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Estimation of skeletal kinematics in freely 
moving rodents

Arne Monsees    1  , Kay-Michael Voit1, Damian J. Wallace1, Juergen Sawinski    1, 
Edyta Charyasz2,3, Klaus Scheffler    2,3, Jakob H. Macke4,5,6 and 
Jason N. D. Kerr    1,6 

Forming a complete picture of the relationship between neural activity 
and skeletal kinematics requires quantification of skeletal joint 
biomechanics during free behavior; however, without detailed knowledge 
of the underlying skeletal motion, inferring limb kinematics using 
surface-tracking approaches is difficult, especially for animals where the 
relationship between the surface and underlying skeleton changes during 
motion. Here we developed a videography-based method enabling detailed 
three-dimensional kinematic quantification of an anatomically defined 
skeleton in untethered freely behaving rats and mice. This skeleton-based 
model was constrained using anatomical principles and joint motion limits 
and provided skeletal pose estimates for a range of body sizes, even when 
limbs were occluded. Model-inferred limb positions and joint kinematics 
during gait and gap-crossing behaviors were verified by direct measurement 
of either limb placement or limb kinematics using inertial measurement 
units. Together we show that complex decision-making behaviors can 
be accurately reconstructed at the level of skeletal kinematics using our 
anatomically constrained model.

Much of the motion kinematic data forming our view of the sensori-
motor control of movement was collected during short behavioral 
epochs where the animal was in various forms of restraint1–6, but a 
major challenge still remains for generating detailed kinematics of 
individual body parts, such as limbs, and how they interact with the 
environment during free behavior7,8. This poses an especially diffi-
cult problem as limb motions involving muscles, bones and joints are 
biomechanically complex given their three-dimensional (3D) trans-
lational and rotational co-dependencies9,10. Single-plane X-ray-based 
cineradiography and fluoroscopy approaches can be used to directly 
image bone motion during gait11,12 for calculation of limb kinematics, 
but are limited in simultaneous field of view13, temporal sample rate14,15 
(but see elsewhere16) and can only image one plane. A combination of 

multiple X-ray sources17,18 and 3D modeled bones19 have been used to 
measure single-limb joint kinematics in multiple rotational planes, from 
animals of a variety of different species, while they were walking20–22 
or performing reaching tasks23,24; however, in these experiments the 
animal’s range of movements was limited to the area illuminated by 
the X-ray sources.

More recently, imaging of free animal behavior using light25,26 has 
been combined with machine-learning approaches to enable limb 
tracking in freely moving27 and head-restrained insects28, and body 
tracking in multiple species, including humans29. While the insect exo-
skeleton provides joint angle limits and hard limits of limb position and 
can be tracked as a surface feature, when imaging vertebrates such as 
rodents, fur and soft tissue occludes the entire skeleton, complicating 
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expectation-maximization (EM) algorithm. From this last step, the 
kinematics could be calculated for each joint (Fig. 1c). These steps are 
described in further detail below.

Building and constraining the skeleton model
At the core of this approach was a generalized skeleton, based on both 
rat40 and mouse bone anatomy41,42 (Fig. 1d), modeled as a mathematical 
graph with vertices representing individual joints and edges represent-
ing bones (Fig. 1e, Supplementary Fig. 1a and Supplementary Text). 

inference of bone positions, as the spatial relationship between 
skeleton and overlying soft tissues are less apparent12,30–32. Despite 
this limitation, recent approaches have extended two-dimensional 
surface-tracking methods27,33,34 to include 3D pose reconstructions35,36 
using a multi-camera cross-validation approach and hand-marked 
ground-truth datasets37, allowing general kinematic representation of 
animal behaviors and poses for multiple species29,38, as well as simul-
taneous measurements from multiple animals27,33,39. Extending these 
approaches to obtain skeletal kinematics relies on knowledge of the 
skeletal anatomy and biomechanics as well as motion restrictions of 
joints9, because animal poses are limited by both bone lengths and 
joint angle limits.

Here, we developed an anatomically constrained skeleton model 
incorporating mechanistic knowledge of bone locations, anatomi-
cal limits of bone rotations and temporal constraints, to track 3D 
joint positions and their kinematics in freely moving rats and mice. 
We compared the performance of our approach with ground-truth 
data, using magnetic resonance imaging (MRI) for comparison with 
the initial skeleton fitting, frustrated internal reflection for com-
parison of foot-placement positions with positions inferred from our 
method and direct measurements of limb kinematics using inertial 
measurement units (IMUs) for comparison with the inferred skeletal 
kinematics. Together the fully constrained skeleton enabled the 
reconstruction of skeleton poses and kinematic quantification during 
gap-crossing, jumping and reaching tasks and throughout spontane-
ous behavioral sequences.

Results
We tracked 3D skeletal joint positions and their kinematics in freely 
moving rats (Fig. 1a; n = 8; average weight 284.4 g; range 71–735 g) 
and mice (Fig. 1b bottom; n = 2; average weight 32.8 g; range 27–36 g) 
using videography and an anatomically constrained skeleton model 
(ACM) incorporating mechanistic knowledge of bone locations, ana-
tomical limits of bone rotations, and temporal constraints. We per-
formed pose and kinematic estimation using the ACM in three steps: 
(1) a manual-labeling initialization step, (2) a surface-marker-detection 
step and (3) a pose-estimation step from which kinematics of individual 
joints could be calculated. In the first step, we manually labeled the 
surface markers in a subset of images throughout the dataset. These 
data were used both for training the DeepLabCut34 (DLC) network 
and for learning the model skeleton in the pose-estimation step. In 
the second step, we used DLC to automatically detect surface-marker 
positions located on the behaving animals. In the third step, the model 
skeleton was first learned from a subset of images and then pose esti-
mates were made for each frame using the learned skeleton and the 
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Fig. 1 | Learning an anatomically constrained skeleton model for mice and 
rats. a, Example images of a freely moving rat with painted surface labels, also 
showing the fitted and re-projected skeleton model (green). Scaled skeleton 
shown at right for comparison with b. b, as for a, but showing images from a  
freely moving mouse. Scaled skeleton on right for comparison with a. c, Time 
series of the reconstructed right hind limb during the sequence shown in a.  
d, Schematic image of a rat skeleton showing anatomical landmarks. e, Schematic 
image of a hind limb with modeled bones (black lines) and joints (black dots) as 
well as enforced joint angle limits for flexion and extension (red dashed lines).  
f, MRI scans (maximum projection) of two rats of different weights (top, middle), 
a mouse (bottom) and an enlargement of the right elbow joint from a rat (bottom 
left, mean projection, area denoted by dashed box) with manually labeled bone 
(white lines) and joint (white dots) positions. Note visible MRI surface marker 
(asterisk). g, 3D representation of a rat’s MRI scan showing the animal’s surface 
(gray) and the aligned skeleton model (black lines) and joint angle limits for 
flexion or extension (red lines), abduction or adduction (green lines) and internal 
or external rotation (blue lines). h, Learned bone lengths compared to MRI bone 
lengths (n = 6 rats and 2 mice). Colors represent mouse data (magenta) and small 
(blue, 71 g and 72 g), medium (cyan, 174 g and 178 g) and large (green, 699 g and 
735 g) rat data.
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Fig. 2 | Comparison between inferred and measured paw positions during 
free behavior. a, Reconstructed animal pose based on a learned skeleton model 
with highlighted left front (purple), right front (red), left hind (cyan) and right 
hind paw (yellow). b, Reconstructed x–y positions of the paws during gait. 
Colors as in a. c, Schematic image of the FTIR touch-sensing setup with one 
underneath and four overhead cameras. d, Single image from the underneath 
camera with reconstructed (x) and ground-truth (filled circle) x–y positions of 
the paw’s centers and fingers/toes for all four paws. Colors as in a. Large point 
clouds around landmark locations indicate high uncertainty. Note that only 
the second toe and finger are represented in the model skeleton, but that the 
positions of three toes and fingers were detected and tracked. e, Enlarged view 
of the left front paw in d (white box) showing calculation of position error (left) 
and the angle error (right). Scale bar in right image applies to both images in e. 
f, Maximum intensity projection from the underneath camera of a 2.5-s long 

sequence with trajectories for the reconstructed x–y positions of the right hind 
paw using the ACM (green), temporal (blue), joint angle (orange) and naive 
skeleton (brown) models. g, Probability histograms for paw position (left) and 
angle errors (right) comparing different model constraint regimes. Color-coding 
as in f. h, Probability histograms for paw velocities (left) and accelerations (right) 
comparing different model constraint regimes. Color-coding as in f. i, Probability 
histograms for paw position errors when only undetected surface markers 
are used for the calculation comparing different model constraint regimes. 
Color-coding as in f. j, Position errors of occluded markers (bottom, mean ± s.d. 
of samples) and corresponding binned sample sizes (top) as a function of time 
since last or until next marker detection comparing different model constraint 
regimes. Color-coding as in f. Sample sizes differ depending on whether 
reconstructed poses were obtained via the unscented RTS smoother (green) or 
not (brown).
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For example, we used a single edge to represent the animal’s head, we 
approximated the spinal column using four edges based on cervical, 
thoracic and lumbar sections of the column with the sacrum as the 
fourth edge40–42 and we approximated the tail using five edges (Fig. 1d 
and Supplementary Fig. 1).

To constrain the skeleton model we applied angle limits for each 
joint based on measured rotations43 (Fig. 1e) as well as anatomical con-
straints based on measured relationships between bone lengths and 
animal weight for rats44, and on measured adult bone lengths for mice42. 
Finally, as vertebrates are symmetrical around the mid-sagittal plane 
we applied an additional anatomical constraint to ensure symmetry 
for bone lengths and surface-marker locations (Supplementary Fig. 1). 
Together, this approach enabled fitting of a skeleton model for each 

animal. To generate probabilistic estimates of 3D joint positions and 
provide temporal constraints, we implemented a temporal unscented 
Rauch–Tung–Striebel (RTS) smoother45,46, an extension of the Kalman 
filter47, which is suitable for nonlinear dynamic models and also incor-
porates information from future marker locations (Supplementary 
Text). Parameters of the smoother were learned via the EM algorithm48, 
by iteratively fitting poses of the entire behavioral sequence.

Learning the skeleton for individual animals
To relate the animal’s surface to the underlying skeleton we used a grid 
of rationally placed surface markers on each animal, which were either 
distinct anatomical landmarks such as the snout or were painted on the 
animal’s fur (Fig. 1a (14 landmarks and 29 spots in total per animal) and 
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Fig. 3 | Periodic gait cycles in freely moving rats and mice. a, Trajectories 
in the freely moving rat of the normalized x position (Px) as a function of time 
(mean ± s.d. of 1,000 propagations through the probabilistic model) for the 
left wrist (purple), right wrist (red), left ankle (cyan) and right ankle (yellow) 
joint during gait. Schematic above at left illustrates the normalized position of 
an ankle joint (cyan spot) and normalization joint (magenta). Individual traces 
show the estimated position (solid line) with the uncertainty in the position 
represented by the width of the surrounding shaded area. Note that the left and 
right wrist joints were occluded for large parts of this segment, illustrated by the 
larger uncertainty in position on these traces. b, As in a, but for data from a freely 
moving mouse. All joints are clearly visible throughout the mouse segment, 
resulting in small uncertainty ranges for all traces. c, Autocorrelations of the 
normalized x position for data from a freely moving rat as a function of time 
(left) for four different limbs as well as a corresponding model fit via a damped 

sinusoid (black). Fourier-transformed autocorrelations of all limbs (right) have 
their maximum peak at the same frequency. Colors as in a. d, As in c, but for 
data from a freely moving mouse. e, Population-averaged trajectories of the 
normalized x position for data from freely moving rats as a function of time for 
the ACM (left), the naive skeleton model (center) and the surface model (right). 
Individual traces represent mean and s.d. Data from 28 sequences, 146.5 s, 
58,600 frames in total from four cameras, n = 2 rats. Colors as in a. Trajectories 
of the ACM and the naive skeleton model correspond to the 3D joint locations, 
whereas trajectories of the surface model correspond to the 3D locations of the 
associated surface markers. Scale bar on left applies to both left and center. f, As 
in e, but for data from freely moving mice. Data from 29 sequences, 93.8 s, 73,536 
frames total from four cameras, n = 2 mice. Scale bar on left applies to both left 
and center.
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Fig. 4 | 3D pose reconstruction of gait cycles with independent gyroscope-
based verification. a, Overhead camera image of freely moving rat with attached 
IMUs and signal wires. b, MicroCT image of IMU unit placed on skin over tibia. 
c, Example traces of inferred absolute angular velocity of the leg from the ACM 
(black), the angular velocity directly measured by the IMU (red) and left ankle 
x position (blue, anatomical position as in f). Colored line segments below the 
traces illustrate the segments used for correlation calculations in e. Asterisk 
marks the peak that corresponds to the lowest correlation value in e. Dashed 
box shown expanded in d. e, Correlation coefficients between simultaneously 
recorded ACM (black in c) and IMU (red in c) traces around peaks (colored 
segments in c) (14 peaks, rat 1, red) and for data from a second rat (blue, 6 peaks). 
Asterisk indicates the value from the correspondingly marked peak in c, vertical 
black line denotes s.d., horizontal black line denotes the median. f, Normalized 
x velocity as a function of time (mean ± s.d. of 1,000 propagations through 

the probabilistic model) of the left wrist (purple), right wrist (red), left ankle 
(cyan) and right ankle (yellow) for the ACM (top) and the naive skeleton model 
(bottom) during gait. g, Population-averaged trajectories of the quantities in f as 
a function of time for the ACM (left), the naive skeleton model (center) and the 
surface model (right). Individual traces represent mean and s.d. Data from 28 
sequences, 146.5 s, 58,600 frames in total from four cameras, n = 2 rats. Colors as 
in f. Trajectories of the ACM and the naive skeleton model correspond to the 3D 
joint locations, whereas trajectories of the surface model correspond to the 3D 
locations of the associated surface markers. Scale bar on left applies to both left 
and center. h,i, As in f and g, respectively, but for the normalized joint angle. Scale 
bar on left in i applies to all three panels. j,k, As in f and g, respectively, but for the 
first temporal derivative of the normalized joint angle (angular velocity). Scale 
bar on left in k applies to both left and center.
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Supplementary Fig. 1). In the model each marker was rigidly connected 
to at least a single joint, but one joint could be associated with multiple 
markers, making the fitting of the model skeleton more robust to vari-
ation in the number of visible markers and surface-marker position 
relative to the joint during animal movement. We then imaged each 
marked animal using overhead cameras as it freely behaved, and we 
manually annotated the visible surface markers from each camera 
from a fraction of all recorded images to tailor the generalized skel-
eton model to the individual animal (Supplementary Fig. 2). For this, 
we utilized a gradient descent approach, minimizing the 2D distance 
between manual labels and projected 3D positions into each camera. 
We simultaneously optimized all per-frame pose parameters (position 
and bone rotation) and the skeletal parameters (bone length and rela-
tive position of markers to joints), which remain constant over time and 
define the final individual skeleton for the subsequent pose estimation 
of the animal (Supplementary Video 1). To evaluate the accuracy of 
the skeleton model we generated high-resolution MRI scans for each 
rat and mouse (Fig. 1f; n = 6 rats, n = 2 mice) and aligned the skeleton 
model to measured positions of 3D surface markers (Fig. 1g). Inferred 
bone lengths were not significantly different from those measured in 
MRI scans (Fig. 1h; mouse and rat bone length error of 0.45 ± 0.35 and 
0.36 cm (mean ± s.d. and median); n = 56 bone lengths; Spearman cor-
relation coefficient of 0.81; two-tailed P value testing non-correlation of 
2.86 × 10−14; range of measured bone lengths 0.56–4.76 cm). Together 
this demonstrated that the ACM generated by our algorithm was accu-
rate when compared to the animal’s actual skeleton across the range 
of animal sizes and species.

Accurate behavior reconstructions required both temporal 
and anatomical constraints
To reconstruct behavioral sequences using the ACM, we first tracked 
two-dimensional (2D) surface-marker locations in the recorded movies 
using DLC trained with the manually marked frames. As the ACM con-
tained both joint angle limits and temporal constraints, we evaluated 
the role of these by reconstructing poses without either the joint angle 
limits or the temporal constraints. We compared the resulting temporal 
model, joint angle model and naive skeleton model, constrained by nei-
ther, to the ACM. Freely behaving animals showed many spontaneous 
behaviors, such as rearing and gait (Supplementary Video 2). We used 
a modified frustrated total internal reflection (FTIR) touch-sensing 
approach49,50 (Fig. 2a–c and Supplementary Video 3) to generate 
ground-truth animal paw positions and orientations during gait, and 
then compared these measurements to the paw positions and orien-
tations inferred by each model variation (Fig. 2d–f; n = 6 animals; 29 
sequences; and 181.25 s per 145,000 frames in total from four cameras). 
The ACM produced significantly smaller positional errors compared 
to all other models (Fig. 2g; 10,410 positions in total; P values using 
one-sided Kolmogorov–Smirnov test, P = 9.84 × 10−21 for ACM versus 
joint angle model; P = 4.38 × 10−35 for ACM versus temporal model; 
and P = 9.03 × 10−37 for ACM versus naive skeleton model), whereas 
orientation errors were only significantly smaller when comparing 
the ACM to the temporal and naive skeleton model (Fig. 2g; 7,203 and 
6,969 orientations in total for the ACM and joint angle model and 
the temporal and naive skeleton model, respectively; P values using 
one-sided Kolmogorov–Smirnov test, P = 3.20 × 10−39 for ACM versus 
temporal model; and P = 2.51 × 10−50 for ACM versus naive skeleton 
model). While orientation errors were substantially reduced by the 
anatomical constraints, including temporal constraints limited abrupt 
pose changes over time compared to either the naive skeleton model or 
joint angle model (Fig. 2f and Supplementary Videos 4–9). As a result, 
ACM-generated joint velocities and accelerations (Fig. 2h; 576,288 
velocities and accelerations total) were significantly smaller when 
compared to the joint angle and naive skeleton models (P values using 
one-sided Kolmogorov–Smirnov test were all numerically 0 for ACM 
versus joint angle model (velocity); ACM versus naive skeleton model 

(velocity); ACM versus joint angle model (acceleration); and ACM versus 
naive skeleton model (acceleration)). The temporal and anatomical 
constraints each had an advantage over the naive skeleton model and 
both constraints applied simultaneously improved positional accuracy 
as well as motion trajectories and prevented anatomically infeasible 
bone orientations and abrupt paw relocations. Moreover, the fraction 
of position errors exceeding 4 cm increased when constraints were not 
considered (ACM, 2.72%; joint angle model, 3.64%; temporal model, 
4.42%; and naive skeleton model, 6.44%) and the same was observed for 
orientation errors exceeding 60° (ACM, 7.78%; joint angle model, 7.81%; 
temporal model, 17.77%; and naive skeleton model, 18.22%). Likewise, 
enforcing constraints also lowered the percentage of velocities exceed-
ing 0.08 cm ms−1 (ACM, 3.29%; joint angle model, 13.49%; temporal 
model, 3.28%; and naive skeleton model, 13.85%) and accelerations 
exceeding 0.02 cm ms−2 (ACM, 0.22%; joint angle model, 23.43%; tem-
poral model, 0.25%; and naive skeleton model, 24.55%). The ACM was 
robust to missing surface markers (in cases where surface markers were 
undetected; Fig. 2i; 2,797 position errors in total) and produced signifi-
cantly lower errors (P values using one-sided Kolmogorov–Smirnov 
test, P = 9.67 × 10−23 for ACM versus joint angle model; P = 2.83 × 10−22 for 
ACM versus temporal model; and P = 3.91 × 10−47 for ACM versus naive 
skeleton model) as well as the smallest number of error values above 
4 cm (ACM, 9.36%; joint angle model, 11.61%; temporal model, 13.72%; 
and naive skeleton model, 19.12%). Paw placement errors increased 
the longer a surface marker remained undetected for the ACM and 
the naive skeleton model (Fig. 2j; linear regression; slope of 1.49 cm s−1 
and intercept of 1.13 cm for ACM; and slope of 2.77cm s−1 and intercept 
of 1.39 cm for the naive skeleton model) and errors were significantly 
lower when comparing both models (P value using one-sided Mann–
Whitney rank test of 3.91 × 10−47 for ACM versus naive skeleton model).

Kinematics of cyclic gait behavior in mice and rats
Smooth and periodic reconstruction of an animal’s average gait cycle 
during walking or running is only possible with robust and accurate 
tracking of animal limb positions. To establish whether the ACM 
could generate an average gait cycle from freely moving data, we next 
extracted individual gait cycles for both the rat (Fig. 3a) and mouse 
(Fig. 3b) from multiple behavioral sequences (Supplementary Fig. 3 

Table 1 | Temporal periodicity of gait cycles

ACM Naive skeleton model

Mean (ms) s.d. (ms) Mean (ms) s.d. (ms)

Rat

Position (min. peaks) 75.00 29.01 64.16 56.78

Velocity (max. peaks) 78.33 10.67 80.83 54.99

Angle (max. peaks) 78.33 23.74 74.16 33.53

Angular velocity (min. 
peaks)

75.00 10.40 53.33 47.78

Total peaks 12 12

Sampling rate (Hz) 100 100

Mouse

Position (min. peaks) 82.48 59.57 82.48 67.20

Velocity (max. peaks) 99.91 14.94 97.79 35.58

Angle (max. peaks) 100.77 16.02 85.46 68.39

Angular velocity (min. 
peaks)

105.44 22.08 97.79 18.02

Total peaks 12 12

Sampling rate (Hz) 196 196

http://www.nature.com/naturemethods


Nature Methods | Volume 19 | November 2022 | 1500–1509  1506

Article https://doi.org/10.1038/s41592-022-01634-9

and Supplementary Videos 10–12) where joint velocities exceeded 
25 cm s−1 (n = 2 rats, 28 sequences, 146.5 s and 58,600 frames in total 
from four cameras; and n = 2 mice, 29 sequences, 93.8 s and 73,536 
frames in total from four cameras). The ACM-extracted gait cycles 
for both species were stereotypical and rhythmic (Fig. 3a,b), showing 
periodicity in autocorrelations of extracted limb movement (Fig. 3c,d; 
damped sinusoid fit, frequency of 3.14 Hz; decay rate of 2.49 Hz; and 
R2 = 0.90 for rat; and damped sinusoid fit, frequency of 2.24 Hz; decay 
rate of 2.24 Hz; and R2 = 0.88 for mouse) and also for both species, 
a common peak for all limbs in Fourier-transformed data (Fig. 3c,d; 
maximum peak at 3.33 Hz; and sampling rate of 0.83 Hz for rat; and 
maximum peak at 2.50 Hz; and sampling rate of 0.83 Hz for mouse). 
For both the rat and mouse, averaged ACM-extracted gait cycles (Fig. 
3e,f and Supplementary Figs. 4–7) were significantly less variable than 
those obtained from the naive skeleton model (Fig. 3e,f) throughout 
the entire gait cycle (P value using one-sided Mann–Whitney rank test 
of 1.40 × 10−49 for rat and 2.03 × 10−96 for mouse). When gait cycles were 
obtained from only tracking surface markers alone via DLC without 
any form of underlying skeleton (surface model), high noise levels 
even made the periodic nature of the gait cycles vanish in its entirety 
for both species (Fig. 3e,f).

Comparison of inferred with measured kinematics
We next directly compared limb kinematics inferred by the ACM with 
the kinematics measured simultaneously from an IMU carried on the 
same limb below the knee joint (Fig. 4a,b). During gait cycles, the meas-
ured absolute limb kinematics matched the ACM-inferred limb kinemat-
ics continuously through multiple gait cycles (Fig. 4c,d). Over multiple 
animals the correlation between the two measurements was high (Fig. 
4e; correlation coefficient median of 0.81, s.d. 0.09, n = 2 animals) with 
peak velocities occurring simultaneously (median difference 0.00 s, 
mean 0.01 s, s.d. 0.11 s, P = 0.61, Student’s t-test for difference to distri-
bution with mean 0). The reliability of kinematic estimation from the 
ACM was particularly apparent when comparing joint velocities (Fig. 
4f,g), joint angles (Fig. 4h,i), and joint angular velocities (Fig. 4j,k) to 
the kinematics estimated without the ACM constraints, which were 
dominated by noise in individual examples (Fig. 4f,h,j), and the cyclic 
nature of gait was less prominent when compared to traces obtained 
from the ACM (Fig. 4f,h,j). Consistent with this, ACM-averaged traces 

(Fig. 4g,i,k and Supplementary Figs. 4–7) had significantly less variance 
compared to those obtained from the naive skeleton model (Fig. 4g,i,k 
and Supplementary Figs. 4–7) for all metrics (rat and mouse P values 
using one-sided Mann–Whitney rank test of 2.28 × 10−55 and 9.63 × 10−107 
for velocity; 1.42 × 10−55 and 1.63 × 10−94 for angle; and 1.44 × 10−55 and 
7.73 × 10−108 for angular velocity, respectively). Cyclic, gait-related, 
peaks were barely discernible when tracking surface markers only 
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Fig. 5 | 3D pose reconstruction of skeletons allows for detailed quantification 
of complex behavior. a, Images of a rat performing a trial in the gap-crossing 
task. b, Reconstructed xy positions of the hind paws at the start and end of 
the jump color-coded by the joint angle of the thoracolumbar joint for each 
gap-crossing event of the population. c, Averaged joint-angle traces (spine and 
hind limb joint angles) from 22 out of 44 jump trials. d, Joint-angle trace averaged 
across joints and all jump trials (mean ± s.d.). e, Average poses at the start (green), 
midpoint (orange) and end point (red) of the jump from all jump trials. The three 
different time points are indicated by colored lines in d. f, Cross-correlation of 
the spatial and angular velocities of the limb joints at the start point of a jump. 
Different marker shapes indicate whether rows or columns represent spatial or 
angular velocities (circles and squares, respectively). Marker color corresponds 
to joint markers in g. g, Average pose at the start of a jump calculated from all 
jump trials. Joint colors are consistent with the marker colors in f and j. h, High 
correlation examples for spatial velocities of different limb joints as a function 
of each other for both animals. The data shown represent the correlation values 
highlighted in white in f. i, Overlaid poses of a single animal 240 ms to 160 ms 
before the end of a jump. Arrow indicates the thoracolumbar joint. j, Correlations 
of the z and angular velocities of the head and spine joints for time points up 
to 400 ms before the end point of a jump. Marker conventions as in f. k, Jump 
distance as a function of angular velocity of the thoracolumbar joint for both 
animals 205 ms before the end of the jump. Poses corresponding to the single 
data point highlighted with the arrow are shown in i. Displayed data represents 
the correlation value highlighted with a white rectangle in j. l, Jump distance as a 
function of z velocity of the thoracocervical joint for both animals 175 ms before 
the end of the jump. Displayed data represent the correlation value highlighted 
with a white rectangle in j.
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without any form of underlying model skeleton (Fig. 4g,i,k and Sup-
plementary Figs. 4–7), with little if any consistency apparent between 
individual traces. Additionally, the periodicity of the gait cycles in the 
form of equidistant peaks was more variable for all metrics for the naive 
skeleton model than for the ACM (Table 1). Together this shows that the 
ACM can objectively extract behaviors such as gait, from freely moving 
animals and quantify complex relationships between limb bones by 
inferring 3D joint positions over time as well as their first derivatives.

Kinematics of complex behavior
We next used the ACM to analyze motion kinematics and segment 
a more complex decision-making behavior, the gap-crossing task, 
in which distances between two separate platforms were changed 
forcing the animal to re-estimate the required jumping distance (Fig. 
5a). Reconstructed poses during gap-estimation and jump behaviors 
consisted of sequences where animals either approached or waited 
at the edge of the track before jumping (n = 42; Supplementary Fig. 
8 and Supplementary Videos 13 and 14) or reached with a front paw 
to the other side of the track before jumping (n = 2; Supplementary 
Videos 15 and 16). Hind paw positions could be inferred throughout 
the jump and compared to skeletal parameters during the behavior 
(Fig. 5b; 44 trials, n = 2 animals). As rats jumped stereotypically, we 
used the ACM to objectively define decision points in the behavior, 
such as time of jump, from each individual trial. Averaging spine seg-
ment and hind limbs joint angles around the time of the jump, giving a 
single joint-angle trace, provided a metric with a global minimum (Fig. 
5c) during the jump that was independent of how the animal crossed 
the gap (Supplementary Fig. 9). This enabled objective identification 
of jump start, midpoint and end point from each individual jump. We 
averaged traces of joint angles across joints and trials to generate aver-
age ACM poses (Fig. 5d,e). Autocorrelations for spatial and angular 
limb velocities allowed quantification of the interdependency of joint 
movements at any point within the jumping behavior, for example at the 
start point of a jump (Fig. 5f,g). This displayed a significant correlation 
between the spatial velocity of the right elbow and wrist joints (Fig. 5h; 
Spearman correlation coefficient of 0.95; two-tailed P value testing 
non-correlation of 5.40 × 10−24), as well as joint interactions across the 
midline, such as a significant correlation between spatial velocity of the 
right and left knee joints (Fig. 5h; Spearman correlation coefficient of 
0.93; two-tailed P value testing non-correlation of 6.79 × 10−20). As the 
animals jumped across the gap, changes in the bone angles and their 
derivatives (Fig. 5i) were correlated with distances that the animals 
jumped (Fig. 5j). For example, angular velocities of the thoracolumbar 
joint and vertical velocities (z velocity) of the thoracocervical joint 
were significantly correlated with jump distance 205 ms and 175 ms, 
respectively before the animals landed (Fig. 5k,l; Spearman correlation 
coefficient of −0.73 and two-tailed P value testing non-correlation of 
1.13 × 10−8; and Spearman correlation coefficient of 0.81 and two-tailed 
P value testing non-correlation of 1.12 × 10−11).

Discussion
We developed an ACM for tracking skeletal kinematics of untethered 
freely moving rats and mice, at the resolution of single joints, which ena-
bled the quantification of joint kinematics during gait and gap-crossing 
behaviors. From these kinematic measurements, the ACM was able to 
build a comprehensive comparative map of the kinematic sequences 
throughout decision-making behaviors that could be compared to the 
behavioral outcome. Accurate generation of skeletal kinematics relied 
on incorporating skeleton anatomy, requiring smoothness of rotations 
and imposing motion restrictions of joints9, as animal poses are lim-
ited by both bone lengths and joint angle limits9. The joint angle limits 
used in the ACM were taken from data measured from cats; however, 
comparative studies measuring quadruped gait cycle have shown a 
remarkable similarity for the limb, pelvis and scapula angles during the 
different phases of the gait cycle13. Given that the joint angle limits used 

for the ACM only prevented un-natural angles from occurring, we used 
the most detailed dataset available. We generated ground-truth data 
to quantify both the accuracy of the algorithm used to fit the model 
skeleton to the behavioral data and also the performance of the ACM 
at estimating limb and joint trajectories. In addition, inferred limb 
kinematic accuracy was verified by direct measurement of limb angular 
velocity using limb-mounted IMUs. While the IMUs alone do not directly 
measure bone position, but instead kinematics, taken together with 
the MRI and frustrated internal reflection-generated ground-truth 
comparisons to algorithm inferred kinematics, we show that the ACM 
accurately quantifies limb kinematics during cyclic gait behaviors and 
more complex behaviors.

Our approach ushers in a suite of possibilities for studying the 
biomechanics of motion during complex behaviors in freely moving 
animals and complements developments in detailed surface track-
ing36 with the expectation that the ACM approach will also work for 
other small animals such as ferrets and tree shrews. This approach also 
opens up future investigations to model forces applied by tendons and 
muscles9,51 and starts bridging the gap between neural computations 
recorded in freely moving animals52–55 and the mechanistic implementa-
tion of complex behavior56–58. This approach complements advances 
in pose estimation by the ability to accurately infer joint kinematics 
in freely behaving animals. Traditionally, single-plane X-ray-based 
cineradiography and fluoroscopy approaches have been used to cal-
culate joint kinematics11–14,16 and recently in 3D17–19,23,24 across multiple 
animal species20–22. While these approaches directly measure bone 
positions as the animal behaves, the spatial area that can be observed 
and the exposure time to radiation is limited thereby also limiting 
the number of joints that can be simultaneously imaged as well as the 
range of observable behaviors23,24. On the other hand, inferring bone 
rotations and positions using surface imaging alone is complicated in 
animals covered in fur as the spatial relationship between skeleton and 
overlying soft tissues are less apparent12,30–32. Surface markers can be 
rationally placed around joints, which in rodents would otherwise be 
problematic to locate reliably. By linking multiple surface markers to 
individual joints, the ACM approach reduced potential errors in joint 
position estimates due to movement of the skin relative to the joint.

Deep neural networks have been used to approach the problem 
of detecting an animal’s pose in the form of 2D features from an image 
without anatomically constrained skeleton models27,33,34. The 3D poses 
can be inferred from these 2D features by means of classical calibrated 
camera setups59; however the 2D detection in one camera image does 
not benefit from the information from other cameras and the triangu-
lation may suffer from resulting mislabeling of 2D features as well as 
missing detections due to occluded features. A recent approach38,60 
overcomes many of these issues by mapping from recorded images 
directly to 3D feature locations, again using deep learning, and is capa-
ble of classifying animal behaviors across many species38. An alternative 
approach is to use measurements that directly yield 3D information, for 
example RGBD61. In parallel, there has been substantial developments in 
pose estimation of humans, including the possibility to track multiple 
individuals in real time60,62–64, some of which include explicit models of 
kinematics65,66. In general, these approaches triangulate joint positions 
of readily detectable key points in the images, which has the advantage 
of not requiring application of surface markers. Geometrical con-
straints and prior knowledge dynamics can be included, for example 
through using pictorial structures or deformable mixtures of parts28,67. 
Triangulation of joints works well when the relation between the joint 
and its surface representation are well defined and recognizable, as is 
the case for humans and insects28, but is not necessarily so successful 
for animals such as mice and rats, where surface representations for 
many joints are not as clearly defined or visible12,30–32. The ACM uses a 
probabilistic framework to infer latent variables for joint position from 
2D markers that are in different spatial positions than the joints, which 
also allowed the incorporation of prior knowledge and constraints 
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on joint angles. A similar approach was taken by GIMBAL68, which 
uses a hierarchical probabilistic model of a rigid skeleton and infers 
parameters with Bayesian sampling approaches. In contrast to studies 
that target pose estimation, skeletons and kinematics inferred by the 
ACM were validated with ground-truth measurements obtained using 
MRI and IMUs. The ACM uses DLC34, an existing method, to detect 
2D anatomical markers and inferred 3D positions and kinematics of 
movement with an RTS smoother based on anatomical constraints 
and mechanistic knowledge of bone rotations9,51, considering the 
trajectory of 3D positions over time. One disadvantage of the ACM is 
that the RTS smoother is computationally expensive, which currently 
prohibits real-time inferring of skeletal kinematics in freely behaving 
animals27,69. A second disadvantage is that it currently uses a simplified 
skeleton model; for example, it does not model all joints of the vertebra 
and also does not include a detailed model of the digits.

We expect future work in the field of animal pose estimation to com-
bine both supervised learning techniques36,38 and mechanistic model 
constraints9,51, to simultaneously capitalize on their different strengths, 
for example by applying a smoother with anatomical knowledge such 
as the ACM directly to 3D positions from an image-to-3D framework38. 
Our approach has the capacity to extend existing methods and not 
only to enhance the detail in which animal behavior can be studied and 
quantified, but it also provides an objective and accurate quantification 
of limb and joint positions for comparison with neuronal recordings.
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Methods
Obtaining video data of behaving animals
All experiments were performed in accordance with German guidelines 
for animal experiments and approved by the Landesamt für Natur, 
Umwelt und Verbraucherschutz, North Rhine-Westphalia, Germany. 
Nine Lister hooded rats (Charles River Laboratories), weighing 174 g 
(rat no. 1), 178 g (rat no. 2), 71 g (rat no. 3), 72 g (rat no. 4), 735 g (rat no. 
5), 699 g (rat no. 6), 189 g (rat no. 7), 228 g (rat no. 8) and 214 g (rat no. 
9) and four mice weighing 36 g (mouse no. 1), 35 g (mouse no. 2), 33 g 
(mouse no. 3) and 27 g (mouse no. 4) were used. Anatomical landmarks 
for tracking limb and body positions consisted of black or white ink 
spots (5–8 mm diameter; black markers, Edding 3300; and white mark-
ers, Edding 751; Edding) that were painted onto the fur in a stereotypical 
pattern near-symmetrical around the animals’ mid-sagittal axis (Sup-
plementary Fig. 1b). Anatomical markers were applied under anesthesia 
with isoflurane (2–3%) with body temperature maintained at around 
37.5 °C using a heating pad and temperature probe. In some experi-
ments with rats (animal nos. 7–9), custom-assembled IMUs (see ‘Assem-
bly of inertial measurement units’ below) were fixed to the middle of 
the dorsum on the foot and the upper leg at approximately the level of 
the center of the femur on either the left or right side using biologically 
inert silicone (KwikSil, WPI), with the associated fine cabling led up the 
leg and fixed to the fur just lateral of the spine with the same silicone so 
as to not interfere with the animals leg movement. Subsequently, ani-
mals were allowed to recover for approximately 45 min before datasets 
were acquired in an open arena and/or gap-crossing track. The open 
arena was 80 × 105 cm2 with 50-cm-high gray walls. The gap-crossing 
track consisted of two 50 × 20 cm2 platforms with 2.5-cm-tall walls 
(except jump-off edges), mounted 120 cm off the ground on a slide 
mechanism along the long edge to allow manual adjustment of the 
distance between the platforms from 0 to 60 cm. The floor was cov-
ered with neoprene material for secure grip for the animals’ feet. A 
water delivery spout was located at one end of the track. To encourage 
gap-crossing behavior, animals were water-restricted (full access to 
water 2 d per week, otherwise only on the gap-crossing track). After 
each successful crossing of the gap, 50–100 µl water was available at 
the spout. Animals received a minimum of 50% of their daily ad libitum 
water consumption either during the training or recording sessions or 
as a supplement after the last session of the day. Gap-crossing training 
of two daily sessions commenced approximately 2 weeks before the 
recording. Gap distances were pseudo-random, but reduced in cases 
where the animal refused to cross. Recordings with simultaneous IMU 
acquisition were performed on a raised open track with dimensions 
105 × 28 cm (length × width) with 3-cm-high walls on the long edges 
and 24-cm-high walls at the short ends. The open arena for mice had 
dimensions of 45 × 50 cm (length × width) without surrounding walls, 
elevated off the floor by 145 cm. Both setups were homogeneously 
illuminated using eight 125-cm-long white LED strips with 700 lm m−1 
(PowerLED), arranged equidistantly in a patch of 125 × 80 cm2 and 
125 × 55 cm2 at a distance of 130 cm and 150 cm above the ground of 
the open arena and the gap-crossing track. For mice, two additional 
100-cm-long LED strips were used on opposing sides of the arena at a 
distance of approximately 35 cm to minimize shadowing of the feet. 
Datasets were acquired using four synchronously triggered cameras 
(ace acA1300-200um, Basler, 1,280 × 1,024 px2) above the setups, 
covering all parts of the setup by at least two cameras, with the major-
ity covered by all four. Videos were recorded at 100 Hz (gait dataset) 
and 200 Hz (gap-crossing, FTIR). Animals’ foot positions were quan-
tified using a custom-made FTIR plate of 60 × 60 cm2, with an IR-LED 
strip (Solarox 850 nm LED strip infrared 850 nm, Winger Electronics) 
mounted along the edges such that IR light could propagate through 
the plate from two opposing sites. Paw placements were recorded using 
two additional cameras (ace acA1300-200um, Basler, 1,280 × 1,024 px2), 
synchronized with the overhead cameras, mounted underneath the 
plate and equipped with infrared-highpass filters (Near-IR Bandpass 

Filter, part BP850, useful range 820–910 nm, FWHM 160 nm, Midwest 
Optical Systems).

Obtaining MRI scans to evaluate learned skeleton models
To locate labeled surface markers, custom-made MRI markers (pre-
mium sanitary silicone DSSA, Fischerwerke) were attached to the 
respective positions on the surface of the animals’ bodies. Post mor-
tem MRI imaging in six rats and four mice was performed at a field 
strength of 3 T (Magnetom Prisma, Siemens Healthineers), using the 
integrated 32-channel spine coil of the manufacturer and a 64-channel 
head coil, respectively. The data were acquired using a 3D turbo-spin 
echo sequence with variable flip-angle echo trains (3D TSE-VFL).

Detailed rat MRI protocol parameters for 3D TSE-VFL imaging with 
a turbo factor of 98 were as follows: 3,200 ms repetition time, 284 ms 
effective echo time, 586 ms echo train duration and 6.3 ms echo spac-
ing using 300 Hz per px readout bandwidth for one slab with 208 slices 
covering the whole rat at 0.4 × 0.4 × 0.4 mm3 isotropic resolution. One 
average in combination with parallel imaging (here GRAPPA accelera-
tion factor of 2) yielded an overall acquisition time of 18 min 5 s.

Mouse MRI images were collected utilizing the following param-
eters: 0.3 × 0.3 × 0.3 mm3 isotropic resolution, 605 ms echo train dura-
tion, 6.72 ms echo spacing, 309 Hz per px readout bandwidth and 
15 min 34 s total scan time, ceteris paribus.

Assembly of inertial measurement units
IMUs (MPU-9250, TDK InvenSense) for independent measurement 
of limb motion were connected without a circuit board using twisted 
pairs of 50-µm enameled copper wires, with decoupling capaci-
tors on the supply lines for each IMU. The IMUs were embedded in 
electronic-component-embedding silicone (Magic Rubber, Raytech) 
for protection and connected to an external microprocessor board 
(Teensy 3.6, PJRC) that received a frame synchronization signal from 
the overhead cameras, which triggered a 1-ms pulse to the IMU’s FSYNC 
input and streamed the data to a computer via USB.

Calibrating multi-camera setups
We based the calibration of multiple cameras on a pinhole camera 
model with second-order radial distortions and OpenCV70 functions 
for the detection of Charuco boards. Calibration was performed via 
OpenCV calibration functions and subsequently optimized for repro-
jection error (Supplementary Text).

Defining a 3D skeleton model
The generalized skeleton model was modeled as a graph with joints 
as vertices and one or multiple bones as edges. (Supplementary Fig. 
1a). Front limbs were modeled as four edges, representing clavicle, 
humerus, radius and ulna, and metacarpal and phalanges. Associated 
vertices corresponded to the shoulder, elbow and wrist, with the last 
vertex representing the tip of the middle phalanx. Hind limbs were 
modeled as five edges representing the pelvis, femur, tibia and fibula, 
tarsus and phalanges, with the associated vertices representing the 
hip, knee, ankle and metatarsophalangeal joints, with the last vertex 
representing the tip of the middle tarsal. The tail was modeled as five 
edges and five vertices, with the last vertex representing the tip of the 
tail. The spine was modeled as four edges, representing the cervical, 
thoracic and lumbar spinal regions and the sacrum, with three interven-
ing vertices. The head was modeled as a single edge, with a vertex at the 
tip of the nose, and a second vertex representing the joint to the first 
cervical vertebra. In resting pose, all bone rotations were set to zero, 
such that all edges (bones) pointed toward the positive z direction of 
the world coordinate system, except the clavicle to collarbone and 
sacrum to pelvis edges which pointed perpendicularly in the x–y plane 
(Supplementary Fig. 1a), which was also kept constant during pose 
reconstruction. Each edge was further equipped with a local coordi-
nate system originating at the start joint (for example the left shoulder 
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joint vertex for the left humerus edge), with the edge pointing along 
the z direction and x and y directions such that rotations around the x 
direction were equivalent to flexion and extension, rotations around 
the y direction to abduction and adduction and a rotation around the 
z direction with internal and external rotation.

Constraining poses based on joint angle limits
We implemented joint angle limits based on measured minimum and 
maximum values for flexion or extension, abduction or adduction and 
internal or external rotation in domestic house cats43, due to the una-
vailability of rat or mouse data. For vertices approximating head, spine 
or tail joints, due to a lack of data, we assumed angle limits for rotations 
around the x and y direction as ±90° and no capacity to rotate around 
the z direction. Thus, the respective child vertex may be placed in any 
point of a hemisphere with a radius of the length of this edge. Angle 
limits were enforced for each axis individually, without considering 
co-dependence (applied to the individual entries of the Rodrigues vec-
tor). Joint angle limits were then established after adjustment from the 
literature pose to our resting pose as shown in Supplementary Table 1.

Constraining surface-marker positions based on body symmetry
When learning surface-maker positions and bone lengths we reduced the 
number of free parameters by assuming symmetry in both marker place-
ment and physiology in the y–z plane. Thus, for any bilateral marker, we 
only optimized one side with box constraints to the respective side and 
inferred the other side by mirroring on the y–z plane. Supplementary Text 
provides a table of box constraints (Supplementary Fig. 1). The upper 
bound of the left-sided surface marker on the shoulder in z direction for 
the two large rats (animal nos. 5 and 6), which was also set to 0 to prevent 
the bone lengths of the collarbones becoming zero during learning.

Constraining bone lengths based on allometry
We applied loose constraints on the length of limb bones based on 
published data. For rat skeletons, we used a linear relationship between 
body weight and bone lengths44.

For mice, equivalent proportionality factors were not available, 
but as all mice used were adult and had attained a fully adult size and 
weight, we based the limb length constraints for the bones on published 
bone lengths measured from microCT data42. In both cases we chose 
±10 × s.d. as box constraints. Bone length constraints used are shown 
in Supplementary Table 2. For bones that were not part of the limbs, no 
constraints were enforced. As for the markers, we assumed symmetry 
and only optimized a common single length for bilateral bones.

Learning bone lengths and surface-marker positions
To learn bone lengths and surface-marker positions we simultaneously 
fitted our generalized 3D skeleton model to manually labeled 2D posi-
tions of surface markers at different time points for each animal. For 
this, we utilized the L-BFGS-B algorithm71, minimizing the 2D distance 
between manual labels and projected 3D positions into each camera. 
We simultaneously optimized all per-frame pose parameters (position 
and bone rotation) and the skeletal parameters (bone length and rela-
tive position of markers to joints), which remain constant over time and 
define the final individual skeleton, for the subsequent pose estima-
tion of the animal (Supplementary Video 1). In initial experiments, we 
used 300-s long sequences of freely behaving animals recorded via 
four different cameras with a frame rate of 100 Hz and labeled every 
50th frame in each camera totaling 2,400 training frames at 600 differ-
ent time points. For rat IMU and mouse datasets we used all available 
manually labeled data from the DLC training (stated below in ‘Training 
deep neural networks to detect 2D locations of surface markers’). Bone 
lengths were initialized by the mean of their upper and lower bounds 
or zero when there were no constraints and surface-marker positions 
were initialized to be identical to the joints they were attached to. Poses 
were initialized to the resting pose but global skeleton locations and 

rotations were adjusted before the fitting to loosely align with the loca-
tions of an animal’s body, as seen by the cameras. Once values for bone 
lengths and surface-marker positions were learned, we used them for 
all further pose reconstructions of the respective animal.

Comparison of skeleton parameters with MRI data
To estimate the quality of the skeleton estimation, we compared the 
distances between adjacent joints (‘bone lengths’) between the learned 
positions from ACM and manually marked joint positions in MRI scans 
for each animal (Fig. 1f). To determine the 3D positions of the respec-
tive spine joints in the MRI scan, we counted vertebrae such that each 
modeled spine segment matched its anatomical counterpart with 
respect to the number of contained vertebrae40. All ground-truth joint 
positions, except those for the metatarsophalangeal joints, could be 
identified manually in the MRI scan (four joint locations in total). These 
missing locations were assumed to be identical to the positions of the 
corresponding metatarsophalangeal markers. The joints used for the 
comparison are shown in Supplementary Table 3.

Performing probabilistic pose reconstruction
For probabilistic 3D pose reconstruction we implemented an unscented 
RTS smoother45,46, whose fundamental principles are based on the ordi-
nary Kalman filter formulation47, but can consider both past and future 
and be used to perform probabilistic pose estimation in a nonlinear state 
space model, as our formalism, for example, introduces nonlinearities 
through the usage of trigonometric functions in bone rotations. In this 
approach, described in mathematical detail in the Supplementary Text, 
time series data are modeled as a stochastic process generated by a 
state space model, where at each time point hidden states give rise to 
observable measurements and fulfill the Markov property (each hid-
den state only depends on the preceding one; Supplementary Fig. 10). 
This formalism allowed us to represent each pose as a low-dimensional 
state variable, corresponding to the location and the individual bone 
rotations of a reconstructed skeleton (dimension of hidden state vari-
able was 50; 3 variables for 3D location of the skeleton plus 47 variables 
for bone rotations). The measurable 2D locations of surface markers 
(which were given by the outputs of the trained neural network) had a 
higher dimensionality and were represented via measurement variables 
(dimension of measurement variable, maximal 344; 43 surface markers 
times four cameras times two variables for the 2D location of a surface 
marker). We assumed the hidden states to be (conditionally) normally 
distributed, where temporal constraints are implicitly modeled through 
the transition kernel of the Markov process (the probabilistic map-
ping between one state and the next). We learned the unknown model 
parameters (the initial mean and covariance of the state variables as 
well as the covariances of the transition and measurement noise) via an 
EM algorithm48 (maximal 2,944 model parameters in total; 50 param-
eters for mean of initial hidden state variable plus 1,275 parameters for 
covariance matrix of initial hidden state variable plus 1,275 parameters 
for covariance matrix of transition noise plus maximal 344 parameters 
for diagonal covariance matrix of measurement noise), which aims to 
maximize a lower bound of the state space model’s evidence, the evi-
dence lower bound (ELBO), accounting for each pose within a behavioral 
sequence. This is achieved by alternating between an expectation step, 
in which we obtain the expected values of the state variables given a 
fixed set of model parameters via the unscented RTS smoother, and 
a maximization step, in which these model parameters are updated 
in closed form to maximize the ELBO72. After convergence of the EM 
algorithm, final poses were obtained by applying the unscented RTS 
smoother using the learned model parameters.

Accounting for missing measurements during pose 
reconstruction
To account for missing 2D positions of surface markers, for example 
due to marker occlusions or lack of detection confidence, we modified 
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the plain unscented RTS smoother formulation and the EM algorithm 
by accordingly zeroing rows and/or columns of measurement covari-
ance matrices during the filtering path of the smoother73,74 and when 
maximizing the ELBO (Supplementary Text).

Enforcing joint angle limits during pose reconstruction
The plain formulation of the unscented RTS smoother does not account 
for box constraints for bounding state variables representing bone 
rotations. To still allow for anatomically constrained pose estimation 
we instead optimized unbound state variables, which were mapped 
onto the correct lower and upper bounds for joint angle limits via sig-
moidal functions (error functions) (Supplementary Text). These func-
tions had slope one at the origin and were asymptotically converging 
toward the lower and upper bounds of the respective joint angle limits.

Evaluating the influence of anatomical and temporal 
constraints
To evaluate the influence of constraints, we determined poses using 
skeleton models employing both anatomical and temporal con-
straints (ACM), only one type of constraint (anatomical or temporal) 
or no constraints (naive skeleton model). In models without anatomi-
cal constraints, all constraints except tight (0°,0°) were relaxed to 
(−180°,180°), effectively allowing the full solid angle range. Pose param-
eters for these two models were initialized by fitting the pose of the 
first time point of a behavioral sequence to auto-detected 2D markers 
equivalently to how the skeleton parameters were learned. The covari-
ance matrices for the initial state variables and the state and measure-
ment noise learned via the EM algorithm were initialized as diagonal 
matrices with 0.001 in all diagonal entries and the off-diagonal values 
kept constant for the measurement noise covariance matrix during 
the maximization step of the EM algorithm.

In models without temporal constraints, the unscented RTS 
smoother was discarded and instead, each pose was fitted individu-
ally as above, initialized by the previous frame.

Evaluating pose reconstruction accuracy via a FTIR 
touch-sensing system
Ground truth for the FTIR analysis was obtained by manual labeling 
of every 40th frame. In the overhead camera images, paw centers and 
three individual fingers and toes were manually labeled for each limb, 
whereas in the underneath camera images only finger and toe silhou-
ettes were labeled and paw centers were identified as the interpolated 
intersection of the three fingers or toes. Silhouette x–y coordinates 
were then determined by the intersection of the camera ray corre-
sponding to the respective image coordinate and the surface of the 
transparent floor. Velocity and acceleration values for the four different 
models were derived from central eighth-order finite differences based 
on the reconstructed 3D positions of the metatarsophalangeal or wrist 
and finger or toe markers. Paw position errors of undetected markers 
were obtained by only using paw position errors of surface markers that 
were not detected by the trained neural network (confidence <0.9).

In the analysis of accuracy degradation after the last successful 
detection, the backward and forward connection of the unscented RTS 
smoother was addressed by selecting the respective minimal temporal 
distance to the previous and next successful detection, whereas for the 
joint angle and naive skeleton models only the previous was consid-
ered. For the resulting analysis we only included errors for which the 
corresponding sample size was at least ten.

Analyzing gait data
To extract gait periodicity, we considered 3D joint locations relative 
to the joint that connects lumbar vertebrae with the sacrum and with 
the x direction set as the anteroposterior axis defined by the new origin 
and the joint linking cervical with thoracic vertebrae. Angles, posi-
tions and translational and rotational velocities were calculated in 

this coordinate system, where bone angles were defined as the angle 
between the new x direction and a respective bone. To model autocor-
relations of x positions, we fitted damped sinusoids the four different 
traces of each limb via gradient decent optimization. For population 
averages of x positions, bone angles and their temporal derivatives, we 
detected midpoints of swing phases by identifying maximum peaks of 
x velocities above 25 cm s−1. Individual traces were extracted containing 
data up to ±200 ms around each peak, aligned by the peak and aver-
aged across the entire population. In case of the pure surface-marker 
tracking, 3D positions where triangulated based on the two DLC 2D 
detections with the highest confidence values.

Analyzing IMU data
For comparison of directly gyroscope-measured angular velocity and 
the absolute angular velocity of the tibia derived from ACM, IMU and 
videography data were synchronized by triggering acquisition times 
on the IMU with a synchronization signal derived from the overhead 
imaging cameras. Both the exposure active signal from the overhead 
cameras and the IMU synchronization signal were recorded with a 
multi-line analog to digital converter (Power 1401, Cambridge Elec-
tronic Design). The angular velocity of the left tibia in frame n was 
derived by calculating the angle of the rotation matrix that transforms 
its absolute orientation in space in frame n into the orientation in frame 
n + 1, and dividing by the time period of one frame. Gait periods were 
segmented via the minima of normalized x positions of the left ankle 
(see ‘Analyzing gait data’ section) identified with a 120-frame minimum 
filter, and the individual Pearson correlation coefficients of the result-
ing segments of the IMU and ACM angular velocity trace were calcu-
lated. For the analysis of peak differences, maxima in the IMU and ACM 
traces were identified with a 120-frame maximum filter and each IMU 
trace maximum was associated with the closest ACM trace maximum.

Analyzing gap-crossing data
Each of the 44 gap-crossing sequences was 1 s long and contained 
200 frames per camera, totaling 35,200 frames. Due to the limited 
number of gap-crossing events and recorded frames, we used 20% of 
the frames to train the neural network (we took every fifth frame of the 
recorded gap-crossing sequences for its training). Velocity values were 
derived from eighth-order central finite differences of reconstructed 
3D joint positions and joint angles were defined as the angle between 
two connected bones. To obtain start, mid and end points for each 
jump we averaged joint angles of all spine and hind limb joints. The 
averaged metric was characteristic for each jump; distinct peaks were 
always present in the following order: local minimum, local maximum, 
global minimum, local maximum and local minimum. We defined the 
start and end point of each jump as the first and last local minimum 
of this sequential pattern. Resulting jump start and end points were 
in close agreement with those obtained from manual assessments 
of gap-crossing sequences by a human expert. Jump distances were 
calculated as the absolute x–y difference of the average of the ankle, 
metatarsophalangeal and toe joint positions, at the start and end point 
of each jump. To obtain population-averaged poses for the jump start, 
mid and end points, we aligned all poses at the given time points and 
calculated characteristic jump poses by averaging them across the 
entire population. For the population-averaged mean angle traces we 
aligned each individual trace according to the mid-point of each jump 
and then averaged these across the entire population. For further analy-
sis, jump distances were correlated with spatial z velocities and angular 
velocities of spine joints at time points up to 400 ms before the end of 
a jump and absolute spatial velocities and angular velocities of hind 
limbs joints were correlated with each other at the start point of a jump.

Statistics
All P values were calculated across imaging frames, ignoring correla-
tions across frames.
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Computing hardware
All pose reconstructions and analyzes, including DLC training and 
detection, were either conducted on a workstation equipped with an 
AMD Ryzen 7 2700X CPU, 32 GB DDR4 RAM, Samsung 970 EVO 500 GB 
SSD and a single NVIDIA GeForce RTX 1080 Ti (11 GB) GPU or a cluster 
node equipped with two Intel Xeon Platinum 8268, 768 GB RAM and four 
NVIDIA Quadro RTX 6000 (only one used by algorithm) using Ubuntu 
18.04.5 LTS, Ubuntu 20.04 LTS and CentOS Linux release 7.9.2009.

Software
The implementation of the ACM pipeline was written using Python 
v3.7.6 and the following packages: autograd v1.3, cudnn v7.6.5, numpy 
v1.18.1, jax v0.2.0, pytorch v1.4.0, scipy v1.4.1, tensorboard v1.14.0 and 
tensorflow v1.14.0.2.

Summary of ACM data-processing steps. 

	1.	 Manual-labeling initialization step

Manual labeling of marker points using ACM-traingui  
(https://github.com/bbo-lab/ACM-traingui).
This step provided the data for training the DeepLabCut net-
work and verified tracked surface-marker positions for learning 
the model skeleton (see ‘ACM (pose estimation) step’ below). 
Marker points were manually labeled by clicking on the 2D posi-
tion of each surface marker in each camera view. Surface mark-
ers were assigned specific labels such as ‘ankle (left)’ to facilitate 
anatomical relationships for the surface markers. Datasets 
presented in this manuscript had between 180 and 600 manu-
ally labeled time points (with four cameras, 720–2,400 labeled 
images). Manually labeled images covered a wide variety of 
different animal poses.
As a verification step, we used the camera calibration to trian-
gulate the labeled markers in space and thereby calculate the 
reprojection error. Reprojection errors above 5 px were manu-
ally checked and corrected as necessary.

	2.	 DeepLabCut (DLC) step
Detection of 2D positions of marker points in all camera frames 
using DLC (via https://github.com/bbo-lab/ACM-dlcdetect; 
duration of approximately 35 h on single cluster node).
DLC was first trained on the manually labeled data and sub-
sequently extended the labeling to all frames in the desired 
segment (segments in the current study were multiple 10,000 s 
of frames for each camera). DLC detected the 2D position of the 
markers and corresponding labels in each frame for each cam-
era independently (without taking angles from other cameras 
and the camera calibration into account).
DLC also provided a certainty value for marker detections. Here 
we used labels with a certainty value of 90% and above.

	3.	 ACM (pose estimation) step
Pose estimation from the DLC-labeled 2D marker positions 
using the ACM (https://github.com/bbo-lab/ACM; duration of 
approximately 2 h for a segment of 10 s on single cluster node).
The ACM output bone lengths and joint angles, from which the 
full pose with 3D joint positions were derived, ran in two steps:

•	 For learning the model skeleton, a model skeleton (the bone 
lengths and bone positions relative to markers) was learned 
from a subset of frames (further details are in section 3 
‘Skeleton model’ in Supplementary Text). As correct labeling 
is particularly important, we used the manually labeled and 
checked data from step 1 for this purpose. Note that frames 
in which the surface markers were automatically detected 
could be used here instead.

•	 For pose estimation, the respective pose for each time point 
was estimated from 2D marker positions detected by DLC 

using the EM algorithm (further details are in section 4 ‘Prob-
abilistic pose estimation’ in Supplementary Text).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The data present in all figures as well as compressed video files are 
available in the related Dryad repository at https://doi.org/10.5061/
dryad.g4f4qrfsw under a CC0 1.0 Universal (CC0 1.0) public domain 
dedication.

Code availability
Code for performing pose reconstructions is publicly available on 
GitHub at https://github.com/bbo-lab/ACM under a LGPL 2.1 license.
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