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Abstract

The diversity and mosaic architecture of phage genomes present challenges for whole-genome phylogenies and comparative genomics.
There are no universally conserved core genes,�70% of phage genes are of unknown function, and phage genomes are replete with small
(<500 bp) open reading frames. Assembling sequence-related genes into “phamilies” (“phams”) based on amino acid sequence similarity
simplifies comparative phage genomics and facilitates representations of phage genome mosaicism. With the rapid and substantial
increase in the numbers of sequenced phage genomes, computationally efficient pham assembly is needed, together with strategies for in-
cluding newly sequenced phage genomes. Here, we describe the Python package PhaMMseqs, which uses MMseqs2 for pham assembly,
and we evaluate the key parameters for optimal pham assembly of sequence- and functionally related proteins. PhaMMseqs runs efficiently
with only modest hardware requirements and integrates with the pdm_utils package for simple genome entry and export of datasets for
evolutionary analyses and phage genome map construction.
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Introduction
Bacteriophages (phages) are an enormous, genetically diverse

population whose evolution likely spans billions of years

(Hendrix et al. 1999; Hendrix 2002). A hallmark genomic feature is

their pervasive mosaicism with related genes situated in different

genomic contexts in otherwise unrelated phages (Pedulla et al.

2003). This confounds simple phylogenetic representations, and

phage diversity is sufficiently great that there are no universally

conserved “core” genes (Hatfull and Hendrix 2011); phages do not

have the equivalent of bacterial 16S rRNA genes. Because hori-

zontal exchange events giving rise to genomic mosaicism are

prevalent, they are key factors in phage evolution together with

ongoing variation at the nucleotide sequence level (Lima-Mendez

et al. 2008). Comparison of nucleotide divergence and rates of

gene exchange reveals evolutionary patterns that differ with dif-

ferent hosts and phage lifestyles (Mavrich and Hatfull 2017).

However, this requires an assortment of phage genes into related

groups, or “phamilies.”
Assortment of phage genes into phamilies (phams) was ini-

tially described using Phamerator, which assembled phams (us-

ing amino acid sequences) with specific BLASTP and CLUSTALW

parameters (Cresawn et al. 2011). The extant target dataset was

modest—80 mycobacteriophage genomes encompassing �800

genes—and was computationally manageable. The output of the

pham dataset was useful for many downstream analyses and

representations, including comparative genome maps using the

Phamerator display functions (Cresawn et al. 2011). As the

number of phage genomes rapidly increased, the computational
demands exceeded the capacity of BLASTP and CLUSTALW, and
a revised Pham building system was developed using kClust
and associated programs (Pope et al. 2015). However, kClust
(Hauser et al. 2013) was soon deprecated and replaced by the
more powerful MMseqs2 package (Steinegger and Soding 2017).

Here, we describe PhaMMseqs, a new pipeline for Pham as-
sembly, using MMseqs2. Phage gene sequences are first trans-
lated into amino acid sequences, and PhaMMseqs uses MMseqs2
to first derive sequence profiles, followed by profile-sequence
clustering to merge phams containing more remote homologs;
Clustal Omega (Sievers et al. 2011) is used to construct pham
multiple sequence alignments (MSAs). PhaMMseqs can readily
assemble Phams from large genome datasets (>500,000 genes) on
modest hardware and can be used in combination with database
management utilities like pdm_utils (Mavrich et al. 2021) for
efficiently updating phams as the genome annotation landscape
changes.

Materials and methods
PhaMMseqs programming
PhaMMseqs was written in Python, is compatible with Python
versions 3.7 and above, and uses Biopython (Cock et al. 2009) to
parse GenBank flat files and MMseqs2 (Steinegger and Soding
2017) for pham assembly. Clustal Omega (Sievers et al. 2011) is
used optionally to compute MSAs. The PhaMMSeqs package is
available at PyPI (https://pypi.org/project/phammseqs/) or
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GitHub (https://github.com/chg60/PhaMMseqs.git). MMseqs2 and
Clustal Omega must be installed separately, using a package
manager, such as Anaconda or compiled manually; PhaMMseqs
installation and usage instructions are available in the GitHub re-
pository. PhaMMseqs has also been incorporated into the pdm_u-
tils package (Mavrich et al. 2021) for creating and maintaining
phage genome databases, replacing its “phamerate” pipeline (i.e.
the prior system for pham assembly).

Computing global alignments
Phage gene sequences were translated into amino acid sequences
using a standard genetic code (11: Bacterial, Archaeal and Plant
Plastid) and Needleman–Wunsch global amino acid sequence
alignments were computed using the PARASAIL library (Daily
2016). Alignment scores were calculated between sequence pairs
using the BLOSUM62 substitution matrix (Henikoff and Henikoff
1992) with gap-opening and extension penalties of �11 and �1,
respectively. Alignment statistics (identity, similarity, gap per-
centage, and length-normalized bitscore) for each sequence pair
were cached to avoid recomputing alignments.

Identifying false-positive pham members
A gene present within a pham that should not be (i.e. a nonhomo-
log) is considered a false positive. To identify false positives, pair-
wise global alignments were first computed within each pham. A
sequence was counted as a false positive if either of 2 conditions
were met: (1) the gene’s length is less than 60% of the length of
the longest pham member or (2) the gene’s best pairwise align-
ment within the pham is not significantly better than an align-
ment between unrelated gene pairs (length-normalized score
threshold: 0.5 half-bits per column). The former identifies any
gene whose homology is evidently nonglobal in scope, while the
latter finds genes with dubious homology to the rest of the pham
(see the Methods in Supplementary Materials and Supplementary
Fig. 1 for the establishment of these thresholds).

Identifying false-negative pham members
A gene expected to be present in a pham but which is absent is
considered a false negative. To identify false-negative pham
members, pairwise global alignments were computed within
each pham, and the gene with the highest average similarity to
all other genes was selected as the pham representative. BLASTP
was used to identify genes in the complete dataset that are likely
globally homologous to the pham representative (E-value 0.001,
query coverage at least 60%, query length no less than 60% of
subject length). Any such genes identified by BLASTP but not pre-
sent in the pham were counted as false negatives.

Determining and validating pham consensus
functions
For every pham, we identified the set of unique functional annota-
tions ascribed to members of the pham and counted how many
times each was used. Counts were manually adjusted to account
for labeling inconsistencies (e.g. “terminase, large subunit,” “TerL,”
“large terminase” all refer to the same function) and typographic
errors within individual genome annotations. The most common
function in each pham was used as its consensus function. For
validation of consensus functions, pham MSAs were submitted to
the Max Planck Institute’s HHpred server (https://toolkit.tuebin
gen.mpg.de/tools/hhpred), with the following 4 structural/domain
databases selected for search: PDB_mmCIF70, PDB_mmCIF30,
UniProt-SwissProt-viral70, and NCBI_ConservedDomains(CD). Top

hits were manually evaluated for agreement with the annotated
functions.

Results
PhaMMseqs workflow
Understanding bacteriophage evolution requires comparative
analysis of their gene organization and gene content, together
with insights into gene function. The genomes are characteristi-
cally mosaic and the relationships span considerable timespans,
with many genes of common origins no longer sharing recogniz-
able nucleotide sequence similarity. A central component of this
analysis is thus to arrange phage genes into groups (phamilies or
phams) based on shared amino acid sequences, and the primary
function of PhaMMseqs is to perform pham assembly, which it
does by interfacing with the sequence–sequence and profile–se-
quence clustering pipelines of MMseqs2. The program workflow
(Fig. 1a) proceeds as follows. Protein-coding sequences from one
or more input files in FASTA or GenBank flat file format are col-
lected and clustered with MMseqs2 according to user-specified or
default parameters. Optionally, gene phamilies containing re-
mote homologs can then be merged by a profile–sequence clus-
tering step. Each resultant pham is written to an FASTA multiple
sequence file, and pham MSAs can be optionally computed using
a local installation of Clustal Omega. If each input file contains
the genes from a single genome, 3 pangenome-style analyses can
also be performed (Fig. 1a). The first scores the degree of conser-
vation of each pham among input genomes, labeling each pham
as containing “core,” “soft-core,” “shell,” or “cloud” genes accord-
ing to the percentage of genomes (>99%, >95%, >15%, or >0%, re-
spectively) encoding a gene assorted into that pham. The second
follows Roary (Page et al. 2015) and creates a comma-separated
value file with pham-wise summary statistics and a presence–
absence matrix indicating which (if any) genes from each genome
are assorted into each pham. The last creates a tab-separated
value file mapping each genome to the phams its genes have
been assorted into and is useful for other tools that perform ge-
nome clustering based on shared phams.

MMseqs2 parameter selection and value
optimization
The performance of MMseqs2 can be carefully tuned by specify-
ing values for any of dozens of parameters, some of which have
more significant and/or intuitive impacts on clustering than
others. We focused on 6 of these parameters that principally de-
fine how MMseqs2 finds homologous gene pairs and how it inter-
prets the homology network into gene clusters: minimum
sequence identity (–min-seq-id), coverage (-c), E-value (-e), sensi-
tivity (-s; used to allow nonidentical k-mer matches to seed
alignments), the number of cluster steps (–cluster-steps/–num-
iterations), and the clustering algorithm itself (–cluster-mode).
For each of these parameters, the value that PhaMMseqs uses by
default was carefully optimized to maximize the sensitivity in
grouping remote global homologs while avoiding domain-
chaining (Joseph and Durand 2009) and other false positives.
Domain chaining is the act of grouping globally dissimilar pro-
teins based on local homology (i.e. a shared domain) and reduces
the effectiveness of phams as tools for exploring gene function or
genome mosaicism. Our training dataset comprised 89,208 non-
redundant amino-acid sequences (181,625 including identical
sequences found in multiple genomes) derived from the annota-
tions of 1,885 phages infecting 13 genera of Actinobacteria
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(Supplementary Table 1), retrieved from PhagesDB (Russell and
Hatfull 2017).

Parameter training was done in 2 stages by a pipeline we cre-
ated to run PhaMMseqs across ranges of values for each parame-
ter and evaluate the resultant phams for likely false positives
and false negatives (Fig. 1b). In the first stage (Table 1), we evalu-
ated 2,025 parameter sets with the goal of building inclusive yet
highly specific (i.e. avoiding non homologous members) phams
that could be used as high-quality sequence profiles for more re-
mote homology detection. For this stage, any parameter sets pro-
ducing at least 1 pham with false positives were excluded, thus
reducing noise that compromises the ability of a profile to find
true remote homologs and increases the likelihood of accumulat-
ing false positives during profile-based clustering. In the second
stage (Table 2), we evaluated 1,890 profile-sequence clustering
parameter sets using profiles built from the best first-stage
parameters, and with the goals of maximizing sensitivity (i.e.
maximal inclusion of homologs) and maintaining a low

phamsprofile-sequence
clustering

FASTA
file(s)

Genbank
flatfile(s)
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Fig. 1. Pipelines for pham assembly and evaluation. a) Input FASTA or GenBank files are parsed for amino-acid sequences, which are clustered using
sequence–sequence alignments by PhaMMseqs; these are then further clustered using profile–sequence alignments. The command line argument
“–skip-hmm” allows users to bypass profile–sequence clustering if desired. The resulting phams are written to FASTA multiple sequence files, and
pham MSAs optionally computed with Clustal Omega if using the “–align-phams” argument. If each input file contains genes from a single genome, the
“–pangenome” argument will produce Roary-inspired pham/genome summary files. The programmatic interface allows scripts or larger suites of tools
(including the pdm_utils package for maintaining Phamerator databases) to directly interact with the pham assembly workflow without producing any
unwanted output files. PhaMMseqs’s output files can be used for numerous downstream analyses. b) PhaMMseqs training workflow. Initial setup steps
were implemented to avoid computationally expensive training tasks, and then several thousand sequence–sequence parameter sets were run to
identify those with greatest sensitivity and minimal false positives. These parameters were used to build pham profiles, which were used with
thousands of profile–sequence parameter sets to identify those assembling phams with greatest sensitivity and a false positive rate below 0.5%. The
most sensitive parameter sets in both stages were selected as the default MMseqs2 parameters used by PhaMMseqs.

Table 1. Parameters used in sequence–sequence clustering grid
search.

Parameter name Values Brief description

—cluster-mode 0, 1, 2 Clustering algorithm to usea

—cluster-steps 1, 2, 3 Number of cascaded
clustering steps to dob

�s 1, 4, 7 Sensitivityc

—min-seq-id 0.5, 0.45, 0.4,
0.35, 0.3

Percent identity threshold

�c 0.9, 0.85, 0.8,
0.75, 0.7

Coverage threshold

�e 1e�10, 1e�05, 1e�3 E-value threshold

a Different algorithms are available to interpret the graph of pairwise edges
into clusters. 0¼ set cover, 1¼ single-linkage (like blastclust), 2¼ greedy-
incremental (like CD-HIT). Details are in MMseqs2 manual.

b Performs clustering with strict parameters, then incrementally merges
clusters by relaxing parameters down to the selected ones in these many
steps.

c Higher sensitivity values allow less similar k-mers to count as matches
that can seed an alignment.
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percentage of genes identified as false positives in their respec-
tive phams.

Sequence–sequence parameter optimization
Of the 2,025 possible combinations of values given in Table 1,
only 1,099 produced phams containing no likely false positives.
Of these, we selected the parameter set with the fewest false neg-
atives as the default for sequence–sequence clustering. Analysis
of these false-positive-free parameter sets was helpful for under-
standing how MMseqs2 performs with these datasets. The choice
of the MMseqs2 parameter described as “sensitivity” strongly
influences runtime (Fig. 2a), with runtime increasing superli-
nearly with sensitivity. Increasing MMseqs2 sensitivity also tends
to reduce the number of phams (Fig. 2b) and false negatives
(Fig. 2c), both indications that homologous sequences are being
joined into phamilies. Percent identity and coverage thresholds

Table 2. Parameters used in profile–sequence clustering grid
search.

Parameter name Values Brief description

—cluster-mode 0, 1, 2 Clustering algorithm to usea

—num-iterations 1, 2, 3 Number of iterations to dob

�s 1, 4, 7 Sensitivityc

—min-seq-id 0.35, 0.3, 0.25,
0.2, 0.15

Percent identity threshold

�c/—cov 0.85, 0.8, 0.75, 0.7,
0.65, 0.6, 0.55

Coverage threshold

�e/—e-profile 1e�05, 1e�3 E-value threshold

a Different algorithms are available to interpret the graph of pairwise edges
into clusters. 0¼ set cover, 1¼ single-linkage (like blastclust), 2¼ greedy-
incremental (like CD-HIT). Details are in MMseqs2 manual.

b Performs this many PSI-BLAST-like iterations of finding homologs and
updating profiles before clustering.

c Higher sensitivity values allow less similar k-mers to count as matches
that can seed an alignment.
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Fig. 2. The impact of sensitivity, identity, and coverage on sequence–sequence clustering with MMseqs2. The runtime (in seconds), number of phams,
and number of false negatives were plotted for each value of sensitivity (a–c), percent identity (d–f), and percent coverage (g–i) tested (see Materials and
Methods for identification of false negatives). Sensitivity (-s) is used by MMseqs2 to scale the score threshold required to treat similar k-mers as match-
states that can seed an alignment; higher values reduce the score threshold, theoretically resulting in the alignment and evaluation of less similar
protein pairs. Percent identity (–min-seq-id) defines how similar a protein must be to a cluster representative in order to join that cluster, with lower
values allowing less similar proteins to join a cluster. Percent coverage (-c) defines the proportion of query/target sequences that must be covered by an
alignment in order for the proteins to cluster together. Parameter sets that produced any phams with false positives were omitted from this analysis.
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have little impact on runtime (Fig. 2, d and g), but are important
determinants of MMseqs2 sensitivity, with lower values for both
parameters yielding significantly reduced number of false nega-
tives, and likewise reduced number of phams (Fig. 2, e, f and h, i).
Intuitively, these effects are likely to be additive, such that reducing
percent identity and coverage thresholds simultaneously results in
fewer phams and false negatives than lowering either threshold
alone but may also result in introduction of false positives.

Within the tested ranges of values, the E-value threshold and
number of cluster steps appear not to significantly alter runtime,
number of phams, or the number of false negatives (Fig. 3, a–f).
The choice of cluster mode (clustering algorithm) has minimal
impact on runtime (Fig. 3g) but is clearly important, because
the majority (80%) of parameter sets using cluster mode 1

(single-linkage clustering) have at least 1 false-positive member,
limiting its utility to much higher percent identity and coverage
thresholds than can be used with the other 2 cluster modes.
Cluster mode 2, which is similar to the CD-HIT algorithm (Li and
Godzik 2006), cluster genes in descending order of length, and
appears to be the least sensitive, consistently producing more
phams with more false negatives. Of the available cluster modes,
we find that cluster mode 0 (“greedy incremental”; clusters genes
in descending order of connectivity to other genes) makes the
best tradeoff between sensitivity and false positivity.

Profile–sequence parameter optimization
Of the 1,890 possible combinations of values given in Table 2,
only 902 assembled phams with an overall false positive rate
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Fig. 3. The impact of E-value, cluster steps, and cluster mode on sequence–sequence clustering with MMseqs2. The runtime (in seconds), number of
phams, and number of false negatives were plotted for each value of E-value (a–c), cluster steps (d–f), and cluster mode (g–i) tested (see Materials and
Methods for identification of false negatives). E-value (-e) indicates the statistical significance of a particular alignment, accounting for the size and
composition of both the database and the aligned proteins; smaller values are more significant. Cluster steps determine how many relaxing iterations
MMseqs2 should perform before clustering at the indicated stringency. Cluster mode (values are not ordinal) selects which algorithm MMseqs2 uses to
interpret the homology network into clusters: 0¼ set cover, 1¼ single-linkage, 2¼ greedy-incremental (see MMseqs2 manual for details). Parameter sets
that produced any phams with false positives were omitted from this analysis.
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below an arbitrarily chosen 0.5%. Analysis of these parameter
sets largely recapitulates the trends observed during sequence–
sequence clustering. Increasing values of sensitivity resulted in
significantly increased runtimes, modest decreases in the num-
ber of phams and false negatives, and a slight increase in the
number of false positives observed (Fig. 4, a–d). Percent identity
has no significant impact on runtime or the incidence of false
positives but is positively correlated with the number of phams
and false negatives (Fig. 4, e–h). Coverage likewise has no discern-
able impact on overall runtime but plays a very strong role in the
number of observed phams, false negatives, and false positives
(Fig. 4, i–l).

As was expected but not observed during sequence–sequence
clustering, the number of cluster steps did significantly impact
runtime in profile–sequence clustering, with more steps resulting
in longer runtimes (Fig. 5a). This is likely due to the cost of having

to update profiles with each added step. No other significant

effects were observed related to the number of cluster steps or

the choice of E-value threshold (Fig. 5, b–h). As was observed in

sequence–sequence clustering, the single linkage algorithm used

in cluster mode 1 has an elevated false-positive rate (Fig. 5, i–l)

that reduces its utility at low identity or coverage thresholds.

Overall, cluster mode 2 appears less sensitive than the others,

reflected in its reduced incidence of false positives and larger

numbers of phams and false negatives. As in sequence–sequence

clustering, we find cluster mode 0 to have the best overall perfor-

mance.

Scalability of optimized parameters
Using PhaMMseqs iteratively with the optimized parameters, we

can assemble a redundant set of 181,625 training genes (which

includes redundant gene copies excluded from the

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. The impact of sensitivity, identity, and coverage on profile–sequence clustering with MMseqs2. The runtime (in seconds), number of
phams, number of false negatives, and false positive rate were plotted for each value of sensitivity (a–d), percent identity (e–h), and percent
coverage (i–l) tested. False-positive rate was calculated as the number of genes determined to be false positives in their respective phams divided
by the number of genes being clustered (see Materials and Methods for identification of false positives and negatives). Sensitivity (-s), percent
identity (–min-seq-id), and percent coverage (-c) are as described in Fig. 2. Parameter sets producing false positives above a rate of 0.5% were
omitted from this analysis.
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nonredundant training set) into 17,248 phams with a mean size
of 10.53 genes in �3 min on a 2020 MacBook Pro with an 8-core
M1 processor. The largest pham contains 946 genes, and there
are 7,644 (44.3%) phams with only 1 gene (orphams). To test the
scalability of the optimized MMseqs2 parameters, we down-
loaded all 4,380 complete phage annotations available in RefSeq
(accessed 2021 August 29). The RefSeq (O’Leary et al. 2016)
phages comprise representative and reference genomes from
each “species” of sequenced phage, thus these genomes are min-
imally redundant; these phages jointly encode 465,399 genes
(345,410 nonredundant). Using the same device as before, these
genes assemble into 90,644 phams (�5.13 genes/pham) in
roughly 22 min; the largest pham has 775 genes, and there
are 50,804 (56.0%) orphams. The increase in runtime and num-
ber of phams and orphams are consistent with the substantial
increase in diversity in RefSeq phages compared to the
Actinobacteriophages initially trained on; nonetheless, the

runtime is clearly not prohibitive even with readily available
computational resources.

Phams produced using optimized parameters are
functionally consistent
The default PhaMMseqs parameters were chosen in a manner
that theoretically builds phams that are functionally consistent.
We analyzed the 20 largest phams from the training and RefSeq
datasets to determine the validity of this, as these typically are
functionally well-defined and are vulnerable to the potential in-
clusion of false positives. For the training dataset, the 20 largest
phams (Table 3) contain a total of 11,198 genes, or roughly �6.2%
of all genes. Most of these phams have a clear consensus func-
tion annotated; those that do not typically have a weak consen-
sus function and a significant population of genes designated as
“hypothetical protein.” MSAs for these 20 phams were manually
inspected for signs of domain chaining or other obvious issues, as

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5. The impact of E-value, cluster steps, and cluster mode on sequence–sequence clustering with MMseqs2. The runtime (in seconds), number of
phams, number of false negatives, and false-positive rate were plotted for each value of E-value (a–d), cluster steps (e–h), and cluster mode (i–l) tested.
False-positive rate was calculated as the number of genes determined to be false positives in their respective phams divided by the number of genes
being clustered (see Materials and Methods for identification of false positives and negatives). E-value (-e), cluster steps, and cluster mode are as
described in Fig. 3. Parameter sets producing false positives above a rate of 0.5% were omitted from this analysis
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well as submitted to the MPI HHpred server (Zimmermann et al.
2018) to validate the consensus function. No instances of domain
chaining were observed, and we were encouraged to see 1 pham
(rank 5 by size—terminase, large subunit) that includes both
intein-containing and intein-free homologs, because inteins are
not uncommon in phage genomes and can interrupt pham as-
sembly (Kelley et al. 2016). In addition, the best HHpred hits for
each pham were congruent with the consensus annotated func-
tion. Extending this analysis to the top 50 largest phams is consis-
tent with these conclusions (data not shown).

Commensurate with the increased diversity of the RefSeq
dataset, the 20 largest phams (Table 4) contain fewer genes both
absolutely and proportionally to the size of the dataset (9,637
genes, �2.1% of genes). Again, most of these have clear consen-
sus functions, and just 3 phams have a weak consensus diluted
by a significant population of “hypothetical protein” or other non-
specific labels. Pham MSAs reveal no evidence of domain chain-
ing, and the best HHpred hits recapitulate the consensus
annotated functions for these phams.

Discussion
Pham assembly is broadly useful for phage comparative geno-
mics, and central to phage database resources used in integrated
research-education programs such as PHIRE and SEA-PHAGES
(Jordan et al. 2014; Hanauer et al. 2017; Hatfull 2021). With rapid
increases in the number of genomes available for analysis, rapid
sequence comparison algorithms are needed, and we demon-
strate here that MMseqs2 can be effectively used for pham assem-
bly, both in terms of computational speed and capacity as well as
the overall quality of assembled phams. Rapid and efficient pham
assembly also facilitates comparative phage genomics including
both within closely related lineages, and more broadly among
more distantly related phages. We have evaluated PhaMMseqs on

phage genomes, but it can be readily used with predicted pro-
phages once extracted from bacterial genome sequences.

Several other systems for organizing phage genes have been
described, including ACLAME (Leplae et al. 2004), POG (Liu et al.
2006; Kristensen et al. 2011, 2013), and pVOG (Grazziotin et al.
2017). However, some of these resources have not been regularly
updated, compromising their overall utility. By incorporating
PhaMMseqs into pdm_utils (Mavrich et al. 2021), a suite of pipe-
lines for managing phage datasets in different databases, rebuild-
ing phams with newly sequenced genomes should be much
simplified. PhaMMseqs also provides a much simpler interface
for iterative pham assembly than deploying multiple steps di-
rectly with MMseqs2.

Bacteriophage genomes have complex relationships, being
pervasively mosaic, highly diverse, and replete with genes of un-
known function. Moreover, the number of sequenced phage
genomes is small relative to the extant population, and many
genomes currently have no sequenced close relatives, and there
are many genes without homologs in other phages (i.e. orphams).
There are several features of phage genomes that can present
challenges to pham assembly including the abundance of small
genes, the presence of inteins within genes, and intragene mosai-
cism leading to multidomain proteins with complex evolutionary
histories. Thus, even when optimized, pham assembly is
expected to be imperfect, reflected by false-positive inclusion or
false-negative rejection of genes into phamilies. In a few instan-
ces, we have observed some “pham-instability,” where a single
set of clearly homologous genes are split into 2 phams. This is
rarely observed with repeated assembles on the same hardware
but can emerge with identical runs on different hardware (e.g. a
MacBook Pro with M1 CPU vs a server with AMD Opteron 6376
dual CPU). We estimate such phams are rare (<0.1%) and it is
unclear which if any software innovations may help to eliminate
these. Nonetheless, PhaMMseqs provides a rapid and efficient
method for pham assembly with broad utility in phage genomics.

Table 3. Consensus functions of the 20 largest phams in 1,885
Actinobacteriophages.

Rank No. of genes
in pham

Consensus functiona Consensus
proportionb (%)

1 946 Minor tail protein 92.3
2 932 Lysin B 95.9
3 689 DNA polymerase I 95.6
4 687 Portal 96.7
5 653 Terminase, large subunit 96.5
6 550 Major capsid protein 96.9
7 548 DNA helicase 93.8
8 540 DNA primase 94.1
9 499 Endonuclease VII 93.0
10 499 Terminase, large subunit 97.2
11 498 Hypothetical protein 63.5c

12 494 Hypothetical protein 63.3d

13 493 Minor tail protein 91.9
14 474 Tail assembly chaperone 96.4
15 463 Minor tail protein 62.0e

16 452 Immunity repressor 87.6
17 446 Head-to-tail connector 58.5e

18 445 Head-to-tail connector 54.8e

19 445 Hypothetical protein 97.8
20 445 Scaffolding protein 94.6

a Consensus function annotated for members of the pham, manually
corrected for synonymous labels and typographic errors.

b Percentage of genes in the pham that have been annotated as some
variant of the consensus function.

c Most remaining genes are designated as minor tail protein.
d Most remaining genes are designated as head-to-tail connector.
e Most remaining genes are designated as hypothetical protein.

Table 4. Consensus functions of the 20 largest phams in 4,380
RefSeq phages.

Rank Number
of genes

Consensus functiona Consensus
proportionb (%)

1 775 Minor tail protein 91.4
2 682 HNH endonuclease 78.1c

3 620 Portal 96.0
4 604 Lysin B 95.2
5 541 Ribonucleotide reductase 94.8
6 541 Recombination endonuclease 89.5
7 503 Lysozyme 93.4
8 485 Terminase, large subunit 95.1
9 479 DNA polymerase I 95.2
10 435 Ribonucleotide reductase 95.9
11 416 UvsW-like helicase 92.8
12 413 Terminase, large subunit 95.9
13 409 DNA helicase 78.7c

14 401 DNA primase/helicase 88.5
15 396 Terminase, large subunit 95.0
16 394 dNMP kinase 78.9c

17 391 Tail tube protein 88.7
18 387 DnaB-like dsDNA helicase 92.8
19 384 Major capsid protein 93.8
20 381 Clamp loader 88.7

a Consensus function annotated for members of the pham, manually
corrected for synonymous labels and typographic errors.

b Percentage of genes in the pham that have been annotated as some
variant of the consensus function.

c Most remaining genes are designated as hypothetical proteins or have
other nonspecific labels.
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Data availability
The PhaMMseqs package is available at PyPI (https://pypi.org/
project/phammseqs/) and GitHub (https://github.com/chg60/
PhaMMseqs.git).

Supplemental material is available at G3 online.
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