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Abstract

Background Machine learning (ML) has been introduced in various fields of healthcare. In colorectal surgery, the

role of ML has yet to be reported. In this systematic review, an overview of machine learning models predicting

surgical outcomes after colorectal surgery is provided.

Methods Databases PubMed, EMBASE, Cochrane, and Web of Science were searched for studies using machine

learning models for patients undergoing colorectal surgery. To be eligible for inclusion, studies needed to apply

machine learning models for patients undergoing colorectal surgery. Absence of machine learning or colorectal

surgery or studies reporting on reviews, children, study abstracts were excluded. The Probast risk of bias tool was

used to evaluate the methodological quality of machine learning models.

Results A total of 1821 studies were analysed, resulting in the inclusion of 31 articles. A vast proportion of ML

algorithms have been used to predict the course of disease and response to neoadjuvant chemoradiotherapy.

Radiomics have been applied most frequently, along with predictive accuracies up to 91%. However, most studies

included a retrospective study design without external validation or calibration.

Conclusions Machine learning models have shown promising potential in predicting surgical outcomes after col-

orectal surgery. However, large-scale data is warranted to bridge the gap between calibration and external validation.

Clinical implementation is needed to demonstrate the contribution of ML within daily practice.

Introduction

Colorectal cancer is estimated to have approximately 2

million new cases and 1 million deaths per year [1].

Appendicitis cases appeared to be approximately 18 mil-

lion in the last few years [2]. Performing colorectal surgical

procedures come with several risks, such as postoperative

bleeding, anastomotic leakage, or fistulas [3]. These com-

plications could become a burden for surgeons because

they lead to readmissions of patients and require revision

surgery. Additionally, in patients with colorectal cancer,

tumor recurrence or metastasis are commonly discovered,

causing a decrease in survival for these patients [4].

Although chemotherapy has already demonstrated

improvements in survivability for colorectal cancer
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patients, it is still difficult to predict which patients will

completely respond to chemotherapy [5]. Therefore, risk

stratification of patients with colorectal cancer remains

challenging. Artificial Intelligence (AI) could support sur-

geons with this risk stratification by predicting postopera-

tive complications, response to chemotherapy, and overall

survival of colorectal cancer patients.

Recently, machine learning (ML), an essential branch of

AI, has already been used for several complex tasks within

healthcare. Examples of these tasks are the detection of

tumors on radiologic images and prediction of biomarkers

[6]. Due to its ability to train on large datasets and rec-

ognize patterns within data, machine learning algorithms

are able to improve the accuracy of their prediction model

[7]. Based on this capacity, machine learning models could

be used to predict surgical outcomes prior to colorectal

surgery [8]. By assessing several surgical outcomes with

AI, surgeons could preoperatively decide the most efficient

clinical pathway for patients undergoing colorectal surgery

[9]. Currently, there are several machine learning algo-

rithms available to make these predictions, an overview of

algorithms is presented in Table 1.

Although machine learning algorithms have shown

major potential to improve surgical outcomes, the current

status and quality of machine learning models within col-

orectal surgery have not been evaluated in recent literature.

However, it is essential to bridge this gap in order to

understand the extent of predicted surgical outcomes,

generalizability, and validity of current machine learning

algorithms applied in colorectal surgery. Therefore, this

systematic review aims to provide a comprehensive

overview of machine learning algorithms that have been

used to predict any surgical outcome after general col-

orectal surgery. This review also evaluates the area under

the curve and/or accuracy of included machine learning

models.

Materials and methods

Literature was retrieved and systematically reviewed in

accordance with the Cochrane Handbook for Systematic

Reviews of Interventions version 6.0 and PRISMA

guidelines.

Literature search strategy

A systematic search was performed in the databases:

PubMed, Embase.com, Clarivate Analytics/Web of Sci-

ence Core Collection and the Wiley/Cochrane Library. The

timeframe within the databases was from inception to the

7th of July 2021 and conducted by G.L.B. and M.B. The

search included keywords and free text terms for (syn-

onyms of) ’machine learning’ combined with (synonyms

of) ’digestive system surgical procedures’. This search

strategy was peer-reviewed by an information specialist

(G.L.B.), using the PRESS checklist. A full overview of the

search terms per database can be found in the supple-

mentary information (see Appendix 1 as ESM). No limi-

tations on date were applied in the search. Studies reporting

on conference proceedings, book chapters, editorials,

Table 1 Terminology of AI subsets

Machine learning (ML) Algorithms that are able to improve the prediction accuracies by training on large data [10]

Decision tree A model that consists of nodes and branches, representing variables and related outcomes. Various

combinations of outcomes give several predictions. The end model will be the smallest tree that fits the data

best [11]

Gradient boosting (GBM) Builds models that focus on inaccuracies of preceding models and improves these parts until the most accurate

model is formed [12]

Random forest Combines multiple decision trees to build the final accurate prediction model [13]

Support vector machine

(SVM)

Finds the optimal border in the dataset to classify outcomes in two groups [14]

Artificial neural networks

(ANNs)

Trains by using various processing layers to automatically find relevant features for the prediction.

Additionally, weights of the extracted features are adjusted to form the most accurate model [15]

Convolutional neural

networks (CNNs)

Similar to ANNs, except these models use filters instead of weight for extracted features [16]

Deep learning Deep learning algorithms function similarly to neural networks, however, deep learning models have more

layers or depth than neural networks [17]

Radiomics Extracts quantitative features of clinical images to construct predictive or prognostic associations with the

predicted medical outcomes [18]

ML machine learning, SVM support vector machine, GBM gradient boosting machine, RF random forest, ANN artificial neural networks, CNN
convolutional neural networks
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errata, letters, notes, surveys, or tombstones were excluded

from the search.

Eligibility criteria

Studies were only eligible if they specifically met the fol-

lowing criteria: (i) described machine learning methods,

(ii) involved patients undergoing any type of colorectal

surgery, (iii) reported predictive performance of the

machine learning model, (iv) clinical study. Regression

models could be seen as machine learning. Nonetheless,

regression models have existent in healthcare for many

years. As this review is addressing new machine learning

models only, regression models are therefore excluded

from this review. In addition, appendectomy procedures

were considered as colorectal surgery. Studies were

excluded if they (i) were not written in English, (ii)

reported on reviews, editorials, letters, or study abstracts.

No specific study design or setting was preferred in the

inclusion criteria.

Study selection

Two reviewers (M.B. & J.C.P.) independently performed

the title and abstract screening in conformity with the

inclusion and exclusion criteria. Eligible articles were read

in full text, and duplicate studies were eliminated. The full-

text screening of the retrieved articles was performed by

the same two reviewers (M.B. & J.C.P.) to secure they

comply with the inclusion criteria. Disagreements were

resolved by discussions between two reviewers, resulting

in consensus.

Risk of bias assessment

The Probast risk of bias tool was independently applied to

each study by two reviewers (M.B. & J.C.P.) to assess the

methodological quality of included machine learning

models [19]. This tool is able to evaluate the overall risk of

bias based on four bias domains: participant selection,

predictors, outcomes, and analysis.

Data collection process

A table was formed for the extraction of all data. All data

aspects were independently extracted and double-checked

by two of the authors (M.B. & J.C.P.). Conflicts were

resolved by consensus between the two authors. No addi-

tional processes were required for this data.

Data items

An inventory of data items was formed according to the

Cochrane guidance for data collection, and the CHARMS

checklist [20]. The following information was extracted

from each study: first author, publication year, country of

research, number of patients, mean age, study design,

surgical procedure, intervention, surgical outcome, internal

validation method, external validation, predictive perfor-

mance (discrimination, and calibration). For studies

involving multiple machine learning models, predictive

performance of each model was described separately.

Data synthesis

A descriptive summary was used to represent the type of

machine learning models, predicted surgical outcomes, risk

of bias assessment, and model validation. To illustrate the

predictive performance of machine learning models, results

of machine learning studies were reported for each pre-

dicted outcome. To represent the discriminative ability, the

range of mean accuracy (ACC) and area under the curve

(AUC) was described for machine learning models of each

predicted outcome. Additionally, the proportion of

machine learning models that have applied calibration was

described, along with the calibration method. A compara-

tive meta-analysis of machine learning models was not

possible, due to heterogeneity in study methodology, and

the report on outcomes.

Results

The search strategy provided a total of 1821 studies after

removal of duplicates (Fig. 1). Therefore, 1821 studies

were screened for eligibility based on the title and abstract.

After excluding 1763 studies, 58 studies remained for a

full-text assessment. In the end, 31 studies were included in

this systematic review.

Machine learning models

Various machine learning algorithms have been applied to

patients undergoing colorectal surgery. The frequencies of

applied machine learning models were as follows: radio-

mics (n = 13), neural networks (n = 7), multiple machine

learning (n = 6), random forest (n = 4), gradient boosting

(n = 1).

Surgical outcomes

Surgical outcomes of these machine learning models pre-

dominantly included prediction of the clinical staging and
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prognosis (n = 9), chemoradiotherapy response (n = 7),

and postoperative complications (n = 7). Remaining stud-

ies involved prediction of diagnosis (n = 4), success of

intervention (n = 2), and pre-and postoperative manage-

ment (n = 2). An overview of key study characteristics is

presented in Table 2.

Methodological quality assessment

Based on the Probast tool, the majority of studies received

a low risk of bias score for the predictors and outcome

domains. For most studies, the participants and analysis

domains have received unclear or high risk of bias scores

due to inappropriate inclusion criteria or measures to

Fig. 1 PRISMA flow chart of the study selection
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account for overfitting and missing data. Therefore, a low

overall bias was given for 29% of the studies, whereas 48%

of the studies received an unclear overall bias. Addition-

ally, a high overall bias was decided for 23% of the studies

(Fig. 2).

Model validation

For internal validation of machine learning models, most

studies used cross-validation (n = 17), a random split of the

dataset (n = 11), or bootstrapping (n = 3). External vali-

dation was performed in four studies (13%), including two

radiomics, one ANN, and one random forest model. The

discriminative ability (AUCs) of these models ranged

between 0.64 and 0.9, and the calibration was reported for

one machine learning model.

Predictive performance

The AUCs of machine learning models for predicting

clinical staging and prognosis have ranged between 0.7 and

0.95, whereas the accuracies were discovered to be

between 72 and 86% [21–29]. For the prediction of

chemotherapy response, AUCs between 0.71 and 0.91 were

discovered, accuracies varied between 71 and 84%

[30–36]. In the machine learning group for prediction of

postoperative complications, AUCs have ranged from 0.6

and 0.96, additionally, accuracies were found to be

between 81 and 93% [37–43]. For machine learning

models predicting appendicitis cases, AUCs varied from

0.91 to 0.95, and accuracies ranged between 65 and 98%

[44–47]. In the group for prediction of intervention success,

AUCs were up to 0.93 [48, 49]. For prediction of pre-and

postoperative management, machine learning models

showed AUCs up to 0.86 [50, 51]. Calibration was

described for three models (10%), in which two studies

used a Hosmer–Lemeshow test, and one study used a cal-

ibration plot only. Additionally, one study did not use AUC

or accuracies to describe predictive performance of the

machine learning model.

Discussion

This review illustrates the capabilities of machine learning

in predicting several surgical outcomes for patients

undergoing colorectal surgery. In this study, promising

discriminative abilities of applied ML models have been

discovered, especially for radiomic models.

Nine studies have used machine learning algorithms to

predict the course of disease with accuracies ranging

between 70 and 90%. Radiomics models have shown

highest accuracies in these predictions. Theoretically, the

use of ML could improve pre-operative decision-making

for patients undergoing colorectal surgery, eventually

enabling individualized surveillance for patients. For

patients with high risks of metastasis, treatment decision

such as minimal or aggressive surgery could be reconsid-

ered for optimal surgical outcomes. However, most studies

included small cohorts, this might give rise to the problem

of overfitting, in which the ML model is overly adjusted to

the training dataset and is unable to perform well on the

test set [52, 53]. Although measures such as cross-valida-

tion and feature selection might help, this problem could be

solved by including an external validation cohort [54].

Fig. 2 Methodological

assessment of ML models,

according to the Probast risk of

bias tool
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Seven studies have applied machine learning to predict

response to neoadjuvant chemoradiation therapy (nCRT)

with accuracies between 71 and 91%. Radiomics appeared

to perform this prediction with the highest accuracies.

Although chemoradiotherapy has already shown improved

outcomes for patients with advanced rectal cancer,

incomplete therapy response and overtreatment of nCRT

could occur [55]. Surgeons experience difficulties in

determining patients who would completely respond to

nCRT [56]. By using machine learning, surgeons could

improve risk stratification, and decide to tailor therapy to

patients with predicted nCRT response. This might even-

tually enable personalized decision-making for every

patient, preventing unnecessary hospital stays and costs.

Seven studies have attempted to predict postoperative

complications. Accuracies of ML models have ranged from

47 and 96%, in which random forests had the best pre-

dictive performance. Ideally, colorectal surgeons could use

machine learning models to accurately predict postopera-

tive complications for every patient. Subsequently, early

discharge, enhanced monitoring or prophylactic steps could

be implemented based on the predicted risk of complica-

tions. In addition, one study developed a predictive model

for mortality in patients undergoing acute abdominal sur-

gery [43]. This could potentially be helpful for clinical

decision-making in acute surgery. Nonetheless, these ML

studies have primarily included preoperative risk factors

for postoperative complications. Previous studies have

already indicated that postoperative complications are

dependent upon several preoperative, intraoperative, and

postoperative risk factors [57]. Therefore, more datasets

are required to reveal essential intraoperative and postop-

erative factors for the prediction of postoperative

complications.

For predicting patients with acute appendicitis, ML

models have performed with accuracies up to 98%.

Akmese et al. have demonstrated that ML could be applied

with web-based interfaces, with internet as the only nec-

essary criteria. Prabhudesai et al. have discovered that

neural networks are able to predict appendicitis cases better

than clinicians. These two findings may suggest that ML

models could be practical and accurate tools for improving

surgical decision-making. With proper use, surgeons could

diagnose faster and prevent unnecessary appendectomies.

Although high accuracies have been found for machine

learning models within this review, it seems that some

uncertainties are still present. External validation was

missing in most of the studies (87%), indicating that most

machine learning models have not been applied to data

from external hospital settings. However, external valida-

tion is crucial to demonstrate the generalizability of

machine learning models [58]. Additionally, calibration

was not reported in most studies (90%), while calibration

reflects the similarity between predicted risks and the true

observed risks [59]. Poor calibration indicates that the

machine learning model is under- or overestimating the

desired outcome.

This review has some limitations. Due to the hetero-

geneity in methodologies of studies, a comparative meta-

analysis of ML models was not possible. Additionally, a

number of studies have not described predictive perfor-

mances of ML models in ACC or AUCs, possibly leading

to an over- or underrepresentation of actual discriminative

abilities.

Future studies should focus on the external validation of

ML models. Since external validation is important for the

generalizability of machine learning algorithms, gaining

this validation could facilitate the introduction of machine

learning in daily clinical practice. However, large-scale

datasets are required for this external validation, existing

patient databases could be used to fulfill this need [60].

With proper use of these data, surgeons may achieve per-

sonalized decision-making for patients undergoing col-

orectal surgery. In addition, the calibration of machine

learning models should be demonstrated in future studies to

represent the extent of consensus between predicted out-

comes and outcomes in the clinics.

In conclusion, this review shows the promising potential

of ML in predicting various surgical outcomes for patients

undergoing colorectal surgery. However, clinical imple-

mentation is required to demonstrate the contribution of

ML within daily practice. The use of large patient data-

bases may be required to fulfill the need for calibration and

external validation.
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29. Dimitriou N, Arandjelović O, Harrison DJ et al (2018) A prin-

cipled machine learning framework improves accuracy of stage II

colorectal cancer prognosis. NPJ Dig Med 1:52

30. Antunes JT, Ofshteyn A, Bera K et al (2020) Radiomic features

of primary rectal cancers on baseline T2-weighted MRI are

associated with pathologic complete response to neoadjuvant

chemoradiation: a multisite study. J Magnet Reson Imaging JMRI

52(5):1531–1541

31. Ferrari R, Mancini-Terracciano C, Voena C et al (2019) MR-

based artificial intelligence model to assess response to therapy in

locally advanced rectal cancer. Eur J Radiol 118:1–9

32. Yuan Z, Frazer M, Zhang GG et al (2020) CT-based radiomic

features to predict pathological response in rectal cancer: a ret-

rospective cohort study. J Med Imaging Radiat Oncol

64(3):444–449

33. Boyne DJ, Brenner DR, Sajobi TT et al (2020) Development of a

model for predicting early discontinuation of adjuvant

chemotherapy in stage III Colon Cancer. JCO Clin Cancer Inform

4:972–984

34. Fu J, Zhong X, Li N et al (2020) Deep learning-based radiomic

features for improving neoadjuvant chemoradiation response

prediction in locally advanced rectal cancer. Phys Med Biol

65(7):075001

35. Shaish H, Aukerman A, Vanguri R et al (2020) Radiomics of

MRI for pretreatment prediction of pathologic complete response,

tumor regression grade, and neoadjuvant rectal score in patients

with locally advanced rectal cancer undergoing neoadjuvant

chemoradiation: an international multicenter study. Eur Radiol

30(11):6263–6273

World J Surg (2022) 46:3100–3110 3109

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


36. Yi X, Pei Q, Zhang Y et al (2019) MRI-based radiomics predicts

tumor response to neoadjuvant chemoradiotherapy in locally

advanced rectal cancer. Front Oncol 9:552

37. Weller GB, Lovely J, Larson DW et al (2018) Leveraging elec-

tronic health records for predictive modeling of post-surgical

complications. Stat Methods Med Res 27(11):3271–3285

38. Chen D, Afzal N, Sohn S et al (2018) Postoperative bleeding risk

prediction for patients undergoing colorectal surgery. Surgery

164(6):1209–1216

39. Azimi K, Honaker MD, Chalil Madathil S et al (2020) Post-

operative infection prediction and risk factor analysis in col-

orectal surgery using data mining techniques: a pilot study. Surg

Infect 21(9):784–792

40. Bunn C, Kulshrestha S, Boyda J et al (2021) Application of

machine learning to the prediction of postoperative sepsis after

appendectomy. Surgery 169(3):671–677

41. Adams K, Papagrigoriadis S (2014) Creation of an effective

colorectal anastomotic leak early detection tool using an artificial

neural network. Int J Colorectal Dis 29(4):437–443

42. Wen R, Zheng K, Zhang Q et al (2021) Machine learning-based

random forest predicts anastomotic leakage after anterior resec-

tion for rectal cancer. J Gastrointest Oncol 12(3):921–932

43. Cao Y, Bass GA, Ahl R et al (2020) The statistical importance of

P-POSSUM scores for predicting mortality after emergency

laparotomy in geriatric patients. BMC Med Inform Decis Mak

20(1):86

44. Akmese OF, Dogan G, Kor H et al (2020) The use of machine

learning approaches for the diagnosis of acute appendicitis.

Emerg Med Int 2020:7306435. https://doi.org/10.1155/2020/

7306435

45. Hsieh CH, Lu RH, Lee NH et al (2011) Novel solutions for an old

disease: diagnosis of acute appendicitis with random forest,

support vector machines, and artificial neural networks. Surgery

149(1):87–93
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