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Pan-cancer single-cell analysis reveals the
heterogeneity and plasticity of cancer-
associated fibroblasts in the tumor
microenvironment

A list of authors and their affiliations appears at the end of the paper.

Cancer-associated fibroblasts (CAFs) are the predominant components of the
tumor microenvironment (TME) and influence cancer hallmarks, but without
systematic investigation on their ubiquitous characteristics across different
cancer types. Here, we perform pan-cancer analysis on 226 samples across
10 solid cancer types toprofile the TMEat single-cell resolution, illustrating the
commonalities/plasticity of heterogenous CAFs. Activation trajectory of the
major CAF types is divided into three states, exhibiting distinct interactions
with other cell components, and relating to prognosis of immunotherapy.
Moreover, minor CAF components represent the alternative origin from other
TME components (e.g., endothelia and macrophages). Particularly, the ubi-
quitous presentation of endothelial-to-mesenchymal transition CAF, which
may interact with proximal SPP1+ tumor-associated macrophages, is impli-
cated in endothelial-to-mesenchymal transition and survival stratifications.
Our study comprehensively profiles the shared characteristics and dynamics
of CAFs, and highlight their heterogeneity and plasticity across different
cancer types. Browser of integrated pan-cancer single-cell information is
available at https://gist-fgl.github.io/sc-caf-atlas/.

Along with malignant cells, heterogeneous tumormicroenvironment
(TME) composites are important parts of tumors. They interact with
malignant cells and contribute to the hallmarks of cancer1,2. Different
types of nonmalignant cells are present in the TME, mainly including
fibroblasts, immune cells (e.g., myeloid cells, lymphocytes, and
macrophages), and endothelial cells. Previous studies have high-
lighted the indispensable role of the TME in the biological cap-
abilities of cancer, such as tumor progression, treatment resistance,
angiogenesis induction, and metastasis2–4. Mechanistically, the TME
influences cancer cells via complicated and dynamic pathways to
regulate cancer-related signaling5, involving ligand–receptor inter-
actions (e.g., PD-L1 of cancer cells binding to PD1 of T cells), cytokine/
metabolite responses, and deposition of extracellular matrix
(ECM)6–10.

Of all types of stromal cells, fibroblasts are the predominant
component in the TME, and cancer-associated fibroblasts (CAFs) play
prominent and diverse tumor-supporting roles in cancer10,11. Besides
directly interacting with malignant epithelial cells, CAFs create a
tumor-permissive TME, including inducing the activation of normal
fibroblasts into CAFs, promoting angiogenesis with endothelial cells12,
recruiting myeloid cells13, and immunosuppression of T cells14.
Therefore, CAFs play a key role in sculpting the TME by interacting
with other TME components7,10,11, exhibiting their potential value as a
prognostic factor and therapeutic target15. On the other hand, CAFs are
primarily derived from normal fibroblasts (NFs) via several cancer
type-specific mechanisms, and the modulation of CAFs to the TME is
diverse and vague due to their heterogeneity and plasticity7. Recent
studies have specified various subtypes of CAFs7, but the definitive
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origin of CAFs is controversial, and the lack of generalized character-
ization hinders CAF-targeted therapy in clinical practice. Meanwhile, it
is difficult to define small subtypes of CAFs and investigate the plas-
ticity of CAFs with limited cell populations, thus hindering the inves-
tigation on the evolutionary trajectory of CAFs and possible switches
between CAFs and other TME components during cancer develop-
ment and progression.

In recent years, the development of single-cell RNA sequencing
(scRNA-seq) technology has provided the opportunity to investigate
fluctuations in cell status and the strength of cell plasticity15–17. The
characteristics of cancer cells and the TME have been profiled in
multiple types of cancer, revealing the heterogeneity of cancer sam-
pleswithdifferent components at single-cell resolution and suggesting
their possible involvement in the biological capabilities of cancer11.
Additionally, increasing scRNA-seq-related software and strategies
have been developed to improve the accuracy of bioinformatics ana-
lysis and upgrade the analytical dimensions, including batch effect
correction18, cell–cell interaction evaluation19, and evolutionary
trajectory20. However, recent scRNA-seq studies are still limited by the
sample size, mainly due to fresh sample availability and expenditure.
On the other hand, a large sample size would facilitate characterizing
the complexity of cancer by excluding individual variants and by
enriching the distinct components with a small cell population, parti-
cularly those shared acrossdifferent cancer types. Due to the similarity
of TME cells but not cancer cells among patients with different cancer
types21,22, a few scRNA-seq-based pan-cancer studies have recently
been conducted to integrate the increasing accessibility of scRNA-seq
profiles, thus maximizing resolution and analyzing cell quantity within
controlled bias, and exhibiting the ubiquitous characteristics of TME
cells21–24. However, these pan-cancer studies have only focused on the
characteristics of immune cells, omitting the interactions between
different cell components.

In this study, we combine public and inhouse scRNA-seq data to
profile the TME across 10 common solid cancer types, characterizing
the interconvertibility and interaction among different types of stro-
mal cells, with a particular focus on the ubiquitous characteristics of
CAFs among diverse cancer types and the plasticity of CAF subtypes.
Our systematic investigation on CAFs and their subtypes across can-
cers at single-cell resolution highlights the possible heterogeneity and
plasticity of CAFs in cancer biology.

Results
Landscape of the TME in pan-cancer illustrated using scRNA-seq
analysis
To profile the TME landscape of solid cancers, we compiled a single-
cell transcriptional atlas in 10 common solid cancer types (Fig. 1a), with
148 primary tumor, 53 adjacent, and 25 normal samples from 164
donors enrolled in 12 studies (Fig. 1b and Supplementary Data 1).
Available independent cohorts of patients with the same cancer type
(i.e., pancreatic, lung and prostate cancers) were included to establish
internal validation (Fig. 1b). Additionally, scRNA-seq data of the
counterpart normal tissues from public resources were included to
match the selected cancer type (Fig. 1b)25. To exclude possible
technology-induced bias, all scRNA-seq data were generated using the
same platform (i.e., 10×Genomics) without specific sorting. After strict
quality control and filtering, a total of 855,271 cells from 226 samples
were included and integrated based on a batch effect correction
algorithm (Supplementary Fig. S1a). Next, unsupervised clustering
generated a total of 34 TME-related clusters (c1-c34, 569,759 cells),
which were separated from cancerous/normal epithelial cells (Fig. 1c
and d). These clusters were divided into five major cell components
based on canonical markers of different cell types, including fibro-
blasts (c1-c8, DCN, COL1A1), lymphocytes (c9-c17, CD3D, CD3E), mye-
loid cells (c18-c24, CD68, CD14), endothelial cells (c25-c28, VWF,
PECAM1), and plasma cells (c29-c34, IGHG1, JCHAIN) (Fig. 1c, e and

Supplementary Data 2). The remaining cells were clustered as epithe-
lial cells (EPCAM, KRT19) (Fig. 1c). No obvious bias of the TME was
observed regardless of malignant state and tissue type (Supplemen-
tary Fig. S1b and c), compared to the tissue type-specific distribution of
epithelial cancer cells (Supplementary Fig. S1d). The normalized pro-
portion of different clusters varied substantially among the different
malignant states and cancer types (Fig. 1d and Supplementary Data 3).
Although the composition of the fivemajor components was relatively
homogenously distributed among normal, adjacent, and tumor tis-
sues, cells from cancer/adjacent tissues were predominantly enriched
in specific clusters (e.g., c2 and c9), and vice versa (e.g., c3) (Fig. 1e).
Additionally, some clusters, particularly c20 (FABP4+ macrophages),
exhibited cancer type enrichment, which was consistent with an
independent study on lung cancer26 (Fig. 1f). Intriguingly, a significant
stepwise decrease in the proportion of FABP4+ macrophages (c20) but
not other macrophage clusters (i.e., IL1B+, SPP1+, and APOE+) was
observed along with adjacent controls, early- and late-stage primary
tumors, and brain metastasis of lung cancer26 (all p <0.001 to normal
tissue) (Fig. 1g and Supplementary Fig. S1e), suggesting that FABP4+

macrophages may negatively correlate with lung cancer progression.
After deeply investigating the components of the TME to evaluate

its heterogeneity, potentially functional subclusters were identified.
For instance, heterogeneity of APOE+ tumor-associated macrophages
(TAM,c19)wereexhibited by the complementary distribution ofC1QC+

and SPP1+ cells (Fig. 1h), which is consistent with a previous report on
pan-cancer scRNA-seq analysis21. The SPP1+ TAMs showed distinct
transcriptomic profiles compared to C1QC+ TAMs, which are involved
in several metabolism-related pathways (Supplementary Fig. S1f). The
proportion of SPP1+C1QC-/SPP1+C1QC+ TAMs but not SPP1-C1QC+/SPP1-

C1QC- TAMs significantly increased from normal to adjacent/tumor
samples among different cancer types (Fig. 1i), suggesting the poten-
tial role of SPP1+ TAMs in tumorigenesis and tumormetabolism.On the
other hand, tissue preferential distribution of endothelial cells pro-
moted their classification into tumor endothelial cells (TECs) (i.e., c25)
and normal endothelial cells (NECs) (i.e., c26 and c28) (Fig. 1e). The
distinct transcriptional profiles of TECs and NECs were identified,
including TEC significantly upregulated genes involved in the insulin
response (e.g., INSR and IGFBPs), MAPK regulators (e.g., SPRY1), and
immunoglobulins (e.g., CD320 and IGHG4)27,28 (Fig. 1j), suggesting the
possible role of TECs in angiogenesis, tumor growth, and immune
modulation.Moreover, pan-cancer analysis enhanced the possibility of
delineating the potentially important but low-quantity subsets of
immune cells in the TME. For instance, tumor/adjacent confined sup-
pressive dendritic cells (i.e., DC subcluster 5) have been identified as a
subset of dendritic cells (c21) with high expression of CD274, LAMP3,
and CCL22, which may negatively regulate immune cells29,30 (Supple-
mentary Fig. S1g). Intriguingly, small portions of both DCs and plas-
macytoid DCs (pDCs, c24) expressed T-cell-specific markers (e.g.,
CD3D and CD3E) (Supplementary Figs. S1g and 1h). As validation,
confocal images of multiplexed immunofluorescence (mIF) with co-
staining CD3, CD86 and CD11c in stromal compartments of three
cancer types (i.e., anaplastic thyroid cancer, gastric cancer and color-
ectal cancer), revealed the consistent existence of CD3+ DCs
(CD3+CD11c+CD86+) (Supplementary Fig. S1i), ranging from 3 to 13% of
myeloid cells (CD11c+) (Supplementary Fig. S1j), which has also been
reported through flow cytometry31. On the other hand, heterogeneity
of tumor-infiltrating B lymphocytes was found through subclustering.
For instance, a subset of the B-cell cluster (i.e., c13) expressedmarkers
consistent with suppression of B-cell differentiation (RGS13+, sub-
clusters 7–8) (Supplementary Fig. S1k). Future studies should be con-
ducted to investigate the origin and potential biofunction of these
B-cell subpopulations in tumors.

Moreover, we also estimate the ubiquitous characteristics of
epithelia among different cancer types. First, a total of 23 clusters (E1-
E23) were divided with unsupervised clustering (Supplementary
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Fig. S2a andSupplementaryData4). UnlikeTMEcomponents, epithelia
clusters exhibited bias in terms of both malignant status (e.g., pre-
dominant normal in E17 and tumor in E6) and cancer type (e.g., pre-
dominant thyroid cancer in E1 and prostate cancer in E6)
(Supplementary Data 5 and Supplementary Fig. S2b). Not surprisingly,
similarity among different cancer types was identified in only 6 out of
23 clusters, including E3 (IRS2, KRT6A), E5 (CD24, STMN1), E8 (GKN1,
MUC5AC), E9 (PHGR1, TFF3), E10 (TFF3, TPO) and E13 (VTN and ITIH5)
(Supplementary Fig. S2c, d). Interestingly, IRS2 and CD24 was widely

present in epithelia andexhibited the strongest expression in E3 andE5
cluster respectively (Supplementary Fig. S2d), suggesting the ubiqui-
tous activated insulin signaling32 and “don’t eat me” signal33 shared by
different cancer types.

Generalized activation of CAFs in the TME
Compared to the biased distribution of epithelial cells (Supplementary
Fig. S1d), TME components from different cancer types were clustered
together by unsupervised dendrograms. This proved that different
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lineages of TME components shared similar transcriptomic profiles
across different cancer types (Supplementary Fig. S3a). Given compli-
cated intercommunications among TME components play a critical
role in tumor progression and treatment response, CellphoneDB-based
analysis was conducted to evaluate the interactions between each
major TME component and epithelial cells. The overall interactions
significantly increased in the order of normal, adjacent, and tumor
regardless of the tissue type (p <0.001) (Fig. 2a). Notably, crosstalk
among fibroblasts, endothelial cells, andmyeloid cells was dominant in
the TME, and fibroblasts presented the most prolific interactions with
other TME components in tumor/adjacent samples regardless of the
tissue type (all p<0.001) (Fig. 2a, b and Supplementary Fig. S3b),
suggesting the possible important role of fibroblasts in cancer biology
through communication with other TME components.

A total of eight clusters (c1-c8) were annotated as fibroblasts
(ACTA2 and ACTG2) and presented in all tissue types (Fig. 1e).
According to the differences in the distribution of cell proportions,
cells in c3 and c5 were dominantly derived from normal tissues and
referred to as NFs, while the remaining six tumor-enriched clusters
were considered as CAFs due to their predominant deviation from
tumor/adjacent tissues (Fig. 1e). Compared to the transcriptional
profile of NFs, collagen activation- and matrix metalloproteinase-
related genes were highly expressed in CAFs, suggesting the activation
of fibroblasts in CAFs (Supplementary Fig. S3c and Supplementary
Data 6). Furthermore, angiogenesis- and immunomodulation-related
genes (e.g., PDGFRA, PDGFRB, FAP, NOTCH3, HES4, and THY1) were
significantly upregulated in CAFs (Fig. 2c). Specifically, according to
canonical markers34–36 (Fig. 2d), the three quantity-predominant major
components (i.e., c1, c2, and c4) were defined as cancer-associated
myofibroblasts (CAFmyo), inflammatory CAFs (CAFinfla), and adipo-
genic CAFs (CAFadi) by over-presenting ACTA2, FAP/TGFB1, and CFD,
respectively (Fig. 2d andSupplementary Fig. S3d). Given the consensus
in the origin of CAFs7, the other three minor components (i.e., c6-c8)
were identified as endothelial-to-mesenchymal transition CAF
(CAFEndMT), peripheral nerve-like CAF (CAFPN), and antigen-presenting
CAF (CAFap) by overpresenting specific marker genes (Fig. 2d and
Supplementary Data 2). As expected, these CAF clusters are involved
indistinct pathways (Supplementary Fig. S3e).

Furthermore, we determined the possible involvement of reg-
ulons in CAFmyo, CAFinfla, and CAFadi by SCENIC analysis. Tumorigen-
esis- (e.g., TBX237) and myogenesis-related regulons (e.g., MEF2C38)
were highly enriched in CAFmyo. In addition, dedifferentiation-related
(e.g., CREB3L139) and epithelial-mesenchymal transition (EMT)-related
regulons (e.g., TWIST225) were enriched in CAFinfla and CAFadi, respec-
tively (Fig. 2e). Therefore, we speculated that the activation of CAFmyo

was different from CAFadi and CAFinfla. Through similarity analysis as
described previously21, the samemajor lineages of CAFs fromdifferent
cancer types were clustered together, illustrating their shared char-
acteristics among diverse cancer types (Supplementary Fig. S4a).

Therefore, we pooled the CAFs from all cancer types together to
explore the possible general activation process of CAFs. Two distinct
activation paths from NFs to CAFs were revealed via evolutionary
trajectory, enhancing the definition of three different states, CAFstate1
(NFs dominant), CAFstate2 (CAFmyo dominant), and CAFstate3 (CAFadi/
CAFinfla dominant) (Fig. 2f), all of which were not biased in terms of the
constitution of tissue type (Supplementary Fig. S4b). Both the EMT
score (Supplementary Data 7) and CREB3L1 expression gradually
increased along the activation trajectory of CAFs andwere significantly
higher in CAFstate3 than in CAFstate1/2 (p <0.001) (Fig. 2g and Supple-
mentary Fig. S4c) regardless of the tissue type (Supplementary
Fig. S4d), suggesting a general dedifferentiated process along CAF
activation. Consistently, the regulon activity of CREB3L1 (Supplemen-
tary Data 7) significantly increased along with the expression of
CREB3L1 and peaked in CAFstate3 (p <0.001) (Supplementary
Fig. S4c–e). Finally, tracing the gene fluctuation along biforked tra-
jectories, CAFstate2 tended to act in angiogenesis represented by
overexpressing INS and PDGFRB, while CAFstate3 had a high expression
of both pro-angiogenic (e.g., PDGFRA)40 and immunomodulation-
related genes (e.g., ENG and FAP)36 (Fig. 2h and Supplementary Data 8).
Collectively, the major CAFs were derived from NFs and evolved into
different differentiated states that may exhibit distinct effects on
the TME.

Interactions of CAFs with TME and epithelia
Immunosurveillance escape is one of the major hallmarks in cancer,
and CAFs can facilitate this process not only by providing a physical
barrier but also by impacting on the immune TME. Based on canonical
gene expression, tumor-infiltrating- natural killer cell (NKC)/T-cells
were divided into threeNKC clusters (e.g., TIM3+ NKCs) and eight T cell
clusters (e.g., CD8+ cytotoxic T cells and regulatory T cells (Tregs))
(Supplementary Fig. S5a). The interaction counts between CAFstate3
and NK/T subclusters were superior to CAFstate1 and CAFstate2 (Fig. 3a),
highlighting its potential immunoregulatory role. Shared and specific
reciprocal communication was observed between different CAF states
and NK/T cells. In particular, CD44, an important index of T cell acti-
vation and navigation in antitumor immunity41, exclusively interacts
with FGF2 in CAFstate1 among different NK/T subclusters, while TGF-β
(TGFB1)42, progranulin (GRN)43, galectin-9 (LGALS9)44, and tumor
necrosis factor (TNF)45, which regulate adaptive immune cells, tend to
interact with their partner receptors in CAFstate2 and CAFstate3 (Fig. 3b).
Subcluster-specific interactions were also observed, such as the
absence of most interactions in double-negative T cells (DN T) and
specific LTA_TNFRSF1A binding in Treg/cycling CD4+ cells for all CAF
states (Fig. 3b). In addition to interact with NK and T cells, CAFs may
also regulate tumor-infiltratingB-cell by overexpressing theTNF ligand
superfamily. For instance, CAFstate3 interacted with the majority of
B-cell subclusters via TNFSF13B_TNFRSF13B/C (B-cell survival/matura-
tion-related genes)46 (Supplementary Figs. S1k and S5b). In addition to

Fig. 1 | Landscape of the TME in pan-cancer illustrated using scRNA-seq ana-
lysis. a The cancer types included in this pan-cancer study. b The sample size
histography of the selected normal/adjacent/tumor tissues. The sample size of
replicates is shown when applicable. c Uniform Manifold Approximation and Pro-
jection (UMAP) plots of pan-cancer with 34 TME clusters, which are grouped into 4
main parts (i.e., endothelial cells, fibroblasts, lymphocytes/plasma cells, and mye-
loid cells).dHistography of the composition proportion of different tissue types in
each TME cluster. e Clustering of TME components and their composition pro-
portions in normal, adjacent, and tumor tissues. The proportion was normalized to
the total cell number in each cancer. f Cancer type composition histography of
tissue-enriched clusters according to cellular origin (c4-6, c16 and c20).
g Significantly decreased proportions of FABP4+ macrophages along adjacent
normal lung (Lung_N, n = 11), lung tumor (Lung_T, n = 11), advanced stage of tumor
(tLB, n = 4), and brainmetastasized (mBrain, n = 10) tissues, The box is bounded by
the first and third quartile with a horizontal line at themedian and whiskers extend

to the maximum and minimum value. Dunnett-t two-sided test is used to test the
significance of FABP4 +macrophages proportion between different tumor and
normal tissue categories, Lung_N vs Lung_T p-value is 5.87 × 10−7, Lung_N vs tLB, p-
value is 1.26 × 10−5, Lung_N vs mBrain, p-value is 2.97 × 10−8; ***: p <0.001. h Feature
plot of SPP1 and C1QC expression in the tumor-associated macrophage cluster.
i Comparison of C1QC+ TAMs, SPP1+ TAMs, C1QC+/SPP1+ TAMs and C1QC-/SPP1-

TAMs in normal and adjacent/tumor tissues, normal tissue n = 43, adjacent/tumor
tissue n = 159. The box is bounded by the first and third quartile with a horizontal
line at the median and whiskers extend to the maximum and minimum value.
Mann–Whitney two-sided test is used to test the significance of proportion
betweendifferent cell types. ***p <0.001. jDifferentially expressed genes clustering
and specifically altered genes between tumor endothelial cells (TECs) and normal
endothelial cells (NECs). Mann–Whitney two-sided test is used to test the sig-
nificance of gene expression level between NEC and TEC categories. Source data
are provided as a Source Data file.
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adaptive immunity, CAFs may also modulate innate immune cells,
illustrating predominant interaction counts between CAFstate3 and
myeloid components (Fig. 3c). TAM was the most prolific partner,
whereasmastocytes hardly interactedwith CAFs (Fig. 3d). Through the
CXCL12_CXCR3 interaction, CAF state1/2/3 specifically may recruit pDCs
(Fig. 3d), which can secrete granzyme B to constrict the expansion of

T cells47 (Supplementary Fig. S1h). In addition to the suppressive
function of CAFs in priming DCs, CAFstate3 may also stimulate DC
activation and maturation by interacting with galectin-9 (LGALS9)48

and CD40 [ref. 49] on DC subtypes (Supplementary Fig. S5c). There-
fore, CAFs, particularly CAFstate3, may present immunomodulatory
capability.
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Next, we examined prime activity on endothelial cells, which are
essential for angiogenesis. More dramatic interactions were observed
between TECs and CAFstate2/3 than CAFstate1 (Fig. 3e), including
NOTCH1/3_JAG1/JAG2, TGFB1_TGFBR3 and INS_INSR (Fig. 3f), which are
involved in angiogenesis-relatedVEGF andNOTCHsignaling pathways.
In particular, interactions of NOTCH2_JAG2/DLL4, ACKR3_CXCL12 and
IGF1/2_IGFR1R/2 R were specifically present between CAFstate3
and TECs.

Moreover, communications between three CAF states and each
epithelia cluster were estimated. Interestingly, CAFstate3 also exhibited
more interactions with epithelia than CAFstate1/2, especially with E3/E13
(clusters shared by all cancer types), E4 (dominant by digestive system
tumor), and E18 (dominant by breast and ovarian cancer)

(Supplementary Figs. S2b and S5d). Moreover, we focused on the
crosstalk between each CAF state with the epithelia clusters exhibited
similarities across cancer types (i.e., E3, E5, E8, E9, E10, and E13)
(Supplementary Fig. S5e), a series of ligand-receptor pairs were iden-
tified, which are involved in cancer related pathways, including EGFR
(e.g., EGFR_TGFB1), NOTCH (e.g., JAG1_NOTCH2/3), WNT pathways
(e.g., FZD6_WNT5A) (Supplementary Fig. S5f).

Given the prolific communication between CAFs and immune
cells, particularlyCAFstate3 (e.g., PDCD1_FAM3C interaction inCAFstate3)
(Fig. 3b), it is possible that CAF states may play an important role in
checkpoint blockade immunotherapy. For instance, galectin-9 (enco-
ded by LGALS9) related interactions have been linked to tolerogenic
macrophage programming and adaptive immune suppression50, and

Fig. 2 | Generalized activation of CAFs in the TME. a The mutual interaction
among the main TME components and epithelial cells in different tissue origins.
b The interaction between fibroblasts and other TME components. The length of
arcs represents the predicted interaction counts. c Violin plot of specific marker
genes in cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs).
Mann–Whitney two-sided test is used to test the significance of gene expression
level between CAF and NF categories. ***p <0.001. d Bubble plot showing the
expression of tag genes between CAFs and NFs. e Regulons enriched in each
fibroblast cluster detected via SCENIC analysis. f Left: activation trajectory of CAFs,

which are divided into three states (CAFState1/2/3). Right: histographyof the different
CAFcomponents in eachCAF state.g Left: epithelial-mesenchymal transition (EMT)
scoreenriched along the evolutionary trajectory ofCAFs. Right: comparisonof EMT
scores among three CAF states, state1: n = 2130, state2: n = 4948, state3: n = 8667.
The box is bounded by the first and third quartile with a horizontal line at the
median and whiskers extend to the maximum andminimum value. Mann–Whitney
two-sided test is used to test the significance of EMT scores among different state
categories. ***p <0.001. h Fluctuation of genes along different states. Source data
are provided as a Source Data file.
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Fig. 3 | CAFs orchestrate the immune TME and angiogenesis. a and b Predicted
and detailed interactions between different CAF states and NK/T cells. c and
d Predicted and detailed interactions between different CAF states and subgroups
of dendritic cells. e and f Predicted and detailed interactions betweendifferent CAF
states and endothelial cells (TECs and NECs). g Estimation of the prognostic value
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all patients according to the number of positive ligands. p-values for all survival
analyses have been calculated using the log-rank test.ue.
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regulate T-cell death for cancer immunotherapy51. Interestingly, a
series of interactions between LGALS9 and its partners were enriched
in crosstalk between T-cell/myeloid/endothelial/epithelial and
CAFstate3 but not CAFstate1/state2 (Fig. 3b, d, f, Supplementary Fig. S5c
and f). Therefore, we conducted ssGSEA-based deconvolution analysis
to estimate the proportion of CAFs in each state using bulk tran-
scriptome profiles of patients from three independent immunother-
apy cohorts with open accessible sequencing data and follow-up
information across different cancer types (i.e., melanoma52, urothelial
cancer53, and uterine sarcoma54). Intriguingly, compared to the insig-
nificant associations observed for CAFstate1 and CAFstate2 (Supplemen-
tary Fig. S6a), a high proportion of CAFstate3 was significantly
associated with poor overall survival in these cohorts (p = 0.038,
p =0.005, and p =0.013, respectively) (Fig. 3g), even after adjusting
available covariates in each cohort study by multivariate analysis
(p = 0.049, p <0.001, and p < 0.001, respectively) (Supplementary
Fig. S6b), suggesting the potential independent prognostic value of
CAFstate3 for immunotherapy

Characterization of the plasticity of fibroblasts via pan-cancer
analysis
Fibroblast activation is an important source of mesenchyme-derived
stromal components7. Except for the main origin of CAFs from NFs
(Fig. 2f), CAFsmay have alternative originswith various biofunctions in
the TME7. As described above, three distinct clusters of CAFs with a
small number of cells (i.e., c6-c8) were shared by all cancer types
(Fig. 1d and Supplementary Data 3). As reported, c8 was defined as
antigen-presenting CAFs (CAFap) that overexpressed ACTA2,HLA-DRA,
and CD74 (Fig. 4a)55 and was enriched in pancreatic cancer (Supple-
mentary Fig. S7a). Intriguingly, CAFap presented significantly more
interactions with tumor-infiltrating T-cell clusters than CAFmyo

(p = 0.002), with a similar interactive pattern as that of TAM (e.g.,
LGALS9_HAVCR2/SORL1/CD47) (Fig. 4b). Moreover, CAFap exhibited a
higher transcriptional similarity with mono-macrophage-related clus-
ters (c18-c22) than with other fibroblast clusters (c1-c7) (Supplemen-
tary Fig. S7b) and expressedmono-macrophage-specificmarkers (e.g.,
CD68, CD163, and CD14) (Fig. 4c). Using the SCENIC analysis described
above, several regulons were highly enriched in CAFap (e.g., MAFB,
SPI1, and IKZF1) (Fig. 2e), which are well-known mediators of polar-
ization and function in TAMs56–58. This evidence implied a possible
association between CAFap and TAM.

The transition between macrophages and myofibroblasts has
recently been discovered as a pathogenic process that plays a reg-
ulatory role in renal fibrosis59, renal allograft injury60 and myocardial
infarction healing61. However, the dynamic alteration between myofi-
broblasts and macrophages remains unclear. We speculated that
CAFap might be a transitional position between CAFs and TAMs based
on previous reports and our findings. With pseudotime trajectory
analysis (Fig. 4d), a possible evolutionary TAM-CAFap-CAFmyo path was
implied. As validation, we found a small population of cells co-
expressing α-SMA and CD163 in the stromal compartment of ana-
plastic thyroid cancer, colorectal cancer and stomach cancer through
confocal mIF imaging (Fig. 4d and Supplementary Fig. S7c). Cells with
double positivity (α-SMA+ CD163+) ranged from 10.2% to 13.6% of all α-
SMA+ cells in these cancer types, which is consistent with our pan-
cancer single-cell analysis and a previous report in pancreatic cancer55.
Given that the regulatory role of CAFap in Tregs has been experimen-
tally determined in pancreatic cancer62, the similar functions of this
CAF subtype may be shared by different cancer types.

Expression of a series of fibroblast-specific (e.g.,ACTA2 andMYLK)
andmacrophage-specific genes (e.g.,CD163, MAFB, and SPI1) gradually
changed from TAM to CAFmyo, with CAFap located at the intermediate
position (Fig. 4e). Moreover, CAF- (e.g., MYLK) and TAM-specific reg-
ulons (e.g., MAFB and SPI1) were gradually enriched along the TAM-
CAFap-CAFmyo trajectory, and CAFap was present in both regulons

(Fig. 4f), suggesting a the possible transitional position of CAFap
between CAFs and TAMs, which may be an alternative origin of CAFs.

Similarly, c7 was identified as fibroblast-like peripheral nerve cells
(CAFPN), specifically expressing peripheral nerve-related genes (e.g.,
MPZ, S100B, LGI4, and PLP1) (Fig. 4g). CAFPN was abundant in STAD,
COAD/READ, PAAD, PRAD and OV (Supplementary Fig. S7d), in which
perineural invasion was considered as an indication of poor
prognosis63. Additionally, CAFPN enriched unique transcriptional reg-
ulons (i.e., SOX2 and SOX10) in regulating myelination of peripheral
nerves64,65 with distinct metabolic hallmarks (e.g., peroxisome, bile
acid, and cholesterol homeostasis) (Fig. 2e and Supplementary
Fig. S3e).

Besides macrophages and peripheral nerve-derived CAFs, CAFs
also exhibited potential plasticity from endothelial cells by
endothelial-mesenchymal transition (EndMT), defining c6 as
CAFEndMT. Intriguingly, CAFEndMT exhibited dual expression of cano-
nical lineage markers of fibroblasts (e.g., RGS5 and ACTA2) and endo-
thelial cells (e.g., PLVAP and VWF), highlighting the possibility of its
involvement in EndMT, which has recently been described in gastric
cancer66 (Fig. 5a). It was confined to all types of tumor/adjacent tissues
(Supplementary Fig. S8a) and had more prolific communications with
other TME components in tumor/adjacent tissue than normal tissue
(Fig. 5b). Moreover, CAFEndMT exhibited dramatic transcriptional
similarity with both CAF (e.g., correlation coefficient R =0.83 with
CAFmyo) andTEC (R = 0.92) (Fig. 5c). Besides, compared to all the other
CAFs and endothelial cells, a unique signature (e.g., ESM1) of CAFEndMT

(Supplementary Data 9 and Supplementary Fig. S8b) was enriched in
ameboidal-type cell/epithelial cellmigration signaling (Supplementary
Fig. S8c), which was associated with angiogenesis, and consistent with
previous hallmark enrichment67 (Supplementary Fig. S3e). Moreover,
CAFEndMT distinctly presented endothelial differentiation- and
conversion-related regulons (e.g., SOX17/18 and ETS1/2)68,69 (Fig. 2e).
Consistently, CAFEndMT was located at the transitional position from
TEC to CAFmyo in the evolutionary trajectory (Fig. 5d). As expected, the
angiogenesis hallmark signature (Supplementary Data 7) was highly
enriched in CAFEndMT, which was significantly higher than both TEC
and CAFmyo (both p <0.001) (Fig. 5d), suggesting its possible role in
angiogenesis. A series of genes were distinctly enriched in each type of
cells, and CAFEndMT tended to be involved in several pathways,
including ameboidal-type cell migration and vasculature development
(Fig. 5e). Moreover, we estimated the CAFEndMT signature in each
patient from The Cancer Genome Atlas (TCGA) cohort using ssGSEA-
baseddeconvolution analysis. Due to the small proportionofCAFEndMT

in tumors, we compared patients with the top and bottom 20% per-
centile of the CAFEndMT score. A higher proportion of CAFEndMT is
associated with poor prognosis in several types of cancers with large
sample sizes, including breast, gastric, and colorectal cancers (Fig. 5f
and Supplementary Fig. S9a). Based on the evidence above, CAFEndMT

reflects the plasticity of TECs to CAFs and is linked to the initial step of
angiogenesis among multiple cancer types, which is associated with
metastasis and cancer progression70.

Collectively, we characterized the shared plasticity of fibroblasts
across different cancer types and suggested alternative cell origins of
CAFs from TECs at single-cell profiles across cancers.

The triple interplay between CAFs, TECs, and TAMs in the TME
The triple interplay among fibroblasts, endothelial cells, and myeloid
cells was predominant in the TME among all tissue types (Fig. 2b). As
stated, increasing interactions between each TME component were
observed along normal, adjacent, and tumor tissues (p <0.001).
CAFEndMT had the most prolific communications with other TME
components, particularly TAM (Supplementary Fig. S9b). Therefore,
we speculated that TAMs may play a role in the EndMT process and
subsequent tumor angiogenesis. Using a linear regression model, we
screened out top 30 genes that were gradually expressed along the
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EndMT process from CAFmyo to TECs via CAFEndMT (Supplementary
Data 10). Intriguingly, CD44 ranked the top in terms of the interaction
counts between CAFEndMT and TAM estimated by NicheNet analysis71,
with SPP1 andAPOE exhibited the highest expression inTAMamong all
its partners (Fig. 6a). Since APOEwas expressed in nearly 90% of TAMs,
we focused on SPP1+ TAMs and found more interactions of CAFEndMT

with SPP1+ TAMs than that with SPP1- TAMs in tumor samples (Fig. 6b).
Particularly, the SPP1_a9b1 complex and SPP1_CD44 axes were exclu-
sively enriched in the reciprocal interaction between SPP1+ TAMs and
CAFEndMT (Fig. 6c). However, only CD44 expression increased in a
stepwise manner along the EndMT trajectory (Fig. 6d), while no trend
was observed for ITGA9 and ITGB1 (Supplementary Fig. S9c), whose
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protein products formed the a9b1 complex. This result suggested the
possible involvement of the SPP1_CD44 interaction in the EndMT
process. We next validated this hypothesis by mIF to assess the spatial
distribution of SPP1+ TAMs (SPP1 and CD68) and CAFEndMT (CD44 and
CD31, canonical endothelial markers encoded by PECAM1, which
decline in a stepwise manner during the EndMT process (Fig. 6d)). In
three cancer types (i.e., anaplastic thyroid, colorectal, and gastric
cancers), mIF consistently illustrated the proximity of some SPP1+

TAMs (SPP1+CD68+) to CAFEndMT (CD44+CD31+) (Fig. 6e). Phenotypic
images anddensitymapswere used to quantifymarker expression and
spatial distribution, respectively (Fig. 6f and Supplementary Fig. S9d).
After excluding the defective regions (Supplementary Fig. S9e), the
spatial density distribution of CAFEndMT cells was quantified and clas-
sified into high-density (HDA) and low-density areas (LDA), and SPP1+

TAMs were significantly enriched in the HDA compared to the LDA
(Fig. 6f). Furthermore, when quantifying the spatial distribution, we
found that the SPP1+ TAM ratio normalized by the total number of
TAMs was significantly higher within 20μm of CAFEndMT than that
outside 20μm (Fig. 6g). In contrast, the SPP1- TAM ratio was sig-
nificantly lower within 20μm (Fig. 6g). Moreover, a significantly high
correlation (R =0.23, p < 0.001) was identified between the signature
enrichment of CAFEndMT and SPP1+ TAMs in the spatial transcriptomic
profile fromseven colorectal tumor samples (Fig. 6h). Additionally, the
significantly positive associations of enrichment scores of CAFEndMT

and SPP1+ TAMs were also validated in 25 of 28 cancer types in the
TCGA dataset (Supplementary Fig. S10), further supporting the pos-
sible proximity of SPP1+ TAMs and CAFEndMT. The evidence described
above suggested that pro-angiogenic SPP1+ TAMsmayplay a role in the
EndMT process to facilitate intratumoral angiogenesis through the
SPP1_CD44 interaction between SPP1+ TAMs and CAFEndMT and thus
implied poor prognosis in cancer patients. However, mechanistic
verifications are largely needed in the future.

Discussion
Single-cell profiles were investigated inmultiple cancer types to reveal
the heterogeneity and cancer biology of both cancer and stromal cells.
A few studies have conducted pan-cancer analysis to systematically
illustrate shared and cancer-type specific characteristics of different
cell components, particularly formyeloid and T cells21,22,24. Overall, this
is a systematic investigation of a single-cell transcriptional atlas of
fibroblasts across cancer types.

As an important mesenchyme-derived stromal component,
fibroblasts are plastic in phenotype7. Pan-cancer analysis offered us an
opportunity to characterize the cells in a fluctuating state across var-
ious tissues,whichwasdifficult to detect in the original researchdue to
its low population. In the present analysis, the state fluctuation or
transition of fibroblasts was associated with multiple biological func-
tions (e.g., angiogenesis, immune modulation, and EMT) and clinical
outcomes, particularly after immunotherapy. Although it is crucial to
investigate the biological function of CAF subtypes, such as FAP+

CAFs72, ENG+ CAFs, andTHY1+ CAFs, it ismore important to explore the
generalized characteristics of CAFs in the TME. Here, we found that
CAFs had divergent differential states with specific biofunctions. Of
note, CAFstate3, which was at the most dedifferential state, predicted a
worse outcome of immunotherapy. Thus, CAF differentiation may
promote the stratification of patients with immunotherapy. In

addition, the origin of CAFs was delineated in our study. Consistent
with consensus7, the trajectory of CAFs from state1 to state2/state3
exemplified that most CAFs were likely derived from the activation of
local normal fibroblasts. Moreover, the three minor clusters of CAFs
(CAFEndMT, CAFpn and CAFap) imply alternative origins from endothe-
lial cells, peripheral nerves, and macrophages, respectively.

The SPP1 gene encodes an integrin-binding glyco-phosphopro-
tein, named as osteopontin. It is secreted by various tumors and is
associated with tumor progression, invasion, and metastasis73,74.
Although it could be chemokines that recruit macrophages75, SPP1
expression was significantly related to TAMs in multiple tumors in the
TIMER study76. Thus SPP1+TAM should be abounded in tumors. Fur-
thermore, a previous atlas of tumor-infiltratingmyeloid cells identified
angiogenesis-associated macrophages in 8 cancer types, which was
markedby the expressionof SPP121. However, thepotentialmechanism
was not postulated. In the present study, we found that SPP1+ TAMs
may be involved in tumor angiogenesis by interacting with adjacent
CAFEndMT, which is regarded as the initial step of angiogenesis70.

Limitations of the study should be noted to avoid over-
interpretation. First, some canonical markers may not exhibit restric-
tive expression in different cell types, thus necessitating expanding
evidence to support the findings and avoid possible misleading.
Although the expression ofRGS5 andACTA2defined that CAFEndMTwas
also reported in a recent study77, the possibility of pericytes could not
be excluded. It is well established that pericytes are an important
resource of CAFs in tumors78. Pericytes recruited by EndMT78 or
pericyte-fibroblast transition79 lead to tumor vasculature. Overall,
pericytes are an important origin of CAFs dependent on EndMT
(mainly) or pericyte-fibroblast transition that play roles in
angiogenesis80. It would be interesting to demarcate or subcluster
pericytes from CAFs and determine the difference between them in
pan-cancer level in future studies. Second, mechanistic analysis has
determined the potential functions of some CAF populations in spe-
cific cancer types (e.g., key role of CAFap on Treg in pancreatic
cancer58). Although we profiled the ubiquitous characteristics of dif-
ferent CAF subpopulations at single-cell resolution, experimental
validation is still warranted to determinewhether these functional CAF
cells can play a similar role across diverse cancer types. Third, we only
demonstrated the possible alternative origin of CAFs mainly through
bioinformatic approaches for evolutionary trajectory and illustrated
the possible cells at an intermediate state through mIF with specific
markers. However, further verification on the dynamics of CAFs and
the underlyingmechanisms/crucial regulatory factors is lacking, which
should be explored in the future.

In conclusion, we systematically characterized CAFs across can-
cers, not only providing the possible origins of CAFs but also high-
lighting the different states of CAFs in the outcomeof immunotherapy
andprognosis. To accelerate the relateddatamining and application in
wide research, we established an interactive website-based tool
(https://gist-fgl.github.io/sc-caf-atlas/). Collectively, although further
experimental verification is warranted to establish the functional role
of each CAF cluster and diverse origins of CAFs, our pan-cancer study
on CAFs may facilitate CAF-targeted therapy development and appli-
cation in the future (Fig. 7).

Fig. 4 | Characterization of fibroblast plasticity. a Violin plot of specific gene
expression in antigen-presenting CAFs (CAFap). b Upper: peer comparison of the
interactions of CAFap, TAM, and CAFmyo with T-cell clusters. Lower: the instance of
interaction pattern presentation in CAFmyo, TAM, and CAFap with T-cell clusters.
cBubble plot ofmono-macrophage-specificmarkers in each fibroblast cluster, one-
sided Wilcoxon rank-sum test is used to assess the statistical significance of each
interaction score. dThe evolutionary trajectory along the TAM-CAFap-CAFmyo path.
Confocal image of multiplexed immunofluorescence staining of PanCK, α-SMA,

and CD163 in anaplastic thyroid cancer tissues. Multiplexed immunofluorescence
assays are performed twice on tumor samples following assay optimization. eGene
expression alteration and ridgeline plot along the reciprocal trajectory. f Regulon
enrichment along the evolutionary trajectory in different cell types. g Violin plot of
peripheral nerve-specific genes (MPZ, S100B, PLP1, and LGI4) in CAFPN. Kruskal-
Wallis two-sided test is used to test the significance of gene expression level among
different fibroblast clusters. ***p <0.001.
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Methods
Single-cell RNA-seq data processing
Publicly available and inhouse FASTQ files generated from 10× Geno-
micswere aligned andquantified against theGRCh38human reference
genome using Cell Ranger software (Version 6.1.2) with default set-
tings. The output of the cellranger and count matrix were read using

the Read10X function from the Seurat package (Version 4.0.4) and
read.table function, respectively, and the latter was further converted
to dgCMatrix format. Potential doublets predicted by Scrublet81 were
removed to avoid interference with the analysis. The merge function
was used to integrate all individual objects into an aggregate object,
and the RenameCells function was used to ensure that all cell labels
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were unique. In total, 990,990 cells from different studies were
pooled. Furthermore, quality control was applied to the cells based
on several criteria. Briefly, cells with <200 detected genes as well as
those with >20% mitochondrial content were removed. Cells having
over 6000 detected genes were eliminated to further exclude the
possible doublets. After filtering, 855,271 high-quality cells were
preserved for subsequent analyses. A global-scaling normalization
method (“LogNormalize”) was employed to ensure that the total
gene expression in each cell was equal, and the scale factor was set to
10,000. The top 2000 variably expressed genes were returned for
downstream analysis using the FindVariableFeatures function. The
ScaleData function, “vars.to.regress” option UMI, and percent mito-
chondrial content were used to regress out unwanted sources of
variation. Principal component analysis (PCA) incorporating highly
variable features reduced the dimensionality of this dataset, and the
first 30 PCs were identified for analysis. To remove batch effects, the
RunFastMNN function in SeuratWrappers package (Version 0.3.0)
was selected to perform sample batch correction. Clustering analysis
was performed based on the edgeweights between any two cells, and
a shared nearest-neighbor graph was produced using the Louvain
algorithm, which was implanted in the FindNeighbors and FindClus-
ters functions. The identified clusters were visualized using the UMAP
method. For subclustering analysis, a similar procedure was applied,
including normalization, variably expressed feature selection,
dimension reduction, batch correction with RunFastMNN, and clus-
tering identification. To annotate the cell clusters, differentially
expressed markers of the resulting clusters were identified with the
FindAllMarkers function using the default nonparametric Wilcoxon
rank sum test with Bonferroni correction.

Comparison dendrograms
To demonstrate that the subpopulations of CAFs ormyeloid cells were
not heterogeneous across tumor types, an unsupervised comparison
dendrogramwas performed.We selected the top 2000 highly variable
genes across different subclusters. The mean expression of these
genes in each cluster was used to calculate the Pearson correlation
coefficient with the psych package (Version 2.2.5). The distance
defined as (1-Pearson correlation coefficient)/2 was adopted for hier-
archical clustering. For visualization, the factoextra package (Version
1.0.7) was applied.

Cell–cell interaction analysis
CellphonedDB19 was used to analyze cell–cell interactions among all
TME components. Input files for the statistical analysis function
comprised a raw countmatrix extracted from the Seurat object and an
annotation file of cell types. The heatmap_plot function from Cell-
phoneDB and the Circlize package (Version 0.4.14) were used to dis-
play the frequency of interactions between two cell subsets.
Visualization of the potential interaction strength between ligand and
receptor, which was predicted based on their average expression, was
performedusing the dot_plot function andpheatmappackage (Version
1.0.12). Significant ligand–receptor pairs (p <0.01) were extracted for
illustration.

Trajectory analysis
To investigate dynamic biological processes, such as interconversion
and evolutionary trajectories of different cell types, we applied the
Monocle (Version 2.22.0) algorithm82. TheNewCellDataSet functionwas
used to create a new object for themonocle using transcript count data
of the included cell populations. The results generated from estimate-
SizeFactors and estimateDispersions function assisted us in normalizing
for differences in mRNA recovered across cells and performing differ-
ential expression analysis later. Signature genes expressed in at least
10% cells of the dataset and with a p <0.01 calculated using the differ-
entialGeneTest function were included to define the trajectory pro-
gress. The ReduceDimension function reduced the space down to two
dimensions, and the orderCells function ordered the cells according to
gene expression. Pseudotime-dependent genes were calculated
using differentialGeneTest and the “fullModelFormulaStr” option
“~sm.ns(Pseudotime)”, and smooth expression curves were generated
with the plot_pseudotime_heatmap function. The Ggridges package
(Version 0.5.3) was used to analyze the frequency of distributed cells in
different groups on the pseudotime axis.

Enrichment analysis
Pseudotime-dependent genes were further subjected to GO and KEGG
enrichment analysis using the clusterProfiler package (Version 3.0.4)
with default settings. Fifty hallmark gene sets in the MSigDB database
(https://www.gsea-msigdb.org/gsea/msigdb) were used for GSEA of
clusters c6/c7/c8 with the escape package (Version 1.4.0). A nonpara-
metric and unsupervised algorithm from the gene set variation ana-
lysis (GSVA) package (Version 1.14.1) was selected to assess the EMT
and ANGIOGENESIS scoring of different states generated with Mono-
cle. The signature genes of EMT and ANGIOGENESIS were obtained
from fifty hallmark gene sets.

Single-cell regulatory network inference and clustering (SCE-
NIC) analysis
Cells in different states confirmed using Monocle were further inclu-
ded in the SCENIC package (Version 1.2.4)83, and they were then sorted
based on clusters and states. To remove noise, genes with low
expression levels or low positive rates were filtered using the gene-
Filtering function with default settings. Additionally, only the genes
that matched the Rcis target databases were retained for downstream
analysis. After reconstruction of the gene regulatory network, GENIE3
detected the relationship between transcription factors and potential
targets. A total of 24,453 motifs from the cisTarget Human motif
database v9 were used for enrichment of gene signatures, which were
pruned for targets according to cis-regulatory cues using default set-
tings. The enrichment of regulons across single cells was identified
using the “aucell” positional argument, and the results were visualized
using the pheatmap package (Version 1.0.12).

NicheNet analysis
NicheNet (Version 1.0.0)71 was used to identify potential ligands
that drive the phenotype of cluster c6. The top 20 differentially
expressed genes were ordered using log2FC between cluster c6,

Fig. 5 | Characterization of CAFs in endothelial-mesenchymal transition
(EndMT). a Feature and violin plots of specific genes in CAFEndMT and TECs. b The
interaction counts between CAFEndMT and other components in different tissue
origins. Normal: n = 34, Adjacent: n = 34, Tumor: n = 34. The box is bounded by the
first and third quartile with a horizontal line at the median and whiskers extend to
themaximumandminimumvalue.Mann–Whitney two-sided test is used to test the
significance of interaction counts between CAFEndoMT and other clusters. Normal vs
Adjacent p-value is 2.52 × 10−6, Normal vs Tumor p-value is 5.87 × 10−8, ***p <0.001.
c Genetic similarity between clusters of CAFs and endothelial cells. d The evolu-
tionary trajectory along the TECs-CAFEndMT-CAFmyo path with the angiogenesis
hallmark signature enriched along the trajectory and CAFEndMT. State1: n = 3550,

state2: n = 754, state3: n = 3062. The box is bounded by the first and third quartile
with a horizontal line at the median and whiskers extend to the maximum and
minimum value. Mann–Whitney two-sided test is used to test the significance of
Angiogenesis signatures enrichment scores among TECs-CAFEndMT-CAFmyo clus-
ters. TEC vs CAFEndoMT p-value is 4.67 × 10−102. TEC vs CAFmyo p-value is 5.53 × 10−27,
***p <0.001. e Gene expression alteration with gene ontology and ridgeline plot
along the reciprocal trajectory. f Estimation on the prognostic value of the
CAFEndMT signature in colorectal, gastric and breast cancer in terms of disease-
specific survival. Kaplan–Meier curves for overall survival in all patients according
to the number of positive ligands. p-values for all survival analyses have been
calculated using the log-rank test. Source data are provided as a Source Data file.
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and the remaining clusters were treated as potential targets. Genes
with a positive rate of >10% in clusters c6 and c19 were considered
background and potential ligands, respectively. Sender cells from
c19 and target cells from c6 were included to construct the
expressed ligand–receptor interactions and calculate the ligand
activity. We used the active_ligand_target_links function to

compute the potential intensity of regulation between the ligand
and target.

Similarity analysis
To quantify the similarity among different subclusters of fibroblasts and
endothelial cells, the top 5000 variably expressed genes were included
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in the corr.test function from the psych package (Version 2.2.5), and the
corrplot package (Version 0.92) was used for visualization.

Survival analysis
mRNA expression counts and clinical information from TCGA84 were
downloaded from Firebrowse (http://firebrowse.org/). Based on the
enrichment scores of CAFEnoMT signaturegene sets (SPP1, CD44, CD68,
PECAM1, VCAN, CD14, andMARCO) calculatedwith theGSVApackage,
patientswith top and bottom20% scoreswere selected for subsequent
survival analysis. CIBERSORT85was used to infer the abundanceof each
CAF state from available bulk RNA-seq data in four immunotherapy
cohorts with detailed follow-up information. TPM or TMMvalues were
used because their results show small root-mean-square error (RMSE)
and high Pearson correlation values. B-mode was used to remove the
batch effect. The algorithm was run with a web portal autogenerated
signaturematrix and 1000permutations. Survival (Version 2.42–3) and
Survminer (Version 0.4.9) packages were used for analysis and
visualization.

Spatial transcriptomics
Raw base call files were converted to FASTQ reads using bcl2fastq.
Reads were mapped to the human reference genome GRCh38-2020
using Space Ranger (Version 1.3.1) software86, and 332 million high-

quality uniquelymapped readswereobtained. Themediannumbers of
reads and genes detected per spot were 98,830 and 1,803, respec-
tively. Read10X_h5 and the CreateSeuratObject function from the
Seurat package were used to create an object with the output of Space
Ranger. With the help of the Read10X_Image function, we loaded the
H&E image data and used a standard logNormalize function to nor-
malize the dataset. The SpatialFeaturePlot function showed the
expression level of a single gene at a spatial location. Spots where the
expression of the four genes (CD44, SPP1, PECAM1, and CD68) was
simultaneously nonzero were recolored, and the color intensity
reflected the average expression level of the signature set.We selected
the corr.test function from the psych package (Version 2.2.5) to cal-
culate the correlation of genes belonging to the signature set.

Multiplexed immunofluorescence (mIF) analysis
All involved surgical tissue samples were processed into paraffin
blocks and cut into 5-μm-thick FFPE sections. Multiplex IHC staining
was performed using an Opal 7-color kit (Akoya Bioscience,
NEL801001KT). The relative markers CD68 (ab213363, Abcam, 1:1000,
Opal 620), SPP1 (ab214050, Abcam, 1:1000,Opal 520),CD31 (ab182981,
Abcam, 1:2000, Opal 480), and CD44 (ab213363, Abcam, 1:2000, Opal
690) were evaluated via IHC. Briefly, the sections were dewaxed with
xylene for 20min, and ethanol was used for rehydration. Microwave

Fig. 6 | Triple interplay between CAFEndMT and SPP1+ TAMs. a NicheNet analysis
screening potential ligands of CD44. The left bar presents the expression scale of the
potential ligand in TAM. b Predicted interaction counts between CAFEndMT and SPP1+

TAM/SPP1- TAM using CellphoneDB analysis. c SPP1-involved specific ligand–receptor
interaction between CAFEndMT and SPP1+/SPP1- TAMs, one-sided Wilcoxon rank-sum
test is used to assess the statistical significance of each interaction score. d Dynamic
alterations in CD44 and PECAM1 during EndMT. e Multiplexed immunofluorescence
staining of CD44, CD31, CD68, and SPP1 in anaplastic thyroid cancer, gastric cancer,
and colorectal cancer tissues, Scale bar: 20μm. Multiplexed immunofluorescence
assays are performed twice on tumor samples following assay optimization.
f Illustration of CD44+CD31+ high- and low-density areas (HDA and LDA, respectively)
and the quantified results (LDA: n=23, HDA: n= 17, The box is bounded by the first
and third quartile with a horizontal line at the median and whiskers extend to the
maximum and minimum value. Mann–Whitney two-sided test is used to test the

significance of proportion between LDA and HDA categories. ***p<0.001, p-value is
0.0008), Scale bar: 500μm Multiplexed immunofluorescence assays are performed
twice on tumor samples following assay optimization. g The spatial distance quanti-
fication. The left panel compares the SPP1+CD68+ and the right panel compares SPP1-

CD68+ macrophage ratios (normalized by the total number of macrophage) between
within 20μmand outside 20μmof CAFEndMT (<20μm: n=8, >20μm: n=8,Wilcoxon
two-sided test is used to test the significance of ratio between within 20μm and
outside 20μmof CAFEndMT. *p<0.05, left panel: p-value is 0.0391, right panel: p-value
is 0.0391). Scale bar: 50μm. h Upper: Illustration of the spatial transcriptomic spot of
colorectal cancer tissues with CAFEndMT and SPP1+TAM signature enrichment. Lower:
The scatter plot and correlation between the CAFEndMT enrichment score and
SPP1+TAM enrichment score (R represents Pearson’s correlation and its coefficient of
determination, p-value is 2.26× 10−10), suggesting the co-localization of these two cell
types. Source data are provided as a Source Data file.
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treatment was performed for antigen retrieval with buffer (pH 9.0).
Next, all sections were cooled for 30min to room temperature. Endo-
genous peroxidase activity was blocked using an antibody diluent/block
(72424205; Akoya Bioscience) at room temperature for 10min. Slides
were incubated with a primary antibody at room temperature for 1 h,
followed by secondary reagents at 37 °C for 20min and tyramide signal
amplification reagents at room temperature for 10min (Opal 480, Opal
520, Opal 620, and Opal 690, Akoya Bioscience, 1:100). MWT antigen
retrieval was performed until all markers were stained. Nuclear staining
was performed using DAPI (Akoya Bioscience, 1:5) at room temperature
for 5min. Slides were mounted using anti-Fade fluorescence mounting
medium (ab104135, Abcam), and they were stored at 4 °C until image
acquisition. Slides were scanned using a PerkinElmer Vectra Polaris
(PerkinElmer) and a confocal microscope (TCS SP8, Leica). The per-
centage of positively stained cells among all nucleated cells was deter-
mined. Multispectral image unmixing was performed using QuPath
software (version 3.0)87 and ImageJ (version 1.53i). Briefly, DAPI-positive
cells were identified using the “cell detection” command, and each
single channel threshold was selected. Following this, all detected cells
were divided into different subgroups for further analysis, and defective
samples or areas with staining artifacts were reanalyzed or excluded.
The in-house data were obtained from Novogene Co., Ltd.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the expression data can be obtained from the Gene Expression
Omnibus, and the selected studies are listed in Supplementary Data 1.
Analysis and visualization of the scRNA-seq datasets in this study can
also be performed at https://gist-fgl.github.io/sc-caf-atlas/. Additionally,
the integrated single-cell RNA sequencing matrix data that support the
findings of this study are deposited in Gene expression Omnibus
(accession No. GSE210347). Previously published scRNA-seq data rea-
nalyzed here are available under accession codes GSE134355 (Normal
data by Han et al.25), GSE141445 (Prostate cancer data by Chen et al.88), E-
MTAB-8107 [https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-
MTAB-8107/sdrf] (Ovary/Breast/Colorectum cancer data by Qian
et al.24), GSE157703 (Prostate cancer data by Ma et al.89), GSE131907
(Lung cancer data by Kim et al.26), GSE138709 (Intrahepatic cholangio-
carcinoma data by Zhang et al.90), E-MTAB-6149 [https://www.ebi.ac.uk/
biostudies/arrayexpress/studies/E-MTAB-6149/sdrf], E-MTAB-6653
[https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6653/
sdrf] (Lung carcinomas data by Qian et al.24), CRA001160 (PDAC data by
Peng et al.91), GSE154778 (PDACdata by Lin et al.92), HRA000212 (Bladder
cancer data by Chen et al.93), HRA000686 (Thyroid cancer data by Luo
et al.39). The gastric cancer data by Sathe et al.94 were downloaded from
[http://dna-discovery.stanford.edu/download/1401/]. The raw sequen-
cing data for the spatial transcriptome from this study have been
deposited in the Genome Sequence Archive in BIG Data Center, Beijing
Institute of Genomics, Chinese Academy of Sciences, under accession
numbers (HRA003299 andHRA003300) that can be accessed at https://
ngdc.cncb.ac.cn/gsa-human/. Source data are provided with this paper.

Code availability
The bioinformatic analysis code has been uploaded into the
github (https://github.com/Xiaxy-XuLab/PanCAF, https://doi.org/
10.5281/zenodo.7095147)95.
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