Skip to main content
. 2022 Sep 15;46(12):3100–3110. doi: 10.1007/s00268-022-06728-1

Table 2.

Key characteristics of included studies

Author Year Country Patients Age (mean) Study design Surgical procedures Intervention (machine learning model) Surgical outcomes Internal validation method External validation (yes/no) Discrimination (ACC/AUC) Calibration (yes/no)
Alvarez-Jimenez et al. 2020 USA 94 62 Retrospective Cohort Total mesorectal excision Radiomics Prediction of tumour differentiation Cross-validation Yes –/0.73 No
Lee et al. 2020 Korea 2019 62 Retrospective Cohort Colectomy CNN; RF Prediction of metastasis Cross-validation No –/0.70 No
Zhang et al. 2020 China 94 58 Retrospective Cohort NS Radiomics Prediction of metastasis Cross-validation No –/0.88 Yes
Eresen et al. 2020 USA 390 63 Retrospective Cohort Colectomy Radiomics; SVM Prediction of metastasis Cross-validation No –/0.83 No
Nakanishi et al. 2020 Japan 247 60 Retrospective Cohort Total mesorectal excision Radiomics Prediction of metastasis Bootstrapping Yes /0.91 Yes
Li et al. 2019 China 48 61 Retrospective Cohort Colectomy Radiomics; SVM Prediction of metastasis Cross-validation No 0.86/0.87 No
Liang et al. 2019 China 108 55 Retrospective Cohort Total mesorectal excision Radiomics; SVM Prediction of metastasis Cross-validation No 0.72/0.83 No
Li et al. 2020 China 207 62 Retrospective Cohort Colectomy Radiomics; SVM Prediction of metastasis Cross-validation No 0.73/0.83 No
Dimitriou et al. 2018 UK 173 67 Retrospective Cohort Colectomy Multiple machine learning methods Prediction of survival Cross-validation No

SVM–/0.95

RF–/0.92

No
Antunes et al. 2020 USA 104 63 Retrospective Cohort Proctectomy Radiomics; RF Prediction of chemotherapy response Cross-validation No 0.71/0.71 No
Ferrari et al. 2019 Italy 55 65 Retrospective Cohort Total mesorectal excision Radiomics; RF Prediction of chemotherapy response Random split of dataset No –/0.86 No
Yuan et al. 2020 USA 91 56 Retrospective Cohort Total mesorectal excision Radiomics Prediction of chemotherapy response Random split of dataset No 0.84/– No
Boyne et al. 2020 Canada 1378 64 Retrospective Cohort Colectomy RF Prediction of chemotherapy response Bootstrapping No –/0.8 Yes
Fu et al. 2020 USA 43 54 Retrospective Cohort Total mesorectal excision Radiomics; CNN Prediction of chemotherapy response Cross-validation No –/0.73 No
Shaish et al. 2020 USA 132 63 Retrospective Cohort Total mesorectal excision Radiomics Prediction of chemotherapy response Cross-validation No –/0.80 No
Yi et al. 2019 China 134 52 Retrospective Cohort Total mesorectal excision Radiomics Prediction of chemotherapy response Random split of dataset No –/0.91 No
Weller et al. 2018 USA 4773 NS Retrospective Cohort NS Multiple machine learning methods Prediction of postoperative complications Cross-validation No

GBM–/0.64

RF–/0.6

SVM–/0.65

No
Chen et al. 2019 USA 13,399 58 Retrospective Cohort NS GBM Prediction of postoperative complications Cross-validation No –/0.82 No
Azimi et al. 2020 USA 208 58 Retrospective Cohort Colectomy Multiple machine learning methods Prediction of postoperative complications Bootstrapping No

DT0.86/–

RF0.93/–

SVM0.81/–

ANN 0.88/–

No
Bunn et al. 2020 USA 223,214 40 Retrospective Cohort Appendectomy Multiple machine learning methods Prediction of postoperative complications Random split of dataset No

GBM–/0.93

RF–/0.96

SVM–/0.5

No
Adams et al. 2013 UK 76 61 Retrospective Cohort NS ANN Prediction of postoperative complications Random split of dataset Yes –/0.89 No
Wen et al. 2021 USA 5220 59 Retrospective Cohort Anterior resection + Total mesorectal excision RF Prediction of postoperative complications Cross-validation Yes –/0.85 No
Cao et al. 2020 Sweden 157 76 Retrospective Cohort Emergency colectomy RF Prediction of mortality Cross-validation No 0.81/0.93 No
Akmese et al. 2020 Turkey 128 NS Retrospective Cohort Appendectomy Multiple machine learning methods Prediction of diagnosis Random split of dataset No

DT0.81/–

GBM0.95/–

RF 0.93/–

SVM 0.80/–

ANN 0.65/–

No
Hsieh et al. 2010 Taiwan 180 40 Retrospective Cohort NS Multiple machine learning methods Prediction of diagnosis Cross-validation No

RF 0.96/0.98

SVM 0.93/0.96

ANN 0.91/0.91

No
Yoldas et al. 2011 Turkey 156 30 Retrospective Cohort NS ANN Prediction of diagnosis Random split of dataset No –/0.95 No
Prabhudesai et al. 2007 UK 60 25 Retrospective Cohort NS ANN Prediction of diagnosis Random split of dataset No 0.98/– No
Gardiner et al. 2004 UK 72 NS Retrospective Cohort Anterior sphincter repair ANN Prediction of intervention success Random split of dataset No 0.93/– No
Manilich et al. 2012 USA 3754 38 Retrospective Cohort proctocolectomy RF Prediction of intervention success Random split of dataset No NS No
Curtis et al. 2019 UK 668 70 Retrospective Cohort NS ANN Prediction of pre- and postoperative management Cross-validation No –/0.86 No
Francis et al. 2015 UK 275 NS Retrospective Cohort NS ANN Prediction of pre- and postoperative management Random split of dataset No –/0.75 No

ACC accuracy, AUC area under the curve, NA not applicable, NS not specified