteriophages of subclusters P2–P6

displayed low likelihoods of infection for all tested hosts.
To investigate the temperate nature of cluster P mycobacterio-

phages, prophage sequences were computationally predicted

within the putative host genomes. Three putative hosts

(Mycobacterium abscessus, Mycobacterium marinum, and M. smegma-
tis) contain intact prophages—however, none of them correspond

to prophages that stem from the integration of cluster P myco-

bacteriophages. In addition, incomplete prophages from the inte-

gration of cluster P mycobacteriophages were detected in both

M. abscessus and M. marinum (Fig. 3)—2 opportunistic pathogens

known to inflict pulmonary (Winthrop and Roy 2020) and cutane-
ous (Aubry et al. 2000) infections in humans—indicating that

these hosts are at risk of incorporating virulence factors from

these bacteriophages. Interestingly, the 2 partial prophages

within M. abscessus and M. marinum were predicted to stem from

the integration of 2 (out of only 3) cluster P bacteriophages that

lack an integration-dependent immunity system (ThulaThula
and Xavia, respectively).

For temperate bacteriophages, the risk of transfer of virulence

factors depends (at least in part) on the presence of an attP region

in the bacteriophage as well as a corresponding attB attachment

site in the host genome (Pham et al. 2007). Putative attP sites in

cluster P bacteriophages are similar in length to those previously

reported in other mycobacteriophages (Pham et al. 2007; Morris
et al. 2008) and the lack of arm-type integrase binding sites flank-

ing the attP common core—known to be present in

nonintegration-dependent immunity system bacteriophages

such as k (Landy 1989) and L5 (Pe~na et al. 1997) but notably absent

in integration-dependent immunity system bacteriophages

(Broussard et al. 2013)—is further evidence of a functional
integration-dependent immunity system in these bacteriophages.

To identify putative attachment sites, attP sites were compared

against the genomes of 14 mycobacteria. Out of the 14 mycobac-

terium species tested, only 3 (M. smegmatis, Mycobacterium chelo-

nae, and Mycobacterium leprae) contained a homologous attB

bacterial attachment site, overlapping with the 30-end of a
tRNAThr gene (Supplementary Table 4), indicating that these

hosts are at risk of incorporating virulence factors from bacterio-

phages that utilize tyrosine integrases in their integration-

dependent immunity systems. Yet, despite the presence of an

attB attachment site, 2 out of these 3 species (M. chelonae and

M. leprae) were not predicted as potential hosts for any cluster P
bacteriophage. However, it is important to note that WIsH evalu-

ates host likelihood on the basis of oligonucleotide frequency

similarity between the virus and host genomes. Consequently,

more sophisticated approaches that rely on several distinct geno-

mic features to predict the success of phage infection (such as ad-

vanced machine learning-based methods) may be able to provide
a more complete picture of the putative host ranges.

Taken together, our computational predictions indicate that
cluster P bacteriophages harboring a conserved integration-

dependent immunity system likely exhibit similar host ranges.

An important future endeavor will be the experimental validation

of the presented computational results by phenotypic studies in

order to lend further credence to the hypothesis that the type of

genetic switch used to induce lysogeny plays an important role in
host range evolution.

Fig. 2. Confirmatory host range prediction. Putative bacteriophage–host
interactions as predicted by WIsH (Galiez et al. 2017), using 40 cluster P
mycobacteriophages (Supplementary Table 1), together with 14 potential
bacterial hosts and Escherichia coli as a negative control (Supplementary
Table 2). The higher the reported value, the more likely a bacteriophage
is able to infect a putative host.
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Data availability
Genomic data for all 40 cluster P mycobacteriophages, 16 cluster

G1, I1, and N bacteriophages with a previously identified

integration-dependent immunity system, and 14 putative bacte-

rial host species can be downloaded from the NCBI Sequence

Read Archive using the accession numbers provided in

Supplementary Tables 1–3, respectively. Supplementary Table 4

lists the mycobacteriophage integration systems and putative

integration sites of cluster P mycobacteriophages in M. chelonae,

M. leprae, and M. smegmatis. Supplementary Fig. 1 displays the

pairwise average nucleotide identities of the 40 cluster P bacterio-

phages. Supplementary Fig. 2 displays the Phamerator map of

the regions encoding the tyrosine integrase, immunity repressor,

and excise genes in cluster P mycobacteriophages.
Supplemental material is available at G3 online.
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