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Evolution of direct reciprocity 
in group‑structured populations
Yohsuke Murase1,2*, Christian Hilbe2 & Seung Ki Baek3

People tend to have their social interactions with members of their own community. Such group-
structured interactions can have a profound impact on the behaviors that evolve. Group structure 
affects the way people cooperate, and how they reciprocate each other’s cooperative actions. 
Past work has shown that population structure and reciprocity can both promote the evolution 
of cooperation. Yet the impact of these mechanisms has been typically studied in isolation. In this 
work, we study how the two mechanisms interact. Using a game-theoretic model, we explore how 
people engage in reciprocal cooperation in group-structured populations, compared to well-mixed 
populations of equal size. In this model, the population is subdivided into groups. Individuals engage 
in pairwise interactions within groups while they also have chances to imitate strategies outside the 
groups. To derive analytical results, we focus on two scenarios. In the first scenario, we assume a 
complete separation of time scales. Mutations are rare compared to between-group comparisons, 
which themselves are rare compared to within-group comparisons. In the second scenario, there 
is a partial separation of time scales, where mutations and between-group comparisons occur at a 
comparable rate. In both scenarios, we find that the effect of population structure depends on the 
benefit of cooperation. When this benefit is small, group-structured populations are more cooperative. 
But when the benefit is large, well-mixed populations result in more cooperation. Overall, our 
results reveal how group structure can sometimes enhance and sometimes suppress the evolution of 
cooperation.

Human populations have some internal structure1,2. Even in our modern and highly connected societies, the 
number of meaningful social ties that an individual can have is limited3,4. These limitations in turn restrict the 
social interactions that are possible. Yet most models of reciprocal cooperation do not consider these restrictions; 
they assume populations are well-mixed5–7. All individuals of a population are equally likely to interact with 
each other, and equally likely to imitate each other’s strategies. In the following, we explore how these results on 
reciprocity in well-mixed populations generalize to populations with a group structure. Following the work of 
Hauert, Chen, and Imhof on one-shot games8,9, we consider a situation in which a population is subdivided into 
smaller groups. Each individual in such a group engages in a repeated game with every other group member, 
as displayed in Fig. 1a. To play these games, individuals can choose between different memory-1 strategies of 
direct reciprocity, such as AllD, Tit-for-Tat, or Win-Stay Lose-Shift10,11. As time passes by, individuals are not 
restricted to stick to their respective strategies. Instead, they may adapt their behaviors, by imitating the strategies 
of other population members with higher payoffs. We assume that these imitation events are most likely to take 
place within an individual’s own group (Fig. 1b). In addition, there is also some chance that individuals imitate 
the behaviors of out-group members (Fig. 1c). In this way, successful behaviors can spread from one group to 
another, giving rise to a dynamics that is reminiscent of multilevel selection models12.

While both population structure and direct reciprocity can promote cooperative behavior on their own13, it 
is less obvious what their joint effect is. To see this point, let us recall that many well-known strategies of direct 
reciprocity can be categorized into two classes, “partners” and “rivals”7,14. Partners denote a set of generous strat-
egies that aim to achieve full cooperation with any given co-player. If the benefit of cooperation is sufficiently 
large, this class includes, for example, the well-known Win-Stay Lose-Shift rule10,11. In contrast, individuals with 
a rival strategy aim to outperform their co-player. Such individuals want to ensure that their own payoff never 
falls below the co-player’s. This class includes extortionate strategies15–20 as well as unconditional defectors. A 
series of theoretical studies have revealed whether partners or rivals are favored by selection21–31. When popula-
tions are large and the benefit of cooperation is high, partner strategies are favored. The resulting populations 
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are highly cooperative. By contrast, when either the population size or the benefit of cooperation is small, rival 
strategies are selected, which in turn prevent the evolution of cooperation.

Taking these characteristics of partner and rival strategies into account, the effect of group structure on 
cooperation is ambivalent. On the one hand, group structure generally favors cooperation, since individuals 
from cooperative groups are more likely to be imitated by other population members. On the other hand, group 
structure may reduce the chance that such cooperative groups emerge in the first place. By splitting a well-mixed 
population into several groups, each player experiences a smaller effective population size. Because small popu-
lation sizes favor the evolution of rival strategies due to the so-called spite effect32,33, the overall effect of group 
structure on cooperation may be negative.

To study the effect of group structure, we explore the evolution of direct reciprocity in two scenarios: first, we 
study the evolutionary dynamics of group-structured populations when there is a complete separation of time 
scales. Here, individuals are most likely to adopt new strategies by imitating another group member (Fig. 1b), far 
less likely by imitating an out-group member (Fig. 1c), and yet again far less likely by exploring a new strategy 
at random (akin to a mutation in biological models, Fig. 1d). As a result of this assumption, the population is 
typically homogeneous, such that all players apply the same strategy. Only occasionally, a new strategy arises by 
mutation. This new strategy either goes extinct or takes over the population by the time the next mutation arises. 
As our second scenario, we explore a model with a partial separation of time scales. Here, individuals are still 
most likely to adopt new strategies by imitating another group member. However, in this scenario, out-group 
imitation and mutations occur at a comparable rate. This assumption implies that most of the time, each group 
is still homogeneous, but players from different groups may now use different strategies. Our results suggest 
that in both scenarios, the effect of group structure is indeed non-trivial. Group structure promotes cooperation 
when the benefit of cooperation is small. Yet for large benefits, cooperation evolves more easily in well-mixed 
populations.

Figure 1.   A schematic representation of the model setting. (a) We consider pairwise interactions in group-
structured populations. The population is composed of M groups (depicted by grey sets). Each group contains 
N players (depicted by colored circles). In this example, M = 4 and N = 3 , such that the total population size is 
NM = 12 . The colors of the small circles indicate the players’ strategies. The black arrows between these circles 
indicate that each player interacts in a repeated prisoner’s dilemma with all other group members. Over time, 
players may change their strategies for the repeated prisoner’s dilemma in three different ways. (b) First, with 
probability µin , players engage in intra-group imitation. In that case, a player randomly samples a role model 
from the same group, and imitates the role model’s strategy with a certain probability that depends on the 
players’ payoffs. (c) Second, with probability µout , players engage in inter-group (or out-group) imitation. In that 
case, the player randomly selects a role model from a different group, and again imitates this role model with a 
certain probability. (d) Finally, with probability ν , there is a mutation, in which case the player selects to a new 
strategy randomly. The three probabilities sum up to one, µin + µout + ν = 1 . When we consider a scenario 
with a complete separation of time scales, we assume ν ≪ µout ≪ µin . When we consider a partial separation of 
time scales, we assume ν ≪ µin and µout ≪ µin.
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Model
The following description of our model consists of two parts. First, we describe how individuals engage in 
pairwise interactions within their groups. These interactions take the form of an infinitely repeated prisoner’s 
dilemma. We derive the payoffs that each player obtains, given the players’ strategies. In a second step, we describe 
how individuals update their strategies over time, based on a pairwise comparison process34.

Dynamics of the repeated prisoner’s dilemma.   The repeated Prisoner’s Dilemma (PD) is the most 
fundamental theoretical framework to study direct reciprocity. The game takes place among two players. In each 
of infinitely many rounds, each player independently decides whether to cooperate (C) or to defect (D). In this 
paper, we study a special variant of the prisoner’s dilemma, the donation game. Here, cooperation means that 
a player pays a cost (normalized to c = 1 ) in order for the other player to receive a benefit b>1 . The respective 
payoff matrix is

If the donation game is only played once, the only Nash equilibrium is to mutually defect. But in the repeated 
game it can be reasonable to cooperate, because players may get a higher long run payoff by maintaining a good 
relationship with their co-player. In particular, the Folk theorem of repeated games guarantees that mutual 
cooperation can be sustained in a Nash equilibrium, provided there are sufficiently many rounds35.

In general, strategies for the repeated prisoner’s dilemma need to tell the player what to do after any history 
of previous interactions. The resulting space of possible strategies is vast36. To simplify our analysis, in the fol-
lowing we focus on a well-known subspace, the space of memory-1 strategies31. When players adopt a memory-1 
strategy, they only condition their next decision on what happened in the previous round. Such strategies can 
be represented as a 4-tuple,

An entry pij represents the player’s cooperation probability, given that in the previous round the player used 
action i and the co-player used action j. We call a memory-1 strategy deterministic, if all entries are either zero 
or one, and we refer to the set of all such strategies as M . It follows that there are |M| = 24 = 16 such strategies 
in total. They are summarized in Table 1. In particular, this table includes several well-known strategies such as 
AllD, Tit-for-Tat (TFT), or Win-Stay-Lose-Shift (WSLS)10,11. For our subsequent analysis, we shall assume that 
players make errors with some small probability e. That is, with probability e a player defects although this player 

(1)
(

b− 1 − 1
b 0

)

.

(2)p = (pCC , pCD , pDC , pDD).

Table 1.   Deterministic memory-1 strategies of the repeated prisoner’s dilemma. Memory-1 strategies only 
depend on the outcome of the previous round. These strategies are deterministic if, given the previous 
outcome, they either prescribe to cooperate with certainty (C), or to defect with certainty (D). The four letters 
in the second column represent which action the strategy prescribes, given the previous actions of the focal 
player (first letter) and the co-player (second letter). The third column shows the cooperation level when both 
players use the respective strategy γp,p (assuming e → 0 ). See “Methods” for details of the calculation. The 
fourth column indicates whether or not the strategy is a rival strategy. A strategy p is a rival if it enforces the 
payoff relationship πp,q ≥ πq,p against all co-player’s strategies q . The fifth column shows how each strategy 
p performs against WSLS (again for e → 0 ). If π(p,WSLS) > π(WSLS, p) , then we mark the strategy p with 
a ‘ + ’. Analogously, if payoffs are equal, we use a ‘0’, and if the payoff is smaller, we use ‘−’. Provided the benefit 
b>1 , these relationships are independent of the exact value of b.

ID Prescriptions (CC, CD, DC, DD) Self-cooperation level Rival vs WSLS

S0 (AllC) C, C, C, C 1 −

S1 D, C, C, C 1/2 −

S2 C, D, C, C 3/4 0

S3 D, D, C, C 1/2 0

S4 C, C, D, C 3/4 −

S5 D, C, D, C 1/2 0

S6 (WSLS) C, D, D, C 1 0

S7 D, D, D, C 1/2 +

S8 C, C, C, D 1 −

S9 D, C, C, D 0 −

S10 (TFT) C, D, C, D 1/2 � 0

S11 D, D, C, D 1/4 � 0

S12 C, C, D, D 1/2 0

S13 D, C, D, D 1/4 +

S14 (GRIM) C, D, D, D 0 � +

S15 (AllD) D, D, D, D 0 � +
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intended to cooperate (and conversely, a player who intended to defect may cooperate). As a result, instead of 
their intended strategies p , players implement the effective strategies (1−e)p+ e(1− p).

When both players adopt a memory-1 strategy, one can explicitly compute their payoffs and how often they 
cooperate, by representing the game as a Markov chain6. The possible states of this Markov chain are the possible 
outcomes of each round (CC, CD, DC, DD; here, the first and second letter refer to the action of the first and 
second player, respectively). Given these states and the players’ (effective) strategies p = (pCC , pCD , pDC , pDD) 
and q = (qCC , qCD , qDC , qDD) , the transition matrix T of the Markov chain takes the form

Here, p̄ij = 1− pij and q̄ij = 1− qij for i, j∈{C,D} are the players’ respective defection probabilities. For 
positive error rates, every entry of this transition matrix is positive. It follows by the Theorem of Perron–Frobe-
nius that T has a unique invariant distribution v = (vCC , vCD , vDC , vDD) . In particular, the p-player’s average 
cooperation level is γp,q := vCC+vCD whereas the q-player’s cooperation level is γq,p := vCC+vDC . As a result, 
the p-player’s long-term average payoff is given by

When both players adopt the same strategy p=q and errors are rare, e → 0 , Table 1 shows the cooperation 
levels against itself γp,p for each deterministic memory-1 strategy. In particular, the table reveals that there are 
only three deterministic strategies that fully cooperate against themselves in the limit of rare errors. These strate-
gies are AllC, WSLS, and the strategy p=(1, 1, 1, 0) . Out of these three strategies, WSLS is a Nash equilibrium if 
b≥2c , whereas the other two strategies are always unstable6.

Evolutionary dynamics in group‑structured populations..   To study the evolution of reciprocity in 
group-structured populations, we extend the models of Hauert, Chen, and Imhof8,9 (who introduced the formal-
ism for one-shot, non-repeated games). We consider a finite population of size MN subdivided into M groups 
of size N. Individuals in each group engage in pairwise interactions with all other members of their group, as 
depicted in Fig. 1a.

To compute the overall payoff of a focal individual with strategy p , let nq denote the number of group mem-
bers that adopt strategy q ∈ M . Because the p-player interacts with all N−1 other group members, the player’s 
average payoff is

Here, πp,q is the payoff that the p-player obtains against a co-player with strategy q , as defined by Eq. (4), and 
δp,q is the indicator function that is one if p=q , and zero otherwise.

The players’ strategies are not fixed. Instead, each player updates its strategy according to the following 
dynamics. At each time step, one player from the population is chosen randomly as the focal player. Suppose this 
player currently uses strategy p . The focal player is then given a chance to adapt its strategy, either by intra-group 
imitation (with probability µin ), out-group imitation (with probability µout ), or mutation (with probability ν ), 
as depicted in Fig. 1b–d. In particular, µin + µout + ν = 1 . In case of an intra-group imitation,the focal player 
randomly selects a role model from its own group. If the role model adopts strategy q , the focal player switches 
to the role model’s strategy with a probability given by the Fermi function37,38

Here, σin≥0 represents the selection strength of intra-group imitation. If σin is small, imitation events are 
mostly driven by chance, f inp→q ≈ 1/2 . In contrast, if σin is large, the role model’s strategy only has a reasonable 
chance of being imitated if it yields at least the payoff of the focal player.

The case of out-group imitation follows an analogous procedure. Here, the focal player randomly selects a role 
model from a different group (with all other groups being equally likely). If the respective role model happens 
to use strategy q , the focal player adopts this strategy with probability

Here, σout is the selection strength for out-group imitation. Note that because the focal player and the role 
model are now in different groups, they do not play the game with each other, which is one of the key differences 
from models without group structure. Out-group imitation plays a similar role as migrations in genetic models 
of evolution8,12. It allows strategies to move from one group to another. Finally, in case the focal player changes its 
strategy by mutation, the player simply replaces its current strategy p by a random strategy q . All deterministic 
memory-1 strategies q are equally likely to be chosen.

The above elementary updating process is iterated for many time steps. In each time step, a single individual 
is given the chance to update its strategy by intra-group imitation, out-group imitation, or mutation. Overall, 

(3)T =







pCC · qCC pCC · q̄CC p̄CC · qCC p̄CC · q̄CC
pCD · qDC pCD · q̄DC p̄CD · qDC p̄CD · q̄DC
pDC · qCD pDC · q̄CD p̄DC · qCD p̄DC · q̄CD
pDD · qDD pDD · q̄DD p̄DD · qDD p̄DD · q̄DD






.

(4)πp,q = b · γq,p − c · γp,q .

(5)πp =
1

N − 1

∑

q∈M

(nq − δp,q)πp,q

(6)f inp→q =
1

1+ exp
[

σin
(

πp − πq
)] .

(7)f outp→q =
1

1+ exp
[

σout
(

πp − πq
)] .
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this gives rise to a stochastic process on the space of all population compositions. In contrast to typical multilevel 
selection models12,39, where an entire group may be replaced by another group, selection always operates on 
the individual level. Successful groups do not replace less successful ones; rather strategies of successful play-
ers are more likely to be imitated over time. The resulting stochastic process is straightforward to simulate. In 
the following, we derive results for two important special cases. In the first special case, we assume a complete 
separation of time-scales. Here, mutations are rare compared to out-group comparisons, which themselves are 
rare compared to intra-group comparisons, ν ≪ µout ≪ µin . In the second case, we assume that mutations and 
out-group comparisons happen on a similar time scale, but both are rare compared to intra-group comparisons, 
ν ≪ µin and µout ≪ µin.

Analysis
Dynamics when there is a full separation of time scales.  We begin by assuming a complete separa-
tion of time scales, ν ≪ µout ≪ µin . In this setting, the intra-group dynamics are fast compared to the others. 
As a result, at any point in time there are at most two different strategies present in any group. When a mutation 
or an out-group imitation introduces a new strategy, intra-group imitation leads to the extinction or fixation of 
this strategy before the next strategy is introduced. In the following, we describe this dynamics in more detail.

Description of the intra‑group dynamics.   Consider a group in which i players adopt the strategy p and N−i 
players adopt the strategy q . By Eq. (5), the players’ payoffs are given by (see “Methods” for an alternative for-
mulation)

The probability that intra-group imitation increases (decreases) the number of p-players in a single time step is

Here, the first equation corresponds to the case where a q-player is randomly chosen as the updating player, 
a p-player is chosen as the role model, and the updating player chooses to imitate the role model. The second 
equation corresponds to the converse case of a p-player imitating a role model with strategy q.

The fixation probability of a single p player in a resident group of q-players can be computed explicitly40,41. 
This probability is given by ρp,q =

(

1+
∑N−1

j=1

∏j
i=1 γi

)−1 , where γi ≡ T−

i /T+

i = exp
[

σin ·
(

πq(i)− πp(i)
)]

 . 
By using the explicit payoff equations (8), this fixation probability becomes22

Using this formula, we can compute for each resident strategy q how likely it is that any novel strategy p is 
eventually adopted by the entire group. While the use of fixation probabilities has become common practice in 
evolutionary game theory41, we note that the time it takes for a single strategy to reach fixation may be consider-
able. The fixation time becomes particularly long when groups are large, and when the strategies p and q allow 
for an equilibrium in which the two strategies stably co-exist42. Nevertheless, this limit has become a useful 
approximation, as it simplifies computations considerably. Instead of considering arbitrarily many strategies at 
once, one can make predictions by only considering two strategies at a time43,44. Once a strict separation of time 
scales does no longer apply, the analysis becomes considerably more intricate45.

Description of the inter‑group dynamics..   To further simplify the analysis of our model, we make the additional 
assumption that ν ≪ µout . This limit indicates that the time scale for out-group imitations is short compared 
to the time scale of mutations. This assumption implies that at any point in time, at most two different strate-
gies are present in the entire population. Once a mutation introduces a new strategy, this strategy either fixes in 
the population (through successive in-group and out-group imitation events), or the strategy goes extinct. To 
describe this dynamics in more detail, suppose that the two strategies p and q are present in the population. Since 
intra-group imitation is fast, every group is homogeneous. As a consequence, we can speak of p-groups and q
-groups, depending on which strategy the group members employ. Once a q-player imitates a player from a p
-group, the number of p-groups may increase (if the strategy p reaches fixation in the q-group). The respective 
probability that the number i of p-groups increases (or decreases) is given by

(8)
πp(i) =

i − 1

N − 1
· πp,p +

N − i

N − 1
· πp,q ,

πq(i) =
i

N − 1
· πq,p +

N − i − 1

N − 1
· πq,q .

(9)T+

i =
N − i

N

i

N − 1

1

1+ exp
{

σin
[

πq(i)− πp(i)
]}

(10)T−

i =
N − i

N

i

N − 1

1

1+ exp
{

σin
[

πp(i)− πq(i)
]} .

(11)ρp,q =

(

N−1
∑

i=0

exp

[

σin · i
(2N − i − 3)πq,q + (i + 1)πq,p − (2N − i − 1)πp,q − (i − 1)πp,p

2(N − 1)

]

)−1

.

(12)Q+

i =
i

M

M − i

M − 1

1

1+ exp
[

σout
(

πq,q − πp,p
)] · ρp,q ,
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respectively. In both expressions, the first three factors on the right hand side represent the probability of the 
respective out-group imitation event. The last factor is the probability that the newly introduced strategy reaches 
fixation. The ratio η of these transition probabilities simplifies to

From Eq. (11), the ratio of the intra-group fixation probabilities is46

Thus, Eq. (14) can be re-written as

Overall, we obtain the following formula for the probability that a new strategy p takes over the entire popula-
tion, given everyone else applies strategy q,

Here, the first factor ρp,q is the probability that the p-mutant takes over the first group. The second factor gives 
the probability that eventually also all other groups adopt p . Similarly one can calculate the fixation probability 
that everyone in a p-population eventually imitates a single q mutant. This probability is

These formula allow us to compute how likely any given mutant strategy is to replace the resident strategy 
when there is a complete separation of time scales.

Strategies favored by the evolutionary process.   Using these formulas, we can analyze which strategies are par-
ticularly likely to spread. To this end, we say strategy p is favored over q if a single p-mutant is more likely to 
fix in a q-population than vice versa. By Eqs. (17) and (18), the respective condition �p,q > �q,p simplifies to

The left hand side reflects the effect of in-group imitation, whereas the right hand side captures the effect 
of out-group imitation. In the special case of a single group, M = 1 , this condition reproduces the respective 
condition for well-mixed populations, ρp,q > ρq,p . Plugging Eq. (15) into Eq. (19) yields

By collecting alike terms, this expression can be further simplified to

The first and the second terms of this inequality correspond to the dynamics within and between groups, 
respectively. The intra-group dynamics is decisive if either σinN ≫ σout or if the number of groups is small 
( M ≈ 1 ). In that case, and if groups are additionally assumed to be small ( N → 2 ), the condition for p to be 
favored simplifies to

This condition is closely related to the notion of rival strategies14. Strategy p is a rival strategy if and only if 
it enforces the condition πp,q ≥ πq,p against all strategies q . In Table 1, the second-to-last column indicates all 
memory-1 rival strategies. There are four of them, TFT, Grim, AllD, and the strategy p = (0, 0, 1, 0) . The above 
observations suggest that these rival strategies should be particularly strong when there is only a single group 
with two group members ( M = 1 and N = 2).

In the other extreme, when σinN ≪ σout and M is sufficiently large, it is the inter-group dynamics that is 
decisive. In that case, the relative strength of a strategy is determined by its efficiency. Strategy p is favored over 
q if and only if it yields the larger payoff against itself,

(13)Q−

i =
i

M

M − i

M − 1

1

1+ exp
[

σout
(

πp,p − πq,q
)] · ρq,p,

(14)η ≡
Q−

i

Q+

i

=
ρq,p

ρp,q
exp

[

σout(πq,q − πp,p)
]

.

(15)
ρp,q

ρq,p
=

N−1
∏

j=1

γj = exp

{

σin

[

(

πp,p − πq,q

)

(

N

2
− 1

)

+

(

πp,q − πq,p

)N

2

]}

.

(16)η = exp

{

−σin

[

(

πp,p − πq,q

)

(

N

2
− 1

)

+

(

πp,q − πq,p

)N

2

]

+ σout

(

πq,q − πp,p

)

}

.

(17)�p,q = ρp,q
1

1+
∑M−1

j=1 ηj
=

{

ρp,q
1−η

1−ηM
when η �= 1

ρp,q/M when η = 1,

(18)�q,p = ρq,p
1

1+
∑M−1

j=1 η−j
=

{

ρq,p
1−η−1

1−η−M when η �= 1

ρq,p/M when η = 1.

(19)
ρp,q

ρq,p
> exp

[

M − 1

M
σout

(

πq,q − πp,p

)

]

.

(20)σin
N

2
πp,q +

[

σin

(

N

2
− 1

)

+ σout
M − 1

M

]

πp,p > σin
N

2
πq,p +

[

σin

(

N

2
− 1

)

+ σout
M − 1

M

]

πq,q .

(21)σin

[

N

2

(

πp,q − πq,p
)

+

(

N

2
− 1

)
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)
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(
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(22)πp,q > πq,p.
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A final interesting case arises when the two selection strength parameters are equal, σin = σout . In that case, 
condition (21) simplifies to

In particular, if the total population becomes large MN → ∞ , strategy p is favored if and only if

That is, p is favored if and only if it is risk-dominant47, independent of the exact values of M and N.
Equation (24) indicates that the preference between two strategies is independent of N and M as long as the 

total population size MN is fixed. We note, however, that the extent to which p is preferred over q does depend 
on M and N. Thus, the relative abundance of the strategies changes according to the group structure when there 
are more than two strategies, as we will see in the following numerical simulations.

Numerical simulations. The above arguments are valid only when players choose among two strategies. 
In the following, we explore evolution among all 16 deterministic memory-1 strategies by implementing the 
evolutionary process numerically. To this end, we use Monte Carlo simulations. Mutant strategies are repeatedly 
introduced into the current resident population. The mutant strategy either takes over or goes extinct. We report 
how much cooperation we observe on average (see ““Methods”).

Figure 2 shows how the evolving cooperation level depends on the number of groups M, either for small 
groups ( N = 2 ) or for relatively large groups ( N = 32 ). When the group size is small, we observe very little 
cooperation if there is only a single group ( M = 1 ), as predicted by our earlier analysis. As we increase the 
number of groups, also the cooperation level increases. However, they do not improve indefinitely. Rather, these 
improvements saturate as we increase M, which is consistent with the factor (M − 1)/M in Eq. (20). The limiting 
cooperation level depends on the benefit of cooperation, reproducing the standard result that larger benefits 
are more conducive to cooperation7. In general, we thus observe that cooperation tends to be favored when M, 
N, and b are large, corresponding to many groups of substantial size, and a considerable benefit to cooperation.

After exploring the effect of group size and number of groups in isolation, we next ask to which extent group 
structure facilitates cooperation. To this end, we keep the total population size fixed at MN = 120 , and vary the 
group size N. The number of groups is then automatically determined as M = 120/N . In one extreme case, there 
is only a single group of maximum size, M = 1 and N = 120 . We refer to this scenario as the case of a (single) 
well-mixed population. In the other extreme case, groups take the minimum non-trivial size, N = 2 , which 
implies that the resulting number of groups is M = 60 . We refer to this second scenario as the case of a (fully) 
group-structured population. Figure 3a shows how the cooperation level changes as we vary the group size N. 
Interestingly, the effect of group structure depends on the benefit b of cooperation. If the benefit is small, group-
structured populations achieve more cooperation than well-mixed populations. For intermediate benefits, we 
observe the opposite trend. Here, well-mixed populations are more conducive to cooperation. Finally, once ben-
efits are very large, full cooperation evolves in all considered cases, independent of the exact values of M and N.

To further investigate these non-trivial effects of group structure, we analyze the abundance of each of the 
16 strategies in the stationary state, see Fig. 3b–e. We first consider the case that the benefit of cooperation 
is intermediate, b=3 . Here, well-mixed populations lead to much more cooperation. In particular, here we 
observe that populations learn to adopt the cooperative Win-Stay Lose-Shift (WSLS) strategy almost all of the 
time (Fig. 3c). In group-structured populations, on the other hand, no single strategy is predominant. The most 
abundant strategies are the non-cooperative strategies AllD and Grim. The next abundant strategies are WSLS 
and TFT, respectively. Overall, we thus observe that well-mixed populations are more favorable for cooperation 

(23)πp,p > πq,q .

(24)MN
(

πp,q − πq,p
)

+ (MN − 2)
(

πp,p − πq,q
)

> 0.

(25)πp,p + πp,q − πq,p − πq,q > 0.

Figure 2.   Cooperation levels as functions of the number of groups M for small groups ( N = 2 ) and large 
groups ( N = 32 ). The curves corresponds to high benefit ( b = 6 ), intermediate benefit ( b = 3 ), and low benefit 
( b = 1.5 ) from top to bottom. When groups are small, we see more cooperation when we increase the number 
of groups. In contrast, when each group is large, the exact number of groups has little effect on the average 
cooperation level.
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because they make it more likely that the cooperative strategy WSLS evolves. In a second step, we consider the 
case of low cooperation benefits, see Fig. 3d,e. Group-structured populations again lead to the evolution of the 
strategies AllD, Grim, TFT, and WSLS (and related strategies). In contrast, well-mixed populations consist of 
the non-cooperative strategies AllD and Grim almost entirely.

To better understand why cooperative strategies are abundant in one scenario but not in another, we investi-
gate the transition probabilities for a reduced strategy space. The reduced strategy space contains the representa-
tive strategies AllC, WSLS, TFT, AllD and the strategy S7 with p = (0, 0, 0, 1) . Strategy S7 is included because it 
has the highest ability to invade WSLS among the memory-1 strategies. Strategy S7 is preferred over WSLS for 
the broadest range of b according to Eq. (25). The payoffs and the win-lose relationships of these strategies are 
summarized in Tables 2 and 3. In addition, Fig. 4 illustrates the average abundance of each of these five strategies 
and the transition probabilities between them. We confirmed that the overall cooperation levels for this reduced 
strategy space are comparable to the corresponding results for the full strategy space. Hence, the reduced strategy 
space can serve a useful proxy to gain insights into the overall dynamics.

We first consider the case of an intermediate benefit, b=3 . Here, well-mixed populations yield more coop-
eration, as they promote the evolution of WSLS. Figure 4b shows why. There is an evolutionary path from 
every other strategy towards WSLS; once the entire population adopts WSLS, every other mutant strategy is at 
a disadvantage. This picture is in line with previous research on direct reciprocity in well-mixed populations31. 
The picture changes, however, in group-structured populations, see Fig. 4a depicting the case of groups of size 
N=2 . Here, a homogeneous WSLS population can be invaded by S7 . To see why, consider a group that contains 
both strategies. By Table 2, the payoff of WSLS is 1/3b− 2/3 , which is below the payoff of S7 , 2/3b− 1/3 . Hence, 
S7 is favored in each mixed group. On the other hand, with respect to out-group imitation, it is WSLS that is 
favored over S7 , because the payoff of WSLS against itself is b−1 , which exceeds S7 ’s self-payoff of (b− 1)/2 . 
To compute which of the two opposing effects dominates, Eq. (21) suggests that we need to compute the sign 
of πp,p + πp,q − πq,p − πq,q . For b < 5 , this criterion suggests that S7 is favored (as also indicated in Table 3). 
These observations explain why in group-structured populations, WSLS is susceptible to invasion by S7 , which 
in turn can be invaded by AllD.

In a next step, we explore the case of a small benefit of cooperation, b=1.5 . Here, group-structured popula-
tions are more cooperative. The respective transition graphs for group-structured and well-mixed populations 
are depicted in Fig. 4c, d. In both cases, we observe that there is no single strategy that resists invasion by all 
other strategies. Instead, AllD populations are susceptible to TFT, which in turn is susceptible to AllC and WSLS, 
which can be invaded by AllD again. The main difference between group-structured and well-mixed popula-
tions is the relative performance of TFT. Compared to well-mixed populations, TFT is better able to invade AllD 
populations in structured populations. To see why, we first consider the within-group dynamics when N = 2 . 
Because TFT gets the same payoff as the opponent in any pairwise encounter15, the fixation probability of TFT 
in a group with ALLD is exactly 1/2. In addition, TFT is favored by the between-group dynamics, because the 
payoff of TFT-groups is (b − c)/2, which is larger than the payoff of zero in AllD-groups. It follows that a single 
TFT mutant can replace an AllD population with a probability that is approximately 1/2. In contrast, in well-
mixed populations, this fixation probability is much smaller, 0.18 for the parameters in Fig. 4d.

The above results suggest that overall, there are two competing effects when splitting a population into smaller 
groups. On the one hand, smaller group sizes favor the evolution of rival strategies because small groups generally 

Figure 3.   The effect of group structure on the evolution of cooperation. Here we keep the total population 
size fixed to MN = 120 , while simultaneously varying the size N of each group and the number of groups 
M = 120/N . (a) We observe that group structure has a positive effect for low benefit ( b = 1.5 ), a negative effect 
for intermediate benefit ( b = 3 ) and no effect for high benefit ( b = 6 ). (b–e) To explore these non-trivial effects 
of group structure in more detail, we record the abundance of each strategy for four different scenarios. The 
scenarios differ in whether the benefit is low or intermediate ( b = 1.5 and b = 3 , respectively), and whether the 
population is group-structured or well-mixed ( N=2 , M=60 and N=120 , M=1 , respectively). Note that the 
different panels use different scales for the vertical axes.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18645  | https://doi.org/10.1038/s41598-022-23467-4

www.nature.com/scientificreports/

Figure 4.   Evolutionary dynamics among five representative strategies when there is a complete separation 
of time scales. To shed further light on the previous evolutionary results among all memory-1 strategies, here 
we display the transitions for a reduced strategy set. The reduced strategy set consists of the five strategies 
AllD, TFT, AllC, WSLS, and S7 = (0, 0, 0, 1) . We consider four scenarios, depending on whether the benefit 
of cooperation is intermediate or low (top and bottom), and depending on whether the population is group-
structured or well-mixed (left and right, respectively). Group-structured populations consist of M = 60 groups 
of size N = 2 ; well-mixed populations consist of a single M = 1 group of size N = 120 . The thickness of the 
arrows indicates the respective fixation probabilities. Thick arrows without numbers represent cases in which the 
fixation probability is approximately one. For better clarity, we only depict arrows when the fixation probability 
is at least 0.1. The numbers represent numerically exact values for a selection strength of σin = σout = 10.

Table 2.   Payoff matrix for the reduced strategy space, consisting of AllC, WSLS, S7 , TFT, and AllD. The entry 
(i, j) is the payoff πij that the (row) strategy i obtains against the (column) strategy j.

AllC WSLS S7 TFT AllD

AllC b− 1 1/2b− 1 −1 b− 1 −1

WSLS b− 1/2 b− 1 1/3b− 2/3 1/2b− 1/2 −1/2

S7 b 2/3b− 1/3 1/2b− 1/2 1/3b− 1/3 −1/2

TFT b− 1 1/2b− 1/2 1/3b− 1/3 1/2b− 1/2 0

AllD b 1/2b 1/2b 0 0

Table 3.   Pairwise comparisons for the reduced strategy space. Again, we consider every pairwise combination 
of AllC, WSLS, S7 , TFT, and AllD. The cells indicate the sign of πp,p + πp,q − πq,p − πq,q , the left-hand side 
of Eq. (25). A plus sign (minus sign) indicates that the row strategy p is favored (disfavored) over the column 
strategy q . If the sign depends on the benefit b, the range for which the sign is positive is shown. Blank cells 
indicate that the left-hand side of Eq. (25) is equal to zero.

AllC WSLS S7 TFT AllD

AllC − − + −

WSLS + b > 5 + b > 3

S7 + b < 5 −

TFT −1 − +

AllD + b < 3 + −
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select for spite40. On the other hand, group structure can favor the evolution of cooperation because individu-
als in highly cooperative groups are more likely imitated. Our above results suggest that the overall outcome 
of these two opposing effects depends on the benefit of cooperation. When this benefit is comparably small, 
group-structured populations allow for more cooperation than well-mixed populations. In contrast, when this 
benefit is intermediate, cooperation in well-mixed populations is more robust.

Dynamics when there is a partial separation of time scales.  Throughout our analysis so far we have 
assumed a complete separation of time-scales. When a player was randomly chosen to update its strategy, we 
assumed that this player is most likely to engage in intra-group imitation, far less likely to engage in out-group 
imitation, and again far less likely in random exploration (mutation). In the following, we instead assume that 
intra-group comparisons are still most likely; however, mutations and out-group comparisons now occur on a 
similar time scale. In this limit, all groups can be assumed to be homogeneous because intra-group imitation 
is fast. However, different groups might employ different strategies, because mutations might introduce novel 
strategies faster than out-group imitation can result in the fixation of any given strategy in the population.

A differential equation in the limit of large populations.   To obtain analytical results, in the following we assume 
that the number of groups is large, M → ∞ . Let xp be the fraction of groups that employ strategy p . Over time, 
these fractions can change, either because new strategies are introduced into groups by out-group imitation (and 
reach fixation), or they are introduced by mutations (and reach fixation). This dynamics may be described by the 
following differential equation,

Here, r = ν/(ν + µout) is the relative mutation probability (compared to out-group imitation events). The 
right hand side of Eq. (26) consists of two parts. The first sum describes the changes triggered by out-group 
imitation. Here, the parameter

describe the flow from strategy q to strategy p . For example, the denominator of the first term on the right hand 
side describes the likelihood that a q-player switches to p due to out-group imitation. The numerator describes 
the likelihood that subsequently, p reaches fixation due to in-group imitation. The interpretation of the second 
term on the right hand side is similar, by considering the possibility that a p-group makes the converse transition 
towards q . The second sum in Eq. (26) describes the changes triggered by mutation events. Here, the denominator 
of ρp,q/|M| describes the probability that the mutating player adopts strategy p . The numerator gives the prob-
ability that this strategy is then adopted by all other group members, due to intra-group imitation. We note that 
the sum 

∑

p xp = 1 by definition, and hence the equation is defined on the 16-dimensional simplex. Moreover, 
since 

∑

p ẋp = 0 , the unit simplex is invariant under the dynamics. One may interpret Eq. (26) as a variant of the 
replicator–mutator equation48, where the first part represents selection and the second part represents mutations.

Further below, we explore the solutions of Eq. (26) numerically, for various parameter combinations. For all 
parameters we considered, the dynamics converges to a stable fixed point. Such a fixed point satisfies the equation

We would like to emphasize that the Eq. (26) does not need to recover the qualitative dynamics that we 
obtained in the previous section, even when r → 0 (in which case mutations are again rare compared to out-
group imitation events). In other words, the order in which limits are taken affects the solution that is predicted. 
As we show further below, however, the solutions predicted by Eq. (26) are in excellent agreement with explicit 
simulations of the evolutionary process for all values of r we considered.

Numerical results.   Figure 5a shows the evolving cooperation levels for a well-mixed population ( N=200,M=1 ) 
and a group-structured population ( N=2 , M=100 ). We observe a striking difference between the two settings. 
In the well-mixed population, the cooperation level strongly depends on the benefit of cooperation, as one 
may expect. For small benefit values, hardly any cooperation evolves. For intermediate and large benefit values, 
almost the entire population cooperates eventually. In contrast, in the group-structured population, cooperation 
levels are around 1/2 when r is low, largely independent of the benefit b. For r � O(10−1) , the cooperation levels 
drop as r increases, as shown in Fig. 5b.

To explore these results for group-structured populations in more detail, Fig. 6a shows the abundance of 
strategies in the selection-mutation equilibrium for b = 3 . According to this figure, the most abundant strategy 
is WSLS, followed by S7 , Grim, AllD, and S13 (the latter four strategies are exactly the strategies that have an 
advantage when directly competing with WSLS, see right-most column of Table 1). The underlying evolutionary 
dynamics are schematically depicted in Fig. 6b. Individuals in groups with non-cooperative strategies (such as 
Grim and ALLD) tend to adopt more cooperative strategies like TFT by out-group imitation. Once such groups 
contain a TFT-player, TFT may reach fixation by intra-group imitation (TFT is neutral when there is only a single 
TFT player in the group, and it is selectively favored when there are two TFT players or more). TFT-groups in 
turn are easily replaced by strategies that are more cooperative in the presence of errors, such as AllC and WSLS. 

(26)ẋp = (1− r)
∑

q �=p

αp,qxpxq + r
∑

q �=p

xq · ρp,q − xp · ρq,p

|M|
.
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[
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[

σout
(

πp,p − πq,q
)]

(28)x∗p =
r ·

∑

q �=p ρp,q x
∗
q/|M|

(1− r)
∑

q �=p αp,qx
∗
q − r

∑

q �=p ρq,p/|M|
.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18645  | https://doi.org/10.1038/s41598-022-23467-4

www.nature.com/scientificreports/

WSLS groups are comparably stable; as they reach the maximum payoff against themselves, individuals in these 
groups are unlikely to learn non-cooperative strategies by out-group imitation. However, strategies like AllD 
and Grim may invade a group of WSLS players once they are introduced by mutations. Assuming that the group 
is small (the figure depicts the case of N = 2 ), AllD and Grim are both likely to take over, thereby closing the 
evolutionary cycle. Importantly, the above arguments do not depend on the precise value of b; they only depend 
on the win-lose relationships between strategies. This argument can thus explain why we observe a coexistence 
between WSLS and non-cooperative strategies for a wide range of benefit values.

The above argument also explains the dependency of cooperation levels on r. When r is sufficiently small, the 
abundance of TFT also becomes as small as O(r): the transitions between WSLS and the defectors thus balance, 
and their abundance as well as cooperation levels do not show significant change as r varies. However, because 
the flow from WSLS to the defectors are mainly driven by the mutation events, the abundance of WSLS players 
drops as mutation events get more frequent.

When r or M is even smaller, evolutionary results become closer to the results observed when there is a 
complete separation of time scales. The crossover point depends on the strength of selection. When selection 
strengths are sufficiently weak, the evolutionary dynamics get closer to neutral selection, where fixation times are 
relatively short. Here, either WSLS or AllD may happen to take over the entire population with a non-negligible 
frequency, and the evolutionary dynamics are better described by the complete separation of time scale.

Figure 5.   Comparison of well-mixed and group-structured populations when there is a partial separation of 
time scales. (a) We consider a well-mixed population ( N = 200 , M = 1 ) and a group-structured population 
( N = 2 , M = 100 ), assuming that the relative probability of mutations is r = 0.01 . In both cases we simulate 
the evolutionary process with Monte Carlo simulations and record how often players cooperate on average. 
For well-mixed populations, these average cooperation levels strongly depend on the benefit of cooperation. 
In contrast, for group-structured populations, average cooperation levels are approximately 1/2, independent 
of the considered cooperation benefit. In particular, we recover our previous result that group-structured 
populations yield more cooperation when b is small, and less cooperation when b is large, compared to the 
corresponding well-mixed populations. (b) The results are qualitatively robust across many values of r (relative 
mutation probability). The points in this graph depict the result of Monte Carlo simulations. Dashed lines are 
the predictions by Eq. (26).

Figure 6.   Strategy evolution in group-structured populations when there is a partial separation of time scales. 
(a) We consider the abundance of each strategy when b = 3 and r = 0.01 ; similar distributions are found for 
other parameters when r � O(10−1) . WSLS is most abundant, followed by S7 , Grim, AllD, and S13 . (b) A 
schematic diagram of the typical transitions between strategies reveals that groups of AllD and Grim players 
tend to transition towards TFT by out-group imitation. TFT groups in turn tend to transition towards more 
cooperative strategies like WSLS or AllC. Finally, WSLS groups tend to transition towards AllD and Grim once 
these strategies are introduced by mutations.
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Summary and discussion
Herein, we propose and study a model for the evolutionary dynamics of direct reciprocity in group-structured 
populations. In our model, individuals can adopt new strategies in three different ways. They may imitate mem-
bers of their own group (with whom they also engage in prisoner’s dilemma interactions); they may imitate 
members from a different group (with whom they do not interact directly); or they may adopt a new strategy by 
random strategy exploration (similar to a mutation). While we derive the model in general terms, we focus on two 
special cases in particular. In the first case, there is.a complete separation of time scales. Here in-group imitation 
occurs much more often than out-group imitation, which in turn occurs more often than mutations. For this case, 
we can analytically derive the fixation probability, the conditional and unconditional fixation times (Appendix), 
and the condition for a strategy to be favored in a pairwise competition. In the second case, there is only a partial 
separation of time scales. In-group imitation still occurs most often, but now out-group imitation and mutations 
happen at a similar rate. We explore this case by Monte Carlo simulations, and by analyzing the properties of a 
differential equations that is valid in the limit as the number of groups becomes large.

For both cases, we explore the effect of group structure by comparing the abundance of cooperation for 
group-structured populations with the corresponding results for well-mixed populations of equal size. Interest-
ingly, we find that the effect of group structure depends on the benefit of cooperation. When this benefit is small, 
group-structured populations are more cooperative than well-mixed populations. This ordering reverses once 
the benefit of cooperation is intermediate or large. This result differs from previous models on the evolution of 
reciprocity in the presence of population structure. In van Veelen et al.49, the authors explore the evolution of 
strategies in repeated games with relatedness. In their model, there is an assortment parameter α that determines 
how likely players who use the same strategy are to interact with each other. Their simulation results displayed 
in their Fig. 2 suggest that the effect of this kind of population structure is always positive. As the assortment 
parameter α increase, people tend to adopt more cooperative strategies on average. In contrast, we find that 
additional group structure can sometimes prevent the evolution of cooperation. This effect occurs because the 
effect of group structure is ambivalent in our model. On the one hand, splitting a well-mixed population into 
smaller groups promotes cooperation, because people in cooperative groups are more likely to act as role mod-
els for between-group comparisons. On the other hand, group-structured populations lead to smaller effective 
population sizes, which in turn select for spite40 and defection7. The overall outcome of these two opposing effects 
depends on how profitable cooperation is.

To derive our results, we have focused on a comparably simple strategy space, the space of memory-1 
strategies6. One of the open questions is thus the study of strategies with longer memory. According to Eq. (21), 
there are two requirements for a strategy p to be successful in group-structured populations. They need to be 
efficient ( πp,p ≥ πq,q ), but at the same time they should also have a higher payoff than the co-player in a direct 
interaction ( πp,q ≥ πq,p ). Recent research suggests that strategies exist that satisfy both of these conditions 
simultaneously. These so-called friendly rivals50–54 are fully cooperative when they interact with one another, 
yielding the maximum payoff of πp,p = b− 1 . However, they also make sure they are never outperformed by any 
opponent, πp,q ≥ πq,p for all co-player’s strategies q . It is straightforward to show that when the resident applies 
a friendly rival strategy p , the fixation probability �q,p of any mutant is at most 1/MN. In other words, friendly 
rivals are evolutionarily robust22 for any environmental condition N, M, and b. Instantiating a friendly rival 
strategy, however, requires more than one-round memory50–54. Exploring whether these strategies are particularly 
favored in group-structured populations is thus an interesting and promising research area for future studies.

There are several directions for future research. While this study considers pairwise interactions with all the 
members in each group, it would be interesting to study a model of N-player public goods games with the group 
structure instead. There are a couple of previous studies on the public goods games in structured population33,55, 
and we expect further studies in this direction may lead to some universal insights shared between these models. 
Secondly, we may extend the model so that it allows overlapping membership between groups as the overlapping 
communities are commonly observed in social networks56. Such an overlap may significantly change the model 
behaviors. Another possible direction is to compare the model with human behavior in empirical or experimental 
studies. Group-structured populations could better describe human behavior than the more traditional well-
mixed population model because human relationships often involve a limited number of people. At the same 
time, it seems comparably easy in our modern societies to get payoff information even from people that one has 
no personal ties with. It has long been recognized in sociology57, that such weak links between communities 
may play a pivotal role, which may also affect the evolution of direct reciprocity.

Methods
Cooperation level.  In Table 1, we have listed the self-cooperation level for every memory-1 strategy. As has 
been discussed below Eq. (3), the basic procedure is to find the invariant distribution v = (vCC , vCD , vDC , vDD) 
from the principal eigenvector and calculate the cooperation level γp,q := vCC+vCD . It is known that one can 
begin by defining15

where f := (f1, f2, f3, f4) . Let us additionally define f1 := (1, 1, 1, 1) , fCC := (1, 0, 0, 0) , and fCD := (0, 1, 0, 0) . Then, 
a closed-form expression for the cooperation level is given as

(29)D(p, q, f) := Det







−1+ pCCqCC − 1+ pCC − 1+ qCC f1
pCDqDC − 1+ pCD qDC f2
pDCqCD pDC − 1+ qCD f3
pDDqDD pDD qDD f4






,



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18645  | https://doi.org/10.1038/s41598-022-23467-4

www.nature.com/scientificreports/

When p = q , in particular, we have

where X := pCD + pDC , Y := pCDpDC , and Z := pCCpDD . For example, when we calculate the self-cooperation 
level for S2 (see Table 1), we can substitute p = (pCC , pCD , pDC , pDD) = (1− e, e, 1− e, 1− e) into Eq. (31) and 
take the limit of e → 0 to obtain

Payoff transformation.  Let us define transformed payoffs as follows33:

In each of these expressions, the first term means the direct payoff to the focal player, whereas the second term 
means the co-player’s payoff multiplied by −1/(N − 1) , the mean relatedness between a player and its co-player 
in a well-mixed population of size N32. From Eq. (8), we see that

This expression shows that the relative advantage of p over q in our two-player game is regarded as an average 
difference between the transformed payoffs, αk − βk , and the weighting factors in front of them are the respective 
probabilities of choosing a p-player and a q-player as the co-player from a population of size N − 2.

Alternatively, we may define

The idea behind this transformation is the following: for a game with payoff matrix A in a finite population of 
size N, it is sometimes convenient to transform it to another game with payoff matrix A− (A+ A⊺)/N , where 
A⊺ means the transpose of A58,59. Then, the expression in Eq. (11) can be rewritten as follows:

In terms of these transformed payoffs, the difference between πp(i) and πq(i) in Eq. (8) is expressed as

(30)γp,q =
D(p, q, fCC)

D(p, q, f1)
+

D(p, q, fCD)

D(p, q, f1)
.

(31)γp,p =
pDD(1− p2CC − pDDX + 2Y + Z)

(1− pCC)[1+ pCC(1− X)− X + 2Y ] + 2pDD(1+ Y)− 2(pCC − pDD)Z − p2DD(1+ X)
,

(32)γp,p = lim
e→0

e(1− e)(3− 2e)

4e(1− e)
=

3

4
.

(33)π ′

p,p :=πp,p −
1

N − 1
πp,p

(34)π ′

p,q :=πp,q −
1

N − 1
πq,p

(35)π ′

q,p :=πq,p −
1

N − 1
πp,q

(36)π ′

q,q :=πq,q −
1

N − 1
πq,q .

(37)πp(i)− πq(i) =
i − 1

N − 2

(

π ′

p,p − π ′

q,p

)

+
N − i − 1

N − 2

(

π ′

p,q − π ′

q,q

)

.

(38)π̃p,p :=πp,p −

(

πp,p + πp,p

N

)(

N

N − 2

)

(39)π̃p,q :=πp,q −

(

πp,q + πq,p

N

)(

N

N − 2

)

(40)π̃q,p :=πq,p −

(

πq,p + πp,q

N

)(

N

N − 2

)

(41)π̃q,q :=πq,q −

(

πq,q + πq,q

N

)(

N

N − 2

)

.

(42)

(2N − i − 3)πq,q + (i + 1)πq,p − (2N − i − 1)πp,q − (i − 1)πp,p

2(N − 1)
=

(i − 1)

2(N − 1)

(

π̃q,p − π̃p,p
)

+
2N − i − 3

2(N − 1)

(

π̃q,q − π̃p,q
)

.

(43)πp(i)− πq(i) =
i − 1

N − 1

(

π̃p,p − π̃q,p
)

+
N − i − 1

N − 1

(

π̃p,q − π̃q,q
)

.
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This can be interpreted as the average change in the focal player’s payoff when the strategy changes from q to p.

Monte Carlo simulations.  We use Monte Carlo (MC) simulations to obtain the results in Figs. 2 and 3. 
At each time step, a mutant strategy is randomly selected from the set of deterministic memory-1 strategies 
(Table 1). The resident strategy is replaced by the mutant with the fixation probability calculated by Eq. (17). 
Throughout this paper, we use an error rate e = 10−3 and selection strengths σin = σout = 10 as our baseline 
values. We conducted the simulations for 106 MC steps while discarding the initial 105 steps, and took the aver-
age over five independent runs to obtain a stationary distribution over the strategy space. While it is possible 
to obtain the exact stationary distribution of the Markov chains, this method is more vulnerable to underflow. 
Instead, we found MC simulations to be more reliable, and our simulations are long enough to ignore the statisti-
cal fluctuations. For numerical calculation of the fixation probability and the fixation times, we use algorithms 
based on a previous work60.

For the MC simulations for the scenario with a partial separation of time scales, we proceed as follows. First, 
we prepare a set of randomly selected strategies of size M as an initial state. For each time step, a group i is ran-
domly selected out of the M groups. A player in this group then mutates with probability r. Otherwise, out-group 
imitation occurs. In case of a mutation, the mutant strategy is randomly selected from the memory-1 strategy 
space, and the group i is taken over by the mutant with probability Eq. (11). In case of an out-group imitation, a 
role model is randomly selected from the groups other than i. The strategy of group-i is then replaced with prob-
ability f outp→qρq,p since a single q player appears in i with f outp→q and the player succeeds in taking over the group 
with ρq,p . We define M Monte Carlo steps as one MC sweep, and the simulations are conducted for 1 million 
sweeps. Again, the initial 10% of data are discarded as the initialization period. The results are averaged over five 
independent runs. To make the typical time scale comparable between different b, the selection strengths are set 
to σin = σout = 30/(b− 1) . We used OACIS to manage simulation results61.

Results on fixation times.  One can also calculate the unconditional and conditional fixation times in 
a group-structured population9,60. To simplify the analysis, we assume in the following that the intra-group 
dynamics are fast enough such that each group can be considered as homogeneous. In other words, we study 
the dynamics triggered by out-group imitation events and we take 1/µ (the number of the inter-group imita-
tion events) as the unit of time. First, we consider the unconditional fixation time for the inter-group dynamics, 
which is defined as the average time until the absorbing states (either fixation or extinction) started from the 
state where there is a single group of mutants. As a preparation, the probability that p succeeds in taking over the 
population from the state where the number of p groups is i is

Using this, the unconditional fixation time is given as

The conditional fixation time, which is defined as the expected time until the fixation of p starting from a 
single p-group conditioned that p succeeds in taking over the population, is

This fixation time can be exceedingly long. For instance, consider the dynamics between AllC and AllD. The 
intra-group dynamics favor AllD while the inter-group dynamics favor AllC. When there are AllC groups and 
AllD groups, members in AllD groups tend to consider AllC groups when they engage in out-group imitation. 
However, the AllC player who newly appears in the AllD group immediately disappears again due to the intra-
group dynamics. Thus, AllC fails to spread in AllD groups again and again. In other words, both Q+

i  and Q−

i  can 
be quite small even if η ( ≡ Q−

i /Q
+

i ) remains finite. As a result, the population configuration remains the same 
for a long time, and the fixation times increase dramatically (unless the selection strengths are sufficiently weak).

Data availability
The source code for this study is available at https://​github.​com/​yohm/​sim_​group​ed_​direct_​recip​rocity.
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