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neuromaps: structural and functional 
interpretation of brain maps
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Armin Raznahan4 and Bratislav Misic    1 

Imaging technologies are increasingly used to generate high-resolution 
reference maps of brain structure and function. Comparing experimentally 
generated maps to these reference maps facilitates cross-disciplinary 
scientific discovery. Although recent data sharing initiatives increase 
the accessibility of brain maps, data are often shared in disparate 
coordinate systems, precluding systematic and accurate comparisons. 
Here we introduce neuromaps, a toolbox for accessing, transforming and 
analyzing structural and functional brain annotations. We implement 
functionalities for generating high-quality transformations between four 
standard coordinate systems. The toolbox includes curated reference 
maps and biological ontologies of the human brain, such as molecular, 
microstructural, electrophysiological, developmental and functional 
ontologies. Robust quantitative assessment of map-to-map similarity 
is enabled via a suite of spatial autocorrelation-preserving null models. 
neuromaps combines open-access data with transparent functionality for 
standardizing and comparing brain maps, providing a systematic workflow 
for comprehensive structural and functional annotation enrichment 
analysis of the human brain.

Imaging and recording technologies such as magnetic resonance 
imaging (MRI), electro- and magnetoencephalography (EEG and 
MEG), and positron emission tomography (PET) are used to generate 
high-resolution maps of the human brain. These maps offer insights 
into the brain’s structural and functional architecture, including 
gray matter morphometry1,2, myelination3–6, gene expression7,8, 
cytoarchitecture9, metabolism10, neurotransmitter receptors and 
transporters11–14, laminar differentiation15, intrinsic dynamics16–18 
and evolutionary expansion19–22. Such maps are increasingly shared 
on open-access repositories such as NeuroVault23 or BALSA24, which, 
collectively, offer a comprehensive multimodal perspective of the 
central nervous system. However, these data-sharing platforms are 

restricted to either surface or volumetric data, and do not integrate 
standardized analytic workflows.

If researchers generate brain maps in their work, such as task func-
tional MRI activations or case–control cortical thickness contrasts, how 
can they interpret them? Ideally there should be a way to systematically 
compare and contextualize generated maps with respect to existing 
structural and functional annotations, using rigorous statistical meth-
ods25. In adjacent fields, such as bioinformatics, multiple widely used 
computational methods for functional profiling and pathway enrich-
ment analysis of gene lists already exist26,27. A comparable structural 
and functional enrichment tool for neuroimaging would have to sup-
port three specific capabilities: a method for generating high-quality 
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were defined to avoid errors caused by successive interpolation. The 
genomic gradient was upsampled to the fsaverage surface with 10,242 
vertices (10k surface) using a k-nearest neighbors interpolation. Raw 
and processed data from the Allen Human Brain Atlas can be accessed 
at https://abagen.readthedocs.io/en/stable/28. Collectively, these maps 
represent more than a decade of human brain mapping research and 
encompass phenotypes including the first principal component of gene 
expression7, 36 neurotransmitter receptor PET tracer images14, glucose 
and oxygen metabolism10, cerebral blood flow and volume10, cortical 
thickness29, T1-weighted/T2-weighted MRI ratio30, six canonical MEG 
frequency bands29,31, intrinsic timescale29,31, evolutionary expansion19, 
three maps of developmental expansion19,22, the first 10 gradients of 
functional connectivity32, intersubject variability33 and the first prin-
cipal component of NeuroSynth-derived cognitive activation34. This 
data repository is organized by tags and can be downloaded directly 
from neuromaps.

The neuromaps toolbox enables the contextualization of brain 
maps to a range of molecular, structural, temporal and functional 
features. This will facilitate an expansion of research questions and 
enable researchers to bridge brain topographies across several spatial 
scales and across disciplines outside of their immediate scope25. Impor-
tantly, the included brain maps are only the start of the neuromaps data 
repository. The contribution pipeline lets researchers add vertex- and 
voxel-level brain maps to the toolbox, pending approval from the main-
tainers. The data repository will therefore become an increasingly rich 
resource of structural and functional brain annotations. As the toolbox 
expands it will become more comprehensive, giving the neuroscience 
field the power to identify cross-disciplinary associations. Information 
on contributing brain maps can be found in the online documentation 
for the software (https://netneurolab.github.io/neuromaps/).

Transformations between coordinate systems
Despite the multiscale, multimodal collection of brain phenotypes in 
neuromaps, data cannot be readily compared with one another because 
they exist in different native coordinate systems. Indeed, a common 
challenge when relating neuroimaging data to the broader literature 
is finding a common coordinate space or parcellation in which to con-
duct the analyses. The neuromaps module provides transformations 
between four supported coordinates systems as well as a standard-
ized set of functions for their application (Supplementary Table 2). 
Transformation between volumetric- and surface-based coordinate 
systems relies on a registration fusion framework (Fig. 3a; ref. 35), 
whereas transformations between surface-based coordinate systems 
use a multimodal surface matching (MSM) framework (Fig. 3b; refs. 
36,37). We leverage tools from the Connectome Workbench to provide 
functionality for applying transformations between surface systems; 
however, users do not need to interact directly with these Workbench 

transformations across multiple coordinate systems, a curated reposi-
tory of brain maps in their native space, and a method for estimating 
map-to-map similarity that accounts for spatial autocorrelation.

In the current report we introduce an open-access Python toolbox, 
neuromaps, to enable researchers to systematically share, transform, 
and compare brain maps (Fig. 1). First, we generate a set of group-level 
transformations between four standard coordinate systems that are 
widely used in neuroimaging and integrate them via a set of accessible, 
uniform interfaces. Next, we curate more than 40 reference brain maps 
from the literature that have been published during the past decade 
to facilitate contextualization of brain annotations. Finally, we imple-
ment spatial autocorrelation-preserving null models for statistical 
comparison between brain maps that will help researchers to perform 
standardized, reproducible analyses of brain maps. Collectively, this 
represents a step towards creating systematized knowledge and rapid 
algorithmic decoding of the multimodal multiscale architecture of 
the brain.

Results
The neuromaps software toolbox is available at https://github.com/
netneurolab/neuromaps, on PyPi, Zenodo, it exists as a Docker con-
tainer, and documentation can be found on GitHub pages (https://
netneurolab.github.io/neuromaps). In the following section we high-
light features available in neuromaps, demonstrate typical workflows 
enabled by its functionality, and use neuromaps to examine how choice 
of coordinate system can affect statistical analyses of brain maps.

The neuromaps data repository
The neuromaps toolbox provides programmatic access to templates 
for four standard coordinate systems: fsaverage (the default system 
used by FreeSurfer software, based on 40 normative brains), fsLR (a 
symmetric version of fsaverage across the left and right hemispheres), 
CIVET (the default system used by CIVET software) and MNI-152 (devel-
oped by the Montreal Neurological Institute using 152 normative MRI 
scans). For surface-based coordinate systems we distribute template 
geometry files, sulcal depth maps and average vertex area shape files 
(computed from Human Connectome Project participants) in standard 
GIFTI format. For volumetric coordinate systems we distribute T1-, 
T2-, and proton density-weighted MRI template files, a brain mask, 
and probabilistic segmentations of gray matter, white matter and cer-
ebrospinal fluid in standard gzipped NIFTI format.

Beyond template files, the neuromaps toolbox offers access to 
a repository of brain maps obtained from the published literature 
(Fig. 2 and Supplementary Table 1). These maps were generated using 
multiple imaging techniques, including MRI, MEG, PET and micro-
array gene expression. All brain maps except for the genomic gra-
dient are provided in the original coordinate system in which they 
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Fig. 1 | The neuromaps toolbox functionality. The neuromaps software 
package features a method for generating high-quality transformations across 
multiple coordinate systems, a curated repository of brain maps in their native 

systems, and a method for estimating map-to-map similarity that accounts for 
spatial autocorrelation.
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commands. In addition to transforming individual annotations, the 
neuromaps software package includes functionalities that receive two 
brain maps in different spaces as input and return both brain maps in the 
same space. By default, neuromaps returns the brain maps in the space 
of the lower-resolution map, which ensures that neuromaps does not 
artificially create upsampled data. Collectively, the neuromaps toolbox 
implements robust transformations between coordinate systems to 
facilitate the standardization of neuroimaging workflows (Fig. 3c,d).

Spatial null models for comparing brain maps
The primary goal for transforming maps to a common coordinate sys-
tem is to statistically compare their spatial topographies. The neu-
romaps software package uses a flexible framework for examining 
relationships between brain maps, offering researchers the ability to 
provide their own image similarity metric or function, and handles 
any missing data. By default, the primary map comparison workflows 
use the standard Pearson correlation to test the association between 
provided maps. The neuromaps comparison workflow also integrates 
multiple methods of performing spatial permutations for significance 
testing.

Multiple spatial null model frameworks enable statistical com-
parison between brain maps while accounting for spatial autocor-
relation4,38–44; however, the implementation of these models varies 
and, to date, there has been limited effort to provide a standardized 
interface for their use. We have incorporated nine null models into the 

neuromaps toolbox and offer a common user interface for each model 
that can be integrated with other aspects of the toolbox. Given the 
computational overhead of these models, our implementations offer 
mechanisms for caching intermediate results to enable faster re-use 
across multiple analyses. Spatial null models are enabled by default in 
the primary map comparison workflows to encourage their broader 
adoption. Based on prior work that benchmarks the accuracy and 
computational efficiency of these models45, we set the non-parametric 
method as the default for use with surface data38 and the parameter-
ized generative method as the default for use with volumetric data43.

Demonstrating the neuromaps toolbox
To demonstrate the utility of neuromaps we applied three separate 
analytic workflows that offer neuroscientific insights. First, we applied 
the neuromaps toolbox to a volumetric map of cortical thinning derived 
from comparing T1-weighted MRI scans from n = 133 patients with 
chronic schizophrenia to the T1-weighted MRI scans from n = 113 con-
trols from the Northwestern University Schizophrenia Data and Soft-
ware Tool (NUSDAST) dataset46 (Fig. 4a). We estimate cortical thinning 
by applying deformation-based morphometry to T1-weighted MRI 
scans to calculate the extent of gray matter expansion or contraction in 
patients relative to controls47. We used the neuromaps transformation 
functions to convert the MNI-152 volumetric schizophrenia brain map 
(‘source map’) to the surface space of each of 13 selected brain maps 
from neuromaps (‘target maps’). Next, we correlate the transformed 
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Fig. 2 | Brain maps from the published literature. Collection of brain maps 
obtained from the published literature over the past decade that are currently 
available in the neuromaps distribution. The maps capture the normative 
multiscale structural and functional organization of the brain, including 
molecular, cellular, metabolic and neurophysiological features. Refer to 
Supplementary Table 1 for more information on the coordinate system, 
resolution and original publication for each brain map. Colormaps were chosen 
to maximize similarity with how the data were represented in the original 
publication. Note that two of the maps (second column: evolutionary and 
developmental expansion) have data only for the right hemisphere; the intrinsic 

timescale is log-transformed; a selection of four of the 36 neurotransmitter 
receptor maps are shown here14,61–64; and the genomic gradient is upsampled 
to the fsaverage 10k surface (for accessing raw and processed Allen Human 
Brain Atlas data, see https://abagen.readthedocs.io/en/stable/28). 5-HT1a, 
5-hydroxytryptamine receptor 1A; CBF, cerebral blood flow; CBV, cerebral 
blood volume; CMRGlu, glucose metabolism; CMRO2, oxygen metabolism; 
M1, muscarinic receptor 1; mGluR5, metabotropic glutamate receptor 5; 
MOR, μ-opioid receptor; NIH, National Institutes of Health; PC1, first principal 
component; PNC, Philadelphia Neurodevelopmental Cohort; T1w/T2w, T1-
weighted/T2-weighted MRI.
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schizophrenia map with each of these 13 target maps (Pearson’s r) 
and test the significance using a spatial autocorrelation-preserving 
null model (‘spin test’)38 and false discovery rate correction48. We find 
that schizophrenia-related cortical thinning is enriched in areas with 
the greatest neurodevelopmental expansion (rNIH = 0.26, Pspin = 0.001; 
rPNC = 0.29, Pspin = 0.001), consistent with the notion that schizophrenia is 
a neurodevelopmental disease that affects adolescent development49,50. 
By contrast, we find no evidence to support recent claims that schizo-
phrenia targets specific parts of the unimodal–transmodal processing 
hierarchy (rfunctional gradient = −0.08, Pspin = 0.35; refs. 51,52).

Next, we applied the same analytic workflow to a surface-based 
brain map of evolutionary expansion (already included in neuromaps), 
which represents cortical surface area expansion from macaque to 
human19 (Fig. 4b). Contextualizing this source map with respect to 
the other 12 selected target maps from the toolbox, we find that areas 
with the greatest evolutionary expansion have the greatest interindi-
vidual variability of regional functional connectivity profiles (r = 0.58, 
Pspin = 0.005; ref. 33). This is consistent with the notion that the great-
est interindividual differences in brain structure and function are in 
phylogenetically more recent transmodal cortex53. Moreover, we find 
significant negative correlations with the first principal component 
of gene expression (r = −0.51, Pspin = 0.027) and intracortical myelin 
(r = −0.46, Pspin = 0.005), consistent with the idea that phylogenetically 
newer cortex is characterized by divergence from genomic gradients 
and canonical stimulus–response circuit configurations54. We also find 
that the map is negatively correlated with cerebral blood volume, which 
suggests that phylogenetic adaptation is concomitant with greater 
metabolic efficiency (r = −0.37, Pspin = 0.003). Collectively, these two 

examples show how the neuromaps toolbox can be used to rigorously 
generate comprehensive structural and functional annotation enrich-
ment profiles.

Finally, we analyzed a sample of 20 brain maps from the pub-
lished literature over the past decade (2011–2021), including two 
microstructural, four metabolic, three functional, four expansion, 
six band-specific electrophysiological signal power, and one genomic 
map. We then used neuromaps to transform these maps from their orig-
inal representation to the space defined by each of four standard coor-
dinate systems, for a total of seven different representations (Fig. 2).  
Finally, we computed the pairwise correlations between all maps in 
each of the systems and assessed the statistical significance of these 
relationships using spatial null models. The goal of this analysis was 
twofold. First, we sought to assess the extent to which coordinate 
transforms could influence map-to-map comparisons. Second, given 
the growing interest in how these system-level maps or ‘gradients’ are 
related to one another, we sought to assess patterns of relationships 
among them53,55.

For most map-to-map comparisons the choice of coordinate sys-
tem has a minimal effect: correlation coefficients on average change 
only by ∣r∣ = 0.018 (variance of absolute difference, 0.0002; range, −0.10 
to 0.079). This is demonstrated by map-to-map correlation matrices 
(Fig. 5a) and the distribution of correlation changes (Δr) between pairs 
of brain annotations in different coordinate spaces (Fig. 5b). Specifi-
cally, for a given pair of brain annotations we compute their correla-
tion in the six available surface spaces and resolutions. Next, we plot 
the distribution of correlation differences between each space and a 
constant space. Each histogram represents the distribution when a 
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Fig. 3 | Transformations between coordinate systems. a, Registration fusion 
provides a framework for directly projecting group-level volumetric data onto 
a surface. Here, a probabilistic atlas for the central sulcus35 has been projected 
independently onto the CIVET (41k), fsLR (32k) and fsaverage (164k) surfaces. 
b, MSM provides a framework for aligning spherical surface meshes. Here, we 
show sulcal depth information (originally defined in fsLR space) on spherical 
meshes that are aligned across the different coordinate systems, where each 
row represents a different coordinate system and each column represents the 
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first principal component of cognitive terms from NeuroSynth34) that has been 
transformed to all surface-based coordinate systems using alignments derived 
from registration fusion. d, Example of a surface brain map (the first principal 
component of gene expression from the Allen Human Brain Atlas7) that has been 
transformed to all other surface-based coordinate systems using alignments 
derived from MSM. Note that because the original data are represented on the 
cortical surface, transformation to volumetric space is ill-defined and therefore 
not shown here.
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different coordinate space and resolution is defined as the constant 
space. Although the changes are minimal, there are instances in which 
associations between maps are statistically significant in one coordi-
nate system and not significant in another. For example, the correla-
tion between the functional gradient and National Institutes of Health 
(NIH) allometric scaling are significantly correlated in CIVET 41k space 
(r = 0.223, two-sided Pspin = 0.049) but non-significantly correlated in 
fsLR 32k space (r = 0.217, two-sided Pspin = 0.097) (Fig. 5c). However, in 
most cases the P value for these relationships was close to the statistical 
alpha (that is, P ≤ 0.05) such that the actual effect size changed only by 
r ≤ 0.10. These results are encouraging and suggest that transforming 
brain annotations between different systems generally preserves their 
relationships.

Across all examined systems we find that the brain maps tend 
to form two distinct clusters (Fig. 5d) that largely recapitulate pre-
viously established relationships involving anterior–posterior and 
unimodal–transmodal axes of variation17,32,56. One cluster contains 
maps including the T1-weighted/T2-weighted MRI ratio57, the principal 
component of gene expression4,28, cerebral blood flow and metabolic 
glucose uptake10, whereas the other is composed of maps such as the 
principal functional gradient32, intersubject functional variability33 
and developmental and evolutionary expansion19. This suggests that 
these brain phenotypes reflect a fundamental organizational principle 
of the human brain.

Discussion
Technological and data sharing advances have increasingly moved 
neuroscience research towards integrative questions rooted in data 
science. Imaging, recording, tracing and sequencing technology offer 
an ability to quantify multiple features of neuroanatomy and function 
with unprecedented detail and depth. Easing the standardization and 
computation of such comparisons is necessary to ensure that new data-
sets can be integrated into our broader understanding of the human 
brain25. As the neuromaps toolbox is adopted by the community, anno-
tations from emerging technologies and datasets can be added by 
users. This will enable maps to be systematically contextualized with 
respect to multiple canonical annotations from diverse data types 
and disciplines, resulting in standardized reporting of results, and 
inspiration for mechanistic follow-up. Ultimately, neuromaps is a step 
towards integrative analytics for multimodal, multiscale neuroscience.

Given the proliferation of such datasets in recent years, a large 
body of work has arisen focused on investigating similarities across 
brain maps17,18,39,41,56,58,59. Indeed, researchers have observed substantial 
concordance in the spatial topology of brain maps derived from a wide 
variety of phenotypes, suggesting that these maps may reflect a fun-
damental organizational principle of the human brain. The unimodal–
transmodal, or sensory–association, axis is increasingly recognized as 
a low-dimensional representation of brain organization6,53,60. However, 
large-scale analyses will facilitate comprehensive comparisons across 
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Fig. 4 | Use of neuromaps to contextualize two exemplar brain maps. 
To demonstrate the utility of neuromaps we use the toolbox to transform, 
profile and quantitatively assess structural and functional enrichment 
for two example brain maps (that is, source maps). a, A volumetric map of 
cortical thinning in patients diagnosed with chronic schizophrenia from the 
NUSDAST repository (n = 133 patients versus n = 113 controls46) was estimated 
by applying deformation-based morphometry to T1-weighted MRI scans 
to calculate the extent of gray matter expansion or contraction in patients 
relative to controls47. Warm colors represent regions with greater thinning. 
The map was transformed to the native space of each brain map to which it was 
correlated (that is, the target maps). b, A surface-based brain map of structural 
evolutionary expansion represents the ratio of the surface area in humans to 

that of macaques, as computed using interspecies surface-based registration19. 
Warm colors indicate regions with greater evolutionary expansion. This map 
(the source map) was transformed to the native space of each brain map to 
which it was correlated. Spatial Pearson’s correlations were assessed against a 
two-sided spatial autocorrelation-preserving null model (‘spin test’)38. Points 
represent the empirical Pearson’s correlation between source and target maps 
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multiple brain systems. The question of how gradients represent-
ing multiple scales of structural and functional organization interact 
is an exciting new area of research that can now be addressed using 
neuromaps.

One consideration that researchers must be aware of when 
using the neuromaps toolbox is that the provided transformations 
between coordinate systems are meant to be applied to group-level 
data; however, in general, when subject-level data are available it is 
better to reprocess them in the desired coordinate system rather than 
transforming group-level aggregate data. Unfortunately, in practice, 
subject-level data for many commonly used brain maps are not avail-
able to researchers, and therefore having high-quality transformations 
between systems is critical to ensuring that analyses are performed 
in the most accurate manner possible. We have based the provided 
transformations on state-of-the-art frameworks (that is, registration 
fusion and multimodal surface matching), which have been rigorously 
assessed and validated on other datasets35–37. Nonetheless, subject-level 
data that have been registered to a template space can benefit from 

the functionalities of neuromaps. For example, subject-level data 
can be contextualized against the neuromaps library to produce a 
subject-specific ‘fingerprint’ of how the individual expresses different 
structural and functional brain phenotypes. As new frameworks arise 
for mapping between coordinate systems we will endeavor to provide 
updated transformations when possible.

Altogether, the current report introduces an open-source Python 
package, neuromaps, for use in human brain mapping research. As the 
rate at which new brain maps are generated in the field continues to 
grow, we hope that neuromaps will provide researchers with a set of 
standardized workflows to better understand what these data can tell 
us about the human brain.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
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Fig. 5 | Application of neuromaps to 20 brain maps. a, Correlation matrices for 
20 brain maps in the neuromaps toolbox for each of the surface-based coordinate 
systems. Because transformations from surface-based to volumetric systems are 
ill-defined for continuous data we omit those associations. The 20 brain maps 
are shown in panel d. b, For each coordinate space and resolution, we show the 
distribution of correlation changes (Δr) when two brain maps (across all pairs of 
brain maps) are correlated in the given coordinate space versus all other spaces. 

c, An example of two brain maps (the principal functional gradient from ref. 32  
and allometric scaling from ref. 22), the association between which is significant  
in one system (CIVET 41k; Pearson’s r = 0.223, two-sided Pspin = 0.049) and  
not in another (fsLR 32k; Pearson’s r = 0.217, two-sided Pspin = 0.097). d,  
A spring-embedded representation of the correlation matrix for the 20 brain 
maps, shown here for the fsLR 32k system.
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data and code availability are available at https://doi.org/10.1038/
s41592-022-01625-w.
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Methods
Human Connectome Project
Generating transformations between coordinate systems requires 
high-quality data from a large cohort of individuals; for the trans-
formations in the neuromaps toolbox we use data from the Human 
Connectome Project (HCP29). Raw T1- and T2-weighted structural 
MRI data were downloaded for n = 1,113 subjects (507 male, age 
22–35 years) from the HCP S1200 release, for which informed con-
sent was obtained. After data processing and omission of subjects 
whose data were not successfully processed using the CIVET pipeline, 
n = 1,045 subjects remained.

Human Connectome Project processing pipeline. All structural data 
were preprocessed using the HCP minimal preprocessing pipelines29,65. 
In brief, T1- and T2-weighted MRI scans were corrected for gradient 
non-linearity and, when available, images were co-registered and aver-
aged across repeated scans for each individual. Corrected T1-weighted 
and T2-weighted images were co-registered and cortical surfaces were 
extracted using FreeSurfer 5.3.0-HCP2,66. Subject-level surfaces were 
aligned to one another using an MSM procedure (MSMAll)30.

CIVET processing pipeline. Images were separately processed 
with the minc-bpipe-library (https://github.com/CoBrALab/
minc-bpipe-library), which performs N4 bias correction, crop-
ping of the neck region, and brain mask generation. Outputs of 
minc-bpipe-library were then processed through the CIVET pipeline 
(v2.1.0, ref. 67), which performs non-linear registration to the MNI 
International Consortium for Brain Mapping (ICBM) 152 volumetric 
template, cortical surface extraction, and registration of subject 
surface meshes to the MNI ICBM 152 surface template. Due to CIVET 
processing failures the data for n = 68 subjects were omitted from 
further analysis.

Standard coordinate systems
Here, we describe in brief the four standard coordinate systems 
(one volumetric and three surface) considered in the current report. 
Although other coordinate systems are used in neuroimaging research, 
these four arguably represent the most commonly used systems in the 
published literature.

The MNI-152 system. A significant body of work has been dedicated 
to explaining what is meant when researchers refer to ‘MNI-152 space’, 
given that several variations of this space exist depending on the choice 
of template68. In addition to variations on the MNI-152 template, there 
exist many other MNI spaces that differ from one another sufficiently 
to affect downstream analyses69. Here, we use the MNI-152 space as 
defined by the template from the University of Minnesota–Washington 
University Human Connectome Project group29, which is a variation 
of the MNI ICBM 152 non-linear sixth generation symmetric template 
(identical to the MNI template provided with the FSL distribution70). 
This template was selected because it is the default template in HCP 
processing pipelines, of which some were used to generate transfor-
mations between coordinate systems. This template was created by 
averaging the T1-weighted MRI scans of 152 healthy young adults that 
had been linearly and non-linearly (over six iterations) transformed to 
a symmetric model in Talairach space.

Note, however, that volumetric data are often available in other 
MNI-152 templates. neuromaps does not currently host functions for 
transforming between MNI-152 templates (but see https://figshare.
com/articles/dataset/MNI_T1_6thGen_NLIN_to_MNI_2009b_NLIN_
ANTs_transform/3502238 for transformations between the MNI-152 
sixth generation template and the MNI-152 2009b non-linear template). 
Nonetheless, the transformation functionalities can be applied to data 
in other MNI-152 templates. These transformations ignore the differ-
ences between MNI-152 templates and should therefore be used only 

when data cannot be registered to the HCP MNI-152 template and if it 
suits the specific research aim.

The fsaverage system. The fsaverage system, used by FreeSurfer, 
represents data on the fsaverage template, a triangular surface mesh 
created via the spherical registration of 40 individuals using an energy 
minimization algorithm to align surface-based features (for example, 
convexity; refs. 66,71). In current distributions of FreeSurfer there are 
five scales of the fsaverage template (fsaverage and fsaverage3–6), 
ranging in density from 642 to 163,842 vertices per hemisphere. The 
fsaverage system is roughly aligned to the space of the MNI-305 volu-
metric system, which was the precursor of the MNI-152 template72,73.

The fsLR system. The fsLR coordinate system was created to overcome 
perceived shortcomings of the fsaverage system: namely, hemispheric 
asymmetry74. That is, the left and right hemispheres of the fsaverage 
surface are not in geographic correspondence, such that vertex A in 
the left hemisphere does not correspond to the same brain region as 
vertex A in the right hemisphere. The fsLR atlas was created by aligning 
the two hemispheres of the fsaverage surface into a common hybrid 
surface, using landmark surface-based registration (originally called 
the ‘fs_LR hybrid atlas’). fsLR templates are available in densities rang-
ing from 32,492 to 163,842 vertices per hemisphere.

The CIVET system. The coordinate system used by the CIVET software 
is a group-averaged surface reconstruction of the individual-participant 
volumes comprising the volumetric MNI ICBM 152 non-linear sixth 
generation template75,76. In its most commonly used format each hemi-
sphere is represented by 41,962 vertices; a high-resolution version 
with 163,842 vertices per hemisphere is also available. Because this 
system is derived from the volumetric MNI template, it ensures that 
aligned surfaces have good correspondence with volumetric images 
in the MNI-152 system.

Generating transformations between systems
Transformation of individual data to a common coordinate system is 
often performed to account for anatomical differences between indi-
vidual subjects prior to group aggregation, and makes derived maps 
more comparable across datasets72,77. Data collected from MRI are tradi-
tionally represented as volumetric images and are therefore commonly 
transformed to a standard ‘population’ image in volumetric space (for 
example, the MNI ICBM 152 template; refs. 78,79); however, standardized 
triangular (that is, ‘surface’) meshes are increasingly used to represent 
data as well (for example, the fsaverage, fsLR and CIVET surfaces66,71,74,76). 
Transforming individual, subject-level data between different represen-
tations and coordinate systems is non-trivial and has been the focus of 
substantial research over the past several decades36,80–87.

Although there are numerous methods for transforming 
data between coordinate systems, high-quality mappings for 
group-averaged data are limited35,88,89. In creating the neuromaps tool-
box, we used two previously validated frameworks to generate transfor-
mations between all four standard coordinate systems described above 
(Fig. 3). All of the transformations were generated using unsmoothed 
anatomical data and are therefore not biased against data that have 
been smoothed.

Registration fusion framework. Registration fusion is a framework 
for projecting data between volumetric and surface coordinate sys-
tems35,90. In its most well-known implementation, researchers used data 
from the Brain Genomics Superstruct Project91 to generate non-linear 
mappings between MNI-152 space and the 164k fsaverage surface35.

Registration fusion works by generating two sets of mappings for a 
group of subjects: a mapping between each subject’s native image and 
MNI-152 space, and a mapping between each subject’s native image and 
fsaverage space. These mappings are concatenated (MNI-152 to native 
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to fsaverage) and then averaged across subjects, yielding a single, 
high-fidelity mapping that can be applied to new datasets.

Here, we generated mappings via registration fusion between the 
MNI-152 volumetric and the fsaverage, fsLR and CIVET surface-based 
coordinate systems using data from the HCP. All mappings used func-
tionality from the Connectome Workbench92 rather than FreeSurfer 
to ensure standardization of methodology irrespective of the target 
coordinate systems.
MNI-152 to CIVET. Unlike for the fsaverage and fsLR surfaces, CIVET 
surfaces are extracted from subject T1-weighted MRI volumes after the 
images have been transformed to the standard MNI-152 system. As such, 
there is no need to generate composite mappings for CIVET surfaces 
as for the other coordinate systems. Instead, we simply computed the 
mapping from each subject’s MNI-152-transformed T1-weighted MRI 
volume to the subject’s native CIVET surface, and then applied the 
CIVET-generated surface resampling to register the mapping to the 
CIVET standard template system. These mappings were then averaged 
across subjects to generate a single, group-level transformation.
fsaverage, fsLR or CIVET to MNI-152. Although every surface vertex has 
a corresponding voxel representation in volumetric space, not every 
voxel has a corresponding vertex representation in surface space. As 
such, generating transformations from the surface coordinate systems 
to the MNI-152 volumetric system cannot yield a dense output map. 
When the current registration fusion framework was proposed35, a 
nearest neighbors, ribbon-filling approach was adopted to handle this 
shortcoming; however, this is a viable approach only when applied to 
label data (that is, integer-based parcellation images). We reproduce 
this approach for completeness but caution against the application 
of surface-to-volume projections for continuous data and omit such 
projections from our analyses.

Multimodal surface matching framework. The MSM framework36,37 
aims to align surfaces defined on different meshes using information 
from various descriptors of brain structure and function. This pro-
cedure has been previously used to generate mappings between the 
fsaverage and fsLR coordinate systems.

Here, we used MSM to generate a mapping between the CIVET 
and fsLR systems by aligning HCP subject data processed through the 
CIVET pipeline with the same data processed through the HCP pro-
cessing pipeline. Given that MSM requires that input data be provided 
on spherical surface meshes (a representation not produced in the 
standard CIVET pipeline) we used FreeSurfer functionality to generate 
spherical mesh representations and sulcal depth information for each 
subject’s CIVET-derived white matter surfaces. We used these spherical 
meshes and sulcal depth measurements to drive alignment between the 
CIVET and fsLR systems via two rounds of the MSM procedure. The first 
round was used to generate a rotational affine transform to align gross 
features of the CIVET and fsLR systems; the generated affines were 
averaged across all subjects and used to seed a second round of finer 
resolution alignment, similar to the procedure previously described37. 
The final, aligned subject-level spherical surfaces defined in the CIVET 
system were averaged to create a single, group-level surface that could 
be used in future transformations.

The CIVET-to-fsaverage mapping was generated as the com-
posite of the transformations between the CIVET-and-fsLR and 
fsLR-and-fsaverage systems.

Parcellations. Performing analyses at the voxel or vertex level can be 
computationally intensive. The neuromaps software package can be 
extended to parcellated data and also integrates tools for parcellat-
ing volumetric and surface-based data. The base parcellating func-
tion assumes that the given parcellation indexes each region with 
a unique value, where values of 0 are considered background and 
ignored. Helper functions are provided to flexibly handle alternative 
parcellation formats. For example, surface parcellations are often 

defined in separate left–right GIFTI files for which the same identifi-
cation numbers are used across both hemispheres, even though each 
hemisphere has unique parcels. In this case, the user can relabel the 
parcellation identification numbers such that they are consecutive 
across hemispheres. This default format was selected to keep surface 
and volumetric parcellations consistent, and to avoid confusion when 
hemispheres are not symmetric.

Published brain maps
We curated a selection of brain maps from the published literature of 
the past decade (Fig. 2). Maps were obtained in their original coordi-
nate system, with the exception of the genomic gradient derived from 
the Allen Human Brain Atlas. The Allen Human Brain Atlas samples 
across the surface were upsampled to the fsaverage 10k surface using 
a k-nearest neighbors interpolation before applying principal compo-
nent analysis. A complete list of maps and their coordinate systems is 
given in Supplementary Table 1. Some of these maps were originally 
defined in coordinate systems that are no longer used. In brief, we 
describe the transformations we used to project these maps to one of 
the current standard coordinate systems.

PALS-TA24 to fsLR. Data obtained from ref. 19 were originally aligned 
to a study-specific PALS-TA24 template (derived using a similar 
landmark-based procedure to the PALS-B12 template93), which has 
been supplanted by the fsLR coordinate system. To project data from 
the PALS-TA24 template to the fsLR system we applied the deforma-
tion map provided by the original researchers for transforming data 
between these spaces using nearest neighbors interpolation.

CIVET v1 to v2. The maps obtained from ref. 22 were originally created 
using surface templates from CIVET v1.1.12; however, with the release 
of CIVET v2.0.0 in 2014 the population surface templates provided 
with the CIVET distribution were updated, effectively rendering the 
older templates redundant. To project data from the CIVET v1.1.12 
templates to the CIVET v2.0.0 templates we used a nearest neighbors 
interpolation, matching vertex coordinates in the newer template to 
coordinates in the older template and assigning the value correspond-
ing to the closest vertex22.

Spatial null frameworks
Recent research has consistently highlighted the importance of spa-
tially constrained null models when statistically comparing brain 
maps38,43,45. The neuromaps software package integrates nine differ-
ent spatial null frameworks45. These include six spatial permutation 
models and three parametrized data models, which, collectively, can be 
constructed for surface-based, volumetric and parcellated data4,38–44. 
Note that four of the null models are adaptations of the original spatial 
permutation framework38 when applied to parcellated data39–42. These 
frameworks differ in how they reassign the medial wall (for which most 
brain maps contain no data), whether that be by discarding missing 
data41,42, ignoring the medial wall entirely40 or reassigning missing data 
to the nearest parcel39. The three parametrized data models circumvent 
spatial rotations by applying generative frameworks such as a spatial 
lag model4, spectral randomization44 or variogram matching43.

For analyses in the current report using surface-based coordi-
nate systems, we apply the original spatial permutation framework 
procedure38; for analyses using volumetric systems we apply the 
variogram-matching method43. Null distributions were systemati-
cally derived from 1,000 null maps generated by each framework. The 
mechanism for each null framework used for analyses in the present 
work is described in brief in the following sections.

Spatial permutation null model. The spatial permutation procedure 
used in the present report generates spatially constrained null distribu-
tions by applying random rotations to spherical projections of a cortical 
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surface38. A rotation matrix (R) is applied to the three-dimensional 
coordinates of the cortex (V) to generate a set of rotated coordinates 
(Vrot = VR). The permutation is constructed by replacing the original 
values at each coordinate with those of the closest rotated coordinate. 
Rotations are generated independently for one hemisphere and then 
mirrored across the anterior–posterior axis for the other.

Variogram estimation null model. The parametric model used in the 
present report operates in two main steps: first the values in a given 
image are randomly permuted, then the permuted values are smoothed 
and re-scaled to reintroduce spatial autocorrelation characteristic of 
the original, non-permuted data43. Reintroduction of spatial autocor-
relation onto the permuted data is achieved via the transformation 
y = |β|1/2x′ + |α|1/2z, where x′ is the permuted data, z ∼ 𝒩𝒩𝒩0, 1) is a vector 
of random Gaussian noise, and α and β are estimated via a least-squares 
optimization between variograms of the original and permuted data.

Assessing the impact of coordinate system
When transforming two datasets (that is, a source and target dataset) 
defined in distinct coordinate spaces to a common system there are 
at least three options available: transform the source dataset to the 
system of the target, transform the target dataset to the system of the 
source, or transform both source and target datasets to an alternate 
system. If comparisons are being made across several pairs of datasets 
a fourth option becomes available: always transform the higher resolu-
tion dataset to the system of the lower-resolution dataset.

To examine whether the choice of coordinate system affects sta-
tistical relationships estimated between brain maps we performed 
several analyses. First, we transformed a selection of 20 brain maps into 
every other coordinate system (for example, fsaverage → fsLR, CIVET 
and MNI-152, fsLR → fsaverage, CIVET and MNI-152, and so on). We then 
correlated every pair of these brain maps according to each of the four 
possible resampling options described above. When transforming both 
source and target datasets to an alternate system (option 3 above), 
we comprehensively tested every target coordinate system and data 
resolution. Spatial null models were used to assess the significance of 
all of the correlations.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Data used in the present analyses are publicly available on GitHub 
(https://github.com/netneurolab/neuromaps). The schizophrenia 
deformation-based morphometry map used in Fig. 4 is derived from 
the Northwestern University Schizophrenia Data and Software Tool 
dataset available at https://central.xnat.org/. The Human Connectome 
Project database is available at https://db.humanconnectome.org/
data/projects/HCP_1200.

Code availability
All code used for data processing, analysis and figure generation 
directly relies on the following open-source Python packages: BrainS-
MASH43, BrainSpace44, IPython94, Jupyter95, Matplotlib96, NiBabel97, 
Nilearn98, NumPy99,100, Pandas101, PySurfer102, Scikit-learn103, SciPy104, 
Seaborn105 and SurfPlot (https://github.com/danjgale/surfplot106). 
Additional software used in the reported analyses includes CIVET (v2.1.1, 
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET63), FreeSurfer 
(v6.0.0, http://surfer.nmr.mgh.harvard.edu/67) and the Connectome 
Workbench (v1.5.0, https://www.humanconnectome.org/software/
connectome-workbench88). Source code for neuromaps is available on 
GitHub (https://github.com/netneurolab/neuromaps) and is provided 
under the Creative Commons Attribution-NonCommercial-ShareAlike 
4.0 International License (CC-BY-NC-SA; https://creativecommons.org/

licenses/by-nc-sa/4.0/). We have integrated neuromaps with Zenodo, 
which generates unique digital object identifiers (DOIs) for each new 
release of the toolbox. Researchers can install neuromaps as a Python 
package via the PyPi repository (https://pypi.org/project/neuromaps) 
and can access comprehensive online documentation via GitHub Pages 
(https://netneurolab.github.io/neuromaps). The neuromaps toolbox 
is also available as a Docker container (https://hub.docker.com/r/net-
neurolab/neuromaps/tags), which ensures that the toolbox remains 
functional even as dependencies are updated and changed. Finally, as 
an open-source toolbox, neuromaps is open to user suggestions and 
improvements, ensuring that it remains an evolving resource.
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Preprocessing

Preprocessing software Preprocessing was done using FSL 5.0.6, FreeSurfer 5.3.0-HCP, and Connectome Workbench v1.1.1.
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