
Volume 30 Issue 2 Article 1 

2022 

Trends and applications of food protein-origin hydrolysates and Trends and applications of food protein-origin hydrolysates and 

bioactive peptides bioactive peptides 

Follow this and additional works at: https://www.jfda-online.com/journal 

 Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, 

Pharmacology Commons, and the Toxicology Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative 

Works 4.0 License. 

Recommended Citation Recommended Citation 
Wu, Yi-Hsieng Samuel and Chen, Yi-Chen (2022) "Trends and applications of food protein-origin 
hydrolysates and bioactive peptides," Journal of Food and Drug Analysis: Vol. 30 : Iss. 2 , Article 1. 
Available at: https://doi.org/10.38212/2224-6614.3408 

This Review Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been 
accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug 
Analysis. 

https://www.jfda-online.com/journal/
https://www.jfda-online.com/journal/
https://www.jfda-online.com/journal/vol30
https://www.jfda-online.com/journal/vol30/iss2
https://www.jfda-online.com/journal/vol30/iss2/1
https://www.jfda-online.com/journal?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/84?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/65?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/66?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/67?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.38212/2224-6614.3408


Trends and applications of food protein-origin
hydrolysates and bioactive peptides

Yi-Hsieng Samuel Wu, Yi-Chen Chen*

Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan

Abstract

It was reported that protein hydrolysates or derived peptides have more functionalities than their parent protein. Most
functional protein hydrolysates or peptides are identified from various food products, including plant, fish, and land-
animal protein sources. Within a few decades, the application of food protein-origin functional hydrolysates or peptides
could be divided into two main categories according to their applied intentions: 1) preservatives and bioactive packing
materials; 2) nutraceutical ingredients. According to the literature, the applications of food protein-origin functional
hydrolysates or peptides on food preservative and nutraceutical ingredients have attracted much attention. However, the
approach method should be changed. Multi-activities, compound formulation, comprehensive evaluation, and the added
value of by-products are possible strategies. Although there have been great results and findings in the functionalities of
food protein-origin bioactive hydrolysates or peptides, there is still a big gap between the lab-scale results and practical
applications. Via this narrative review on the current research, scientists, the food/health industry, and government
authorities should cooperate to dig into the new material sources and the possible practical application.

Keywords: Bioactive packing materials, Nutraceuticals, Peptides, Preservatives, Protein hydrolysates

1. Introduction

A mino acids joined by covalent bonds, also
known as amide or peptide bonds, form

bioactive peptides, which could positively impact
body functions or health conditions [1]. Besides,
bioactive peptides play crucial roles in the metabolic
functions of living organisms, especially human
beings. In many studies, antihypertension, antith-
rombotic, anti-cancer, antimicrobial, antioxidant,
immunomodulatory, and agonist/antagonist prop-
erties of bio-peptides and protein hydrolysates have
been reported [2]. Many bioactive peptides are
identified from protein hydrolysates of various food
products, including soybean, cereals, potatoes, nuts,
vegetables, dairy products, eggs, and meat proteins
[2]. It was mentioned that the protein hydrolysates
or peptides produced from various protein sources
possess some, or better, beneficial bioactivities
compared to those found in the parent proteins
[3,4]. Most food protein does not show specific bio-
logical activities in the naive sequences, though

some biological activities of that food protein can
be triggered by enzymatic, chemical, or microbial
hydrolysis [5]. Enzymatic hydrolysis is the
most effective method of producing functional
hydrolysates or peptides. However, different
factors, such as processing condition, protein
source, amino acid sequence and compositions,
molecular weight, charge distribution, pH, and
certain chemical treatments, could directly affect the
functionalities of generated bioactive hydrolysates
or peptides [6].
Regarding bio-functional peptides, S�anchez and

V�azquez indicated that many bioactive peptides
have a peptide residue length of between 2-20
amino acids in addition to proline, lysine, or argi-
nine groups [1]. Interestingly, bioactive peptides
have also been shown to resist the further action of
digestion peptidase [7]; therefore, the bioactive
peptides could be absorbed under the current
bioactive form. Moreover, the correlation between
structure and functional properties is still not well
understood; therefore, the crude extract, known as
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hydrolysates, is often acceptable and used widely in
practice [8e10].
There always exists a pervasive doubt in the ab-

sorption and bioavailability of bioactive peptides or
hydrolysates. According to metabolic physiology,
the protein is digested and absorbed in the gastro-
intestinal tract while gastric and pancreatic pro-
teinases conduct luminal digestion. The resultant
end products (mostly large peptides) undergo a
further hydrolyzation by various peptidases present
in the intestinal epithelium brush border membrane
[11] Interestingly, several scientific pieces of evi-
dence revealed that luminal amino acids are present
as a peptide form (about 80%) rather than the free
form (about 20%), and most peptides are 2e6 amino
acids [12]. Ganapathy reported that the transport of
free amino acids contributes relatively less; mean-
while, the protein digestion products enter the
enterocytes in dipeptides or tripeptides via specific
peptide transport systems [11].
Recently, bioactive peptides or hydrolysates from

food by-product proteins have attracted much
attention. According to a report from Food and
Agriculture Organization of the United Nations
(FAO) [13], the global meat output in 2018 is 336.4
million metric tons, in which there are mainly 123.9,
71.1, and 120.5 million tons for poultry, bovine, and
pig meats, respectively. As a result, huge amounts of
by-products are generated, including feathers, fish
scales, blood, bones, skin, and viscera [14,15].
Hence, many researchers should be drawn to the
question of how to maximize the utilization of those
by-products from livestock, poultry, and aquacul-
ture. It seems that the development of functional
protein hydrolysates or bioactive peptides is one of

the possible strategies; thus, this article also in-
cludes cases generated from food by-product pro-
tein. In this article, the application of food protein-
origin bioactive peptides or hydrolysates would be
discussed as following two major categories ac-
cording to their applied intentions: 1) preservatives
and bioactive packing materials and 2) nutraceutical
ingredients (Fig. 1).

2. Preservatives and bioactive packing
materials in the market

2.1. Antioxidative protein hydrolysates and
peptides

Excessive free radicals could produce oxidants,
which may reduce the quality of oleaginous foods,
cause lipid oxidation, and shorten the shelf life of
food [16]. Lipid oxidation always causes a great
problem for the food industry and consumers
because it leads to undesirable off-flavors, odors,
and potentially toxic reaction products [17]. Because
it is very practical to retard lipid peroxidation
occurring in foodstuffs to maintain the quality and
extend the shelf life of foods [18], many synthetic
antioxidants, such as butylated hydroxyanisole
(BHA), butylated hydroxytoluene (BHT), and ter-
tiary butylhydroquinone (TBHQ), are used as food
additives to prevent rancidity. Antioxidants for use
in food processing must be inexpensive, nontoxic,
effective at low concentrations (0.001e0.02%),
capable of surviving processing (carry-through),
stable in the finished products, and devoid of un-
desirable color flavor and odor effects [18]. Gener-
ally, antioxidants in food products could normally

Fig. 1. Trends and applications of food protein-origin bioactive peptides and hydrolysates.
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be added as either direct additives or indirectly
through diffusion from packaging materials [19]
(Fig. 2). Although synthetic antioxidants show
stronger antioxidant activities than natural ones,
such as a-tocopherol and ascorbic acid, there is still
a doubt that these chemical compounds may cause
health concerns due to the induction of DNA dam-
age and toxicity [20e23]. Hence, there is a credit to
looking for a natural source of antioxidants in
applying food products.
Notably, natural antioxidant peptides originating

from food proteins have captured scientists' atten-
tion due to their advantages of eco-friendliness,
sustainability, and a lack of toxic side effects [24].
Plant proteins have been considered a new source
of antioxidant peptides or hydrolysates, which
delay the lipid peroxidation of food, save energy,
and strengthen the treatment of oxidation-related
diseases, thus decreasing food waste and
improving the quality of life, respectively [25].
Decades ago, the antioxidative properties of whey
and soy hydrolysates were revealed [26] (Table 1).
Recently, some agricultural by-products, such as
tea dregs and Phoenix dactylifera L. seed, were also
found to be good sources of antioxidative hydro-
lysates [27,28] (Table 1). It was reported that pep-
tide- and polyphenol-rich dark red kidney bean
(Phaseolus vulgaris L.) hydrolysates could reduce the
oxidation process of plain yogurt products during
storage at room temperature for 3 days, and their
antioxidative stability is higher than that of ascorbic
acid [29]. Moreover, Gomes and Kurozawa re-
ported that the rice protein hydrolysate as an
encapsulated matrix in linseed oil microparticles
enhances the stability of the unsaturated fatty acid-

rich lipid [30]. Nowadays, antioxidative plant pro-
tein hydrolysates successfully apply to various food
systems, i.e., beverages, yogurt, oil, and meat
(Table 1).
Fish can serve as a source of functional materials,

such as polyunsaturated fatty acids, poly-
saccharides, minerals and vitamins, antioxidants,
enzymes, and bioactive peptides. Recently, a topic
focused on identifying and characterizing bioactive
murine peptides' structure, composition, and
sequence. Antioxidant peptides and hydrolysates
from marine sources and their by-products are also
revealed [18,31]. 3% caplin-protein-hydrolysate
addition in porcine meat increased cooking yield by
4% and inhibited oxidation [32]. The concentration
of hydrolysates was up 3% in cases where the
opposite effects occurred. Nikoo et al. also revealed
similar results as the anti-oxidative-peptide study.
The antioxidative peptide from Amur sturgeon skin
gelatin was effective in the minced Japanese sea
bass muscle model system [33]. Processed meat
foods were also chosen for further application, as
indicated in Table 1. Among those meat models, the
optimal addition levels of antioxidant hydrolysates
are different [34,35]. These cases indicated that
addition levels were crucial factors, and meanwhile,
the addition levels also depended on the various
properties of different food systems. Although an-
tioxidants from fish and their by-products were
effective, their usage was limited due to their flavor
and odor. Therefore, the solid results of anti-
oxidative hydrolysates or peptides should be
developed in a specific food system, and the influ-
ence on the sensory evaluation of the final product
should also be included.

Fig. 2. Direct and indirect strategies of antioxidants in food-product preservation.
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In addition, land-animal protein is a good source
for deriving antioxidant hydrolysates or peptides
because its proteins contain plenty of essential
amino acids with a high bioavailability that defeats
plant proteins. The well-known antioxidant di-
peptides of carnosine (b-alanyl-L-histidine) and
anserine (b-alanyl-3-methylhistidine) endogenously
exist in muscle tissue, acting as free radical scaven-
gers and metal ion chelators [36]. As seen in Table 1,
the land-animal protein sources were milk protein
and slaughter remnant protein. Rossini et al. found
that casein peptides exhibited a good antioxidative
capacity in the 2,20-azino-bis (3-ethylbenzothiazo-
line-6-sulfonic acid) (ABTS) radical method [37]; a
similar result was displayed in studies of bovine
milk protein-derived peptides and camel milk hy-
drolysates [38,39]. Sun et al. reported that deboned
chicken-residue hydrolysates decrease oxidation
and Mallard reaction products in Cantonese sausage
without significant influences of sensory properties
[40].
Furthermore, Verma et al. proved that porcine-

blood hydrolysate has possible antioxidant and
antimicrobial abilities in pork meat emulsion [41].

The hydrolysate incorporation may have more op-
portunities to maintain multi-functional character-
istics, i.e., antioxidation, antimicrobial, and physic-
chemical property enhancements, than a single bio-
active peptide. Thus, it has high potential in prac-
tice, especially in the food industry. Overall, those
studies indicated that the antioxidative protein hy-
drolysate could be used to retard lipid peroxidation
in oxidizable products, such as the unsaturated fatty
acid-rich product. However, the optimal application
should be further measured depending on the
properties of the individual food system.

2.2. Antimicrobial protein hydrolysates and
peptides

Microbial intrinsic antimicrobial peptides, known
as bacteriocin, have been an interesting research
subject for a long time and developing the founda-
tion of modern antibiotics [42]. Nowadays, microbial
peptides from probiotics are also applied to the
entire food system [43], though food protein hy-
drolysates and peptides were not emphasized in this
study. Pane et al. proclaimed that antimicrobial

Table 1. Application of antioxidative protein hydrolysates and peptides as a preservative in the food system.

Protein source Hydrolysates or
peptides

Incorporated food system Amount of active ingredients References

Plant protein
Date seed protein Hydrolysates Ground salmon 200 ppm [28]
Dark red kidney bean
(Phaseolus vulgaris L.)

Hydrolysates Plain yogurt 3 g/L [29]

Tea residue protein Hydrolysates Chicken surimi 0.1, 0.5, and 1.0% [27]
Zein Hydrolysates Oil-in-water emulsions

prepared by myofibrillar
protein

1.25, 2.5, 5, and 10 mg/mL [95]

Fish protein
Amur sturgeon (Aci-
penser schrenckii) skin
gelatin

Peptides Japanese sea bass (Lateo-
labrax japonicus) mince

25 ppm [33]

Capelin (Mallotus vil-
losus) protein

Hydrolysates Cooked meat 3% [32]

Gelatin from blacktip
shark (Carcharhinus lim-
batus) skin

Hydrolysates Cooked comminuted pork 100, 500, and 1000 ppm [34]

Goby (Zosterissessor
ophiocephalus) muscle

Hydrolysates Turkey meat sausage 0.01e0.04% [35]

Land-animal protein
Camel milk Hydrolysates Minced fish 5% and 10% [39]
Casein Peptides Ground beef/deboned

poultry meat
20 mg/g [37]

Deboned chicken
residue

Hydrolysates Cantonese sausage 2% [40]

Milk protein Peptides Cooked beef 200 and 800 mg/g [38]
Porcine blood Hydrolysates Pork meat emulsion 900 mg/g [41]
Camel milk Hydrolysates Minced fish 5% and 10% [39]
Whey protein isolate
and soy protein

Hydrolysates Meat patties 2% [26]
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peptides could also be produced by enzymatic hy-
drolysis of food proteins in vitro [44]. The isolation
and characterization of antimicrobial peptides from
food proteins have also been well studied. More-
over, various antimicrobial agents, such as food
protein-origin bioactive peptides and protein hy-
drolysates, are applied as bio-preservatives for
different food products (Table 2). The antimicrobial
activity of porcine blood protein hydrolysates was
also observed against spoilage microbes, such as
Listeria monocytogenes, Staphylococcus aureus, E. coli,
and Bacillus cereus in the pork emulsion during
storage [41]. It was reported that the whey acidic
protein-derived peptide has good antimicrobial ac-
tivity against Staphylococcus aureus in milk [45].
In most research cases, the antimicrobial activity

of peptides was demonstrated only in vitro and not
shown on any trials in commercial practices because
food ingredients, such as proteins, proteases, fats,
and metal ions, may limit the interaction of anti-
microbial peptides with their target pathogens
[42,46]. Therefore, before peptidic preservatives are
introduced to the market, their stability during food
processing and storage requires further assessment;
potential safety and sensory problems also warrant
an evaluation [47]. Moreover, the clean-label
requirement in the market could push the industry
or government to develop natural-origin (non-syn-
thetic) food additives. From this point of view, food
hydrolysates or peptides with an antimicrobial
ability still require comprehensive study, and
the real commercial application still has a long way
to go.

2.3. Protein hydrolysates and peptides as food
preservatives of edible biopolymer films

Recently, protein hydrolysates and bioactive
peptides as food preservatives on green packaging
materials, biodegradable and edible films and
coatings have attracted much attention from food
scientists. Rangaraj et al. reported that edible
bioactive packaging materials had been applied to
food storage and preservation [48]. The main
function of food packaging systems is to separate
food from the surrounding environment, thereby

reducing interaction with spoilage factors, such as
microorganisms, water vapor, oxygen, and off-fla-
vor, and avoiding losses of desirable compounds,
for example, flavor volatiles, thus extending the
shelf life of food products [49]. Although coatings
and edible films are not expected to replace con-
ventional wrapping materials fully, they can retain
food stability by reducing the exchange of mois-
ture, lipids, volatiles, and gasses between the food
and the surrounding environment. As we know,
avoiding surface contamination increases the effi-
ciency of food packaging, thus reducing the need
for petroleum-derived polymers. The main com-
ponents of biodegradable and edible films are
usually an animal or vegetable proteins, poly-
saccharides, fats, and waxes. Meanwhile, they are
primary packaging made from edible ingredients.
Moreover, it is possibly used directly in the food
system by coating, immersion, and spraying
[50,51].
It has been reported that hydrolysates from fish

by-products can be a source of biologically active
peptides with high antioxidative activity (Table 3).
The raw materials are mainly from cuttlefish,
rainbow trout, silver carp, squid, and tilapia. An
active two-layer coating consisting of furcellaran
and gelatin hydrolysates from carp skins had been
fully discussed [52e54]. Interestingly, many cases
use hydrolysates and gelatin film from the same
origin, which may be due to the concept of full
application [55e59] (Table 3). It was demonstrated
that milk protein-based edible films could be
applied to preserve food products [56,57]. These
selective films are effective oxygen, fat, and aroma
barriers but are still permeable to moisture. Hence,
they could be applied to various forms of high-
protein dairy preparations, such as total milk pro-
tein powder, skim milk powder, caseinates, and
whey protein concentrates [60,61]. Mukherjee and
Haque (2016) proclaimed that antioxidative coatings
incorporating cheddar whey casein hydrolysates
could reduce the protein carbonylation in steak and
fish fillet systems.
Various antimicrobial compounds incorporated

into edible films have also been interesting, while
integrating natural derivatives in edible films was

Table 2. Application of antimicrobial protein hydrolysates and peptides as a preservative in the food system.

Protein source Hydrolysates or
peptides

Incorporated food system Amount of active
ingredients

References

Snakin-1-derived from
potato tubers

Peptides Fanta orange, cranberry
juice, and apple juice

50, 100, 200, and
400 mg/mL

[96]

Porcine blood Hydrolysates Pork meat emulsion 900 mg/g [41]
Whey acidic protein Peptides Milk 31.2 and 15.6 mg/mL [45]

176 JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:172e184

R
E
V
IE
W

A
R
T
IC

L
E



successfully executed (Table 3). Although scientific
results are abundant and remarkable, the gap be-
tween laboratory to commercial practices still
warrants investigation. There is no individual
natural polymer to provide all the desired edible
film properties, so the challenge is to select inte-
grated and synergistic composite ingredients to
fulfill the desired film properties. Furthermore,
there are difficulties in up-scaling the laboratory
research to industrial applications. Consumer
acceptance, industrial interests, and governmental
regulations would be other challenges.

3. Bioactive ingredient of nutraceuticals

The global nutraceutical market was valued at
USD 382.51 billion in 2019 and is expected to expand
at a Compound Annual Growth Rate (CAGR) of
8.3% from 2020 to 2027 [62]. A favorable outlook
toward increasing cardiovascular disorders and
malnutrition application is observed [62]. The con-
sumers' positive attitude toward functional foods
fuels market growth because these added health
and wellness benefits. Overall, rising concern about
healthcare costs and the growing elderly population
worldwide assist the global functional food industry.
Besides, the rising disposable income, changing
lifestyle, and shifting preferences for healthier di-
etary intake are expected to drive nutraceuticals in
the Asia Pacific area, where the major market share
was 31.01% in 2019 [62]. Jakubczyk et al. mentioned
that bioactive protein hydrolysates or peptides are a
trend as new sources of therapeutic strategy [63].
The main research targets on the biofunctions of
bioactive protein hydrolysates or peptides could be

divided into two categories: (1) antioxidation, anti-
inflammation, and anti-apoptosis; (2) metabolic
factor-related targets including anti-obesity, anti-
diabetes, cardiovascular protection, and hypolipi-
demic effect. As we know, cardiovascular disease
(CVD) and diabetes mellitus (DM) are two popular
research topics, while metabolic syndrome is a
crucial issue and challenge in human health
worldwide. A summary of recent research is shown
in Table 4.

3.1. Antioxidation, anti-inflammation, and anti-
apoptosis

Antioxidation, anti-inflammation, and anti-
apoptosis were proven to be highly correlated in
organisms; thus, those bioactivities were summa-
rized jointly [64e66]. According to a report from
Chou et al. [67], the antioxidant activities of chicken-
liver hydrolysates have been successfully developed.
Continuously, the in vivo antioxidant activity of
chicken-liver hydrolysates was displayed in a D-
galactose-induced mouse model in which chicken-
liver-hydrolysate supplementation performed the
universal antioxidant activities, especially in the
brain and liver (Table 4). This is a good example
linking the in vitro and in vivo antioxidative effects,
and it further indicates why in vitro antioxidative
capacity analysis is still included in many studies of
protein hydrolysates or bioactive peptides. Further-
more, the food-origin protein hydrolysates or
bioactive peptides were proven to be tissue-specific
protective effects in recent in vivo studies (Table 3),
such as hepatic [68] and cardiac tissues [69,70].
Incidentally, chicken egg-derived peptides for their
biological multi-activities, especially antioxidation,
anti-inflammation, and hypoglycemic effects have
been attracted much attention [71e74]. It was
demonstrated that trypsin-digested ovalbumin hy-
drolysates show anti-inflammatory activity in LPS-
treated RAW 264.7 cells [75]. In addition, the anti-
oxidative peptides, VYLPR, derived from egg-white
protein, protected HEK-239 cells from H2O2 expo-
sure [76]. Finally, some cases showed both bio-
functional and processing capabilities. For example,
Wang et al. proclaimed that alcalase-hydrolyzed
scallop protein hydrolysate exhibited high anti-
oxidative activity in the PC-12 cell model as well as
good foaming and emulsifying properties [77]. In
addition, it effectively inhibited lipid oxidation in the
emulsifying system. This means that food-origin
bio-active hydrolysates or peptides could incorpo-
rate various functional products that fulfill both
bio-functionalities and product quality control
requirements.

Table 3. Effect of edible biopolymer films with the addition of protein
hydrolysates and biopeptides on the quality of food products during
their storage.

Source of bioactive
hydrolysate or
peptide

Type of biopolymer
matrix

References

Carp skin gelatin
hydrolysates

Polysaccharide-fur-
cellaran film

[54]

Casein
hydrolysates

Cheddar whey-
based coating film

[56,57]

Cuttlefish (Sepia
Officinalis) pro-
tein hydrolysates

Cuttlefish skin
gelatin film

[58]

Gelatin hydrolysate
extracted from
Scomberomorus
commerson skin

Fish skin gelatin,
commercial gelatin,
commercial bovine
gelatin film

[59]

Rapeseed protein
hydrolysates

Chitosan film [97]

Squid gelatin
hydrolysates

Squid skin gelatin
films

[55]
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Table 4. Recent research targets the functionalities of protein hydrolysates and biopeptides.

Protein resources Hydrolysates or
peptides

Functionality Details Ref.

Anti-oxidation, anti-inflammation, & anti-apoptosis
Chicken liver Hydrolysates In vivo antioxidative effects in

serum and organs in D-galactose
injected mice

1.2 g D-galactose kg�1 BW þ 50
and 250 mg CLH kg�1 BW on
male C57BL/6 mice for 6 weeks

[67]

Chicken liver Hydrolysates In vivo antioxidation and anti-
inflammation in thioacetamide-
induced mice

100 mg TAA kg�1 BW þ 200 and
600 mg CLH kg�1 BW on male
Wistar rat for 10 weeks

[68]

Chicken liver Hydrolysates Cardiac muscle anti-inflamma-
tion in high-fat-diet-induced
mice

HFD (46.5% energy as fat) þ 170
and 510 mg CLH kg�1 BW on
male C57BL/6 mice for 20 weeks

[70]

Potato protein Hydrolysates Cardiac muscle apoptosis atten-
uation in high-fat-diet-fed
hamsters

HFD (60% of energy as fat) þ 15,
45, and 75 mg CLH kg�1 BW on
male hamster for 50 days

[69]

Ovalbumin Hydrolysates Anti-inflammatory activity in
LPS-induced RAW264.7
macrophages

0.1, 0.5, and 2 mg OVA mL�1 in
LPS-induced (100 g mL�1) RAW
264.7 cells

[75]

Egg white protein Peptides Antioxidative effect in H2O2-
induced cells

20 mm peptide (VYLPR) in HEK-
293 cells

[76]

Scallop protein Hydrolysates Antioxidative activity and pro-
tective effect in H2O2-induced
cytotoxicity in vitro

10 mg mL�1 SPH in DPPH and
ABTS assays

[77]

Anti-obesity
Chicken liver Hydrolysates Body weight gain decreases in

HFD-induced mice
HFD (46.5% energy as fat) þ 170
and 510 mg CLH kg�1 BW on
male C57BL/6 mice for 20 weeks

[83]

Chicken breast raw
materials

Hydrolysates Mitochondrial b-oxidation
enhancement and anti-inflam-
mation in HFD-fed mice

HFD (59% of energy as
lard) þ CPH-contained diet
(12.5%, w/w) on male C57BL/
6JBomTac mice for 12 weeks

[81]

Crude chalaza of
egg

Hydrolysates Lipolysis and bile-acid biosyn-
thesis enhancement and choles-
terol clearance ability
upregulation in high-fat-diet-fed
hamsters

HFD (12% lard and 0.2% choles-
terol, w/w) þ 240, 480, and
960 mg CCH kg�1 BW on male
hamster for 10 weeks

[82]

Alaska Pollack
fillets

Hydrolysates Hypothalamic neuropeptide Y
reduction
White adipose tissue weight de-
creases
Muscle hypertrophy attenuation

AIN-93 control diet (7% fat, w/
w) þ 100 and 300 mg APP kg�1

BW on male SpragueeDawley
rats for 3 days

[79]

Yeast Hydrolysates Weight and body fat reduction in
obese women

AsiaePacific region women aged
20e60 years with
BMI>25 kg m�2/0.25 g YH-500
twice a day for 8 weeks

[80]

Anti-diabetes
Chicken liver Hydrolysates Insulin sensitivity enhancement

in HFD-induced mice
HFD (46.5% energy as fat) þ 170
and 510 mg CLH kg�1 BW on
male C57BL/6 mice for 20 weeks

[83]

Camel milk Hydrolysates Hyperglycemic, hyperlipidemic,
and antioxidative effects in STZ-
induced rats

100.500, and 1000 mg CMPH
kg�1 BW in male STZ-induced
diabetic rats for 8 weeks

[88]

Silver carp swim
bladder

Hydrolysates DPP-IV inhibition in vitro
Insulin secretion improvement in
INS-1 cells

INS-1 cell treated with 4 mM
bioactive peptides (IPGSPY or
WGDEHIPGSPYH) for 60 min

[87]

Egg white Hydrolysates Glucose homeostasis improve-
ment in vitro

Insulin secretion by isolated
Zucker rat pancreas islets
(Experimental groups: Zucker
lean rats, control Zucker fatty
rats, and Zucker fatty rat treated
for 12 weeks [750 mg HEW1 kg�1

BW per day])

[72]

(continued on next page)
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3.2. Anti-obesity

An anti-obesity property of food-origin hydroly-
sates or peptides was well reported as well, but the
underlying mechanisms are various and inconclu-
sive. Many researchers are still striving to clarify
bioactive compounds and trying to connect struc-
tures and physiological outcomes. Jahandideh et al.
revealed that bioactive peptides from egg white
hydrolysate had an adipogenic-differentiating effect
on the 3T3-F422A pre-adipocyte model [78].
Although the results are opposite and doubtful for

its physiological meaning, they indicated the trend
of structureefunction studies of bio-functional food-
origin peptides.
Table 4 contains the recent representative studies.

Mizushige et al. found that Alaska-pollock-protein-
hydrolysate supplementation decreases an energy
intake in rats by reducing the mRNA expression of
hypothalamic neuropeptide Y, which may reduce
the appetite [79]. In another clinical case, low-dose
yeast-hydrolysate supplementation was used as an
obesity and weight-loss treatment among obese
Korean women [80]. Although a further study for its

Table 4. (continued)

Protein resources Hydrolysates or
peptides

Functionality Details Ref.

Egg white Hydrolysates Insulin sensitivity improvement
in skeletal muscle cells

L6 cell treated with 5 mg mL�1

EWH or 11 mM IRW for 4 h
[89]

Grey triggerfish
muscle protein

Hydrolysates Hypoglycemic and hypolipi-
demic activities in diabetic rats

400 mg BPH kg�1 BW in male
alloxan-induced diabetic Wistar
rats for 21 days

[84]

Pasteurized liquid
egg white

Hydrolysates Insulin mimetic and insulin-
sensitizing actions in 3T3-F442A
cells

3T3-F442A cell treated with
5 mg mL�1 EWH for 72 h

[78]

Pasteurized liquid
egg white

Hydrolysates Glucose homeostasis improve-
ment in Zucker fatty rats

Plasma glucose and insulin
(Experimental groups: Zucker
lean rats, control Zucker fatty
rats, and Zucker fatty rat treated
for 12 weeks [750 mg HEW1 kg�1

BW per day])

[72]

Liquid egg white Hydrolysates Insulin sensitivity enhancement
in HFD-induced rats

HFD (20% fat, w/w) þ EWH-
contained diet (1, 2, and 4%, w/
w) on male SpragueeDawley
rats for 6 weeks

[90]

Sea cucumber
(Holothuria
Nobilis)

Hydrolysates Hypoglycemic, hypolipidemic,
and insulin-sensitizing effects in
STZ and HFD-induced diabetic
rats

HFD (45% energy as fat) þ 200
and 400 mg SCH kg�1 BW on
STZ-induced male Sprague
eDawley rats for 8 weeks

[86]

Norwegian spring-
spawning herring
by-products

Hydrolysates Hypolipidemic effect and
glucose homeostasis improve-
ment in obese Zucker rats

Fish protein (Herring or salmon)
hydrolysate-contained diet (25%,
w/w) in male obese Zucker fa/fa
rats for 4 weeks

[85]

Cardiovascular protection
Chicken blood Hydrolysates Anti-hypertensive effect in vivo

ACE inhibition in vitro
100, 300, and 600 mg BCH kg�1

BW in male spontaneous hyper-
tension rats for 4 weeks

[94]

Chicken liver Hydrolysates Hypolipidemic effect in high-fat-
diet-induced hamsters

HFD (12% lard and 0.2% choles-
terol, w/w) þ 100, 200, and
400 mg CLH kg�1 BW on male
hamster for 8 weeks

[98]

Chicken liver Hydrolysates Cardiac muscle anti-fibrosis in
high-fat-diet-induced mice

HFD (46.5% energy as fat) þ 170
and 510 mg CLH kg�1 BW on
male C57BL/6 mice for 20 weeks

[70]

Chicken skin
protein

Hydrolysates Renin and ACE activity inhibi-
tion in vitro

1 mg mL�1 CTSH in ACE-inhib-
itory activity assay

[91]

Egg white Peptides Angiotensin II type I receptor
downregulation in vitro

A7r5 cell treated with 5 mg mL�1

EWH or 100 mM synthetic pep-
tides for 24 h

[92]

Egg white Hydrolysates The hypotensive effect in rats EWP or EWH-contained diet
(1%, w/w) in male spontaneous
hypertension rats for 4 weeks

[93]
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mechanism is still needed, the anti-obesity effect
was presented. The anti-obesity effects of poultry
hydrolysates (i.e., egg chalaza, breast meat, and
liver) were also reported, and the common mecha-
nism was enhancing the lipolysis, fatty-acid b-
oxidation, and energy expenditure in mitochondria
[81e83]. Overall, the formulation of multiple bio-
hydrolysates or peptides may be another explora-
tion for future scientists.

3.3. Anti-diabetes

Diabetes is a dread for human beings because it
directly damages patients' life quality. Certainly,
there is a craving for anti-diabetic peptides. In
Table 4, aquatic, egg white, chicken liver, and milk-
derived hydrolysates or peptides are listed. It was
indicated that Grey triggerfish (Balistes capricious)
muscle protein hydrolysates can alleviate hyper-
glycemia and reduce HbA1c levels in diabetic rats
[84]. Drotningsvik et al. obtained similar outcomes
in their study of salmon hydrolysates [85]. Sea cu-
cumber (Holothuria Nobilis) hydrolysates showed
insulin-sensitizing effects in streptozotocin (STZ)
and high-fat diet (HFD)-induced diabetic rats [86]
while silver carp swim bladder hydrolysates
inhibited dipeptidyl peptidase IV (DPP-IV) activity
and enhanced insulin secretion in vitro [87]. In
addition, the hyperglycemic effects of chicken-liver
hydrolysates [83] and camel-milk hydrolysates are
illustrated by a glucose tolerance test [88].
Remarkably, Garc�es-Rim�on et al. indicated that

egg-white hydrolysates are a potential supplement
to control complications associated with metabolic
syndrome due to their DPP IV-inhibitory activity
[72]. Moreover, egg white hydrolysates showed in-
sulin-mimetic and sensitizing effects in the 3T3-
F442A pre-adipocyte and skeletal muscle cell model
[78,89]. Furthermore, the in vitro findings were
verified in the in vivo studies. Egg-white-hydroly-
sate supplementation improved glucose metabolism
and attenuated insulin resistance in diabetic rats via
Akt activation [72,90]. All results indicated that egg-
white hydrolysates had potential as a therapeutic
diabetic agent.

3.4. Cardiovascular protection

In Table 4, Onuh et al. indicated that chicken-skin
protein hydrolysates own an inhibitory ability on
angiotensin-converting enzyme (ACE) activities in
vitro [91]. In the cases of egg-white hydrolysates,
Chen et al. successfully purified and identified the

angiotensin receptor downregulating peptide,
which was proven in the A7r5 cell model [92].
Moreover, the hypotensive effect of egg-white hy-
drolysates was confirmed in spontaneously hyper-
tensive rats [93]. Besides, an in vivo anti-
hypertensive property of chicken-blood hydroly-
sates was also demonstrated in the study of
Wongngam et al. [94]. For bio-peptides, the lipid-
lowering and hypolipemic properties may be con-
current with the anti-obesity property, and the de-
tails of lipid metabolic modulating hydrolysates or
peptides were mentioned in the former paragraph.
Wu et al. investigated the cardioprotective effects of
chicken-liver hydrolysates in a long-term high-fat
dietary habit [83]. Their study indicated that the
cardioprotective effect of chicken-liver hydrolysates
could be attributed to its synergistic hepatic lipid-
lowering effect and systemic antioxidation. In the
histological analysis, chicken-liver hydrolysate
supplementation could attenuate cardiac patholog-
ical progression under long-term HFD induction.
Meanwhile, the hypolipidemic, anti-obesity, and
renal protective effects of chicken-liver hydrolysates
against HFD were summarized. In addition, the
anti-inflammatory and anti-fibrotic effects of
chicken-liver hydrolysates on cardiac muscular tis-
sues were confirmed. Those effects may be related
to the early blockade of the autophagy pathway to
prevent HFD-induced autophagosome accumula-
tion. All works of evidence showed that the pro-
tective outcomes of the chicken-liver hydrolysates
are due to systemic and synergistic effects. This
study revealed the multi-activities and synergistic
effects of hydrolysates, and a further application of
bio-active hydrolysates and peptides need a
comprehensive investigation.
Although several biofuncionalities of protein hy-

drolysates and peptides have been listed in this
report, the delivery and stability of these benefits is
still not clearly understood. In 2016, Rao et al. [99]
also reported that the biofunctional availability and
stability of the bioactive hydrolysates/peptides
during postproduction still is a need to verify in vivo.
They suggested two aspects on these two points: 1)
the quality changes in different food protein hy-
drolysates during storage; (2) the resulting changes
in the structure and texture of three food matrices.
Hence, it is worthy for further investigation for the
future commercial application. Meanwhile, those
who possesses the key technology in following de-
cades will get the ticket for global nutraceutical
market, which is one of rapid growth industries
nowadays.
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4. Conclusion

Food preservation and nutraceutical ingredients
are recent research targets of food protein-origin
bioactive hydrolysates or peptides. However, the
approaching method should be dynamic. Multi-ac-
tivities, compound formulation, comprehensive
evaluation, and the added value of by-products are
possible strategies. Within the past few decades,
there have been great results and findings regarding
the functionalities of food protein-origin bioactive
hydrolysates or peptides, but there are still efforts
that are required to bridge laboratory studies with
practical applications. Besides, there is a great need
for the delivery and storage ability during the stor-
age. Understandings and solutions for these two
questions could benefit for future commercial
application in the global nutraceutical market.
Perhaps it is time to deal with these outcomes from
different points of view, approaching the goal more
comprehensively, creatively and with more novelty.
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