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a b s t r a c t

Metastatic and locally advanced prostate cancer is treated by pharmacological targeting of androgen syn-
thesis and androgen response via androgen signaling inhibitors (ASI), most of which target the androgen
receptor (AR). However, ASI therapy invariably fails after 1–2 years. Emerging clinical evidence indicates
that in response to ASI therapy, the AR-positive prostatic adenocarcinoma can transdifferentiate into AR-
negative neuroendocrine prostate cancer (NEPC) in 17–25 % treated patients, likely through a process
called neuroendocrine differentiation (NED). Despite high clinical incidence, the epigenetic pathways
underlying NED and ASI therapy-induced NED remain unclear. By utilizing a combinatorial single cell
and bulk mRNA sequencing workflow, we demonstrate in a time-resolved manner that following AR inhi-
bition with enzalutamide, prostate cancer cells exhibit immediate loss of canonical AR signaling activity
and simultaneous morphological change from epithelial to NE-like (NEL) morphology, followed by acti-
vation of specific neuroendocrine (NE)-associated transcriptional programs. Additionally, we observed
that activation of NE-associated pathways occurs prior to complete repression of epithelial or canonical
AR pathways, a phenomenon also observed clinically via heterogenous AR status in clinical samples. Our
model indicates that, mechanistically, ASI therapy induces NED with initial morphological change fol-
lowed by deactivation of canonical AR target genes and subsequent de-repression of NE-associated target
genes, while retaining AR expression and transcriptional shift towards non-canonical AR activity. Coupled
with scRNA-seq and CUT&RUN analysis, our model system can provide a platform for screening of poten-
tial therapeutic agents that may prevent ASI-induced NED or reverse the NED process.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction for which fractionated ionizing radiation (FIR) and/or surgical
Prostate cancer is the most frequently diagnosed cancer and
second-leading cause of cancer related death for men in the United
States [1]. Patients typically present in clinic with localized disease,
resection with curative intent are indicated [2]. However, 10–
15 % of low/intermediate risk patients and 50 % of high risk
patients develop resistance to FIR therapy [3,4]. For these patients,
and patients with metastatic prostate cancer on initial presenta-
tion, pharmacological targeting of the androgen receptor (AR) sig-
naling axis with androgen signaling inhibitor (ASI) compounds is
the current standard of care [2]. The vast majority of prostate ade-
nocarcinomas arise from the luminal cells of the prostate [5,6], and
as part of the male reproductive system, the prostate and most cell
populations comprising the organ are inherently responsive to
androgen signaling via AR activity [7]. AR is a nuclear hormone
receptor that binds to testosterone and dihydrotestosterone via a
ligand binding domain (LBD), undergoes conformational change
to expose a nuclear localization signal (NLS) and a DNA binding
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domain, translocates from the cytoplasm to the nucleus, and binds
to chromatin at androgen response element motifs to activate or
repress AR-target genes [8,9]. Current ASI therapy relies on inhibi-
tion of testosterone synthesis (e.g., abiraterone acetate inhibits
CYP17a, which catalyzes biosynthesis of DHEA, a sex steroid pre-
cursor to both testosterone and estrogen [10]), or in the cellular
response to testosterone via the AR (e.g., AR antagonist enzalu-
tamide binds the LBD of AR, preventing conformational change
and exposure of NLS and DNA binding domain to prevent both
nuclear translocation and chromatin binding, respectively [11]).
Initial therapeutic response is strong, with up to 50 % reduction
in PSA level and tumor burden; however, the response is not dur-
able beyond 22–24 months and biochemical relapse is invariable
after 1–2 years [12], resulting in castration resistant prostate can-
cer (CRPC).

Counterintuitively, the development and subsequent approval
of increasingly potent ASI compounds, as well as increasingly ear-
lier deployment of ASI as adjuvant and neoadjuvant therapy strat-
egy, result in increased incidence of ASI therapy-induced
neuroendocrine (NE) prostate cancer (NEPC) in up to 25 % of CRPC
patients [13]. While the mechanism remains unclear, both clinical
and preclinical evidence support that under selective pressure of
potent ASI therapy, the epithelial AR-positive adenocarcinoma
cells transdifferentiate into small, AR-negative, NE-like (NEL) cells
in a process called neuroendocrine differentiation (NED) [14]. NEPC
cells are histologically characterized as AR-negative and NE-
marker positive with small cell histology similar to small cell lung
cancer [15]. The majority of clinical and genetically engineered
mouse model (GEMM) data support clonal expansion of luminal
cells with concomitant RB1, TP53, and PTEN genomic and/or func-
tional loss [16]. Further, recent combinatorial transcriptomic,
epigenomic, and genomic studies indicate that NEPC cells show
heterogenous AR status in addition to significant transcriptional
reprogramming without significant change in mutational burden,
suggesting that NED is a largely epigenetic process and may pos-
sess a degree of reversibility [17–19].

NED has been extensively characterized in vitro and in vivo
observationally, but the underlying mechanisms and sequence of
events are not yet clear. Both AR-dependent and AR-independent
mechanisms have been reported [20–23]; however, increased inci-
dence of ASI therapy-induced NEPC merit exploration of the role of
AR in NED/NEPC. As an epigenetic regulator of differentiation, loss
of AR via ASI therapy results in de-repression of stemness and neu-
ronal master regulators BRN2 and SOX2 [22,24,25] as well as REST
[26], a co-repressor of AR involved in silencing neuronal-associated
genes, potentially highlighting an AR-dependent axis. Conversely,
AR-independent mechanisms of ASI therapy-induced NED have
been reported via ONECUT2 upregulation of HIF1/hypoxia signal-
ing axis [21] or by sustaining growth and proliferation via FGF/
FGFR instead of AR [20], suggesting ASI therapy simply selects
for cells that develop AR-independent growth/survival mecha-
nisms. Recent evidence has shown heterogenous AR status of NEPC
and NEL cells, suggesting both classes of mechanisms likely con-
tribute to therapy induced NED [19] and support designation of
five or more subclasses of NEPC. Regardless of route of NED induc-
tion, NEL cells share common traits. Neuron-associated transcrip-
tion factors POU2F3/BRN2, ASCL1, SOX2, FOXA2, epigenetic
regulator EZH2, and secretion products NSE, SYP, and CHGA are fre-
quently upregulated [13], while AR-target genes and epithelial
markers AR, KLK3/PSA, FOXA1, REST, NKX3.1, KRT8 are frequently
repressed [5].

Several in vitro and in vivo model systems have existed for the
study of NED and therapy-induced NED, but none were designed
with the specific intent of pharmacological screening for preven-
tion of NED or resensitization of NEL cells in the context of ASI
exposure of epithelial adenocarcinoma cells. The Owen Witte lab
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first reported that normal epithelial cells can be reprogrammed
to undergo NED with clinically-relevant signatures via functional
knockdown of TP53 and RB1 and simultaneous overexpression of
AKT1, MYC, and BCL2 [27]. Due to the high alteration rates of
TP53 (68.1 %), RB1 (76.6 %), simultaneous TP53/RB1 (59.6 %) in
clinical NEPC specimens and PTEN (40.7 %) in mCRPC specimens
[28,29], the majority of commonly used model systems focus on
development of NEPC or NEL tumors, but do not necessarily focus
on the epigenetic plasticity associated with early cellular response
to ASI targeting [30–32].

Here, we attempt to directly examine the NED process of hor-
mone sensitive LNCaP cells prior to and during the course of
enzalutamide-mediated ASI therapy-induced NED by examining
dynamic profiles of genome-wide transcriptomics combining
advanced technologies, e.g., bulk mRNA-seq, epigenetic cleavage
under target and restriction under nuclease (CUT&RUN) sequenc-
ing, single cell RNA sequencing (scRNA-seq), and morphological
evaluation. Our goal is to develop a model system with the intent
to screen compounds for the prevention of NED or resensitization
of NEL cells to ASI therapy.
2. Materials and methods

2.1. Cell culture

LNCaP cell line was purchased from ATCC. Routine mycoplasma
screening was performed as described previously by Owens et. al.
using the LookOut PCR Mycoplasma Detection Kit (Sigma) [33].
Cells were stored as frozen stock in vapor phase of LN2 and thawed
prior to use. Cell lines were cultured 3 passages after thawing prior
to experimentation and maintained for no longer than 30 total pas-
sages. LNCaP cells were cultured in RPMI 1640 (Corning), and All
media were supplemented with 10 % FBS (Atlanta Biologicals),
1 mM sodium pyruvate (Corning), penicillin (100 units/mL) and
streptomycin (100 lg/mL) combination (Gibco), and 2 mM/L L-
glutamine (Corning).

Cells were seeded at 450,000 cells per 15 cm culture dish and
allowed to attach to the dish overnight. The following day, enzalu-
tamide was added at 5 lM concentration diluted from 100 mM
stock in DMSO. Dilutions were prepared such that DMSO content
in culture plates, including DMSO control, was always 0.1 %. Enza-
lutamide treatment was performed for 4, 7, or 14 days at 5 lM
treatment. Media was refreshed and enzalutamide was re-
applied to cell culture dishes every 72 h. DMSO cells were seeded
at the same density and treated at same schedule as enzalutamide
treatment groups but harvested at 70–80 % confluency.

2.2. Morphological analysis

Percent of NED induction was calculated morphologically from
brightfield images acquired at the given day of observation (either
4, 7, or 14 days for enzalutamide groups, or 80 % confluency for
DMSO group). Images were acquired on a Nikon TE2000-U micro-
scope with 10x objective. Images were analyzed with ImageJ [34].
NEL cells were defined as cell with neurite extensions longer than
twice the length of the cell body as described previously [35].

2.3. RNA isolation and RT-qPCR analysis

LNCaP cells were seeded to either 6 cm or 10 cm dishes at
800,000 or 2,200,000 cells/dish respectively. Cells were allowed
to attach for 24 h and then subsequently treated with either enza-
lutamide (5 lM) or DMSO for specified time period. Cells were
then harvested with Trizol reagent (Ambion) and RNA integrity
was verified via agarose gel electrophoresis. Promega High Capac-
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ity cDNA Reverse Transcription Kit (Promega) was utilized follow-
ing manufacturer instructions and as described previously [36–38].
RT-qPCR was performed with FastStart Universal SYBR Green Mas-
ter Mix (Thermo Fisher Scientific) and detected on a QuantStudio 6
Flex with QuantStudio Real-Time PCR control software (Thermo
Fisher Scientific). QuantStudio Design and Analysis software
(Thermo Fisher Scientific) was used for data analysis. Technical
triplicates were run for all samples, samples without detectable
amplification were deemed undetected. Primer sets were validated
via melt curve and agarose gel analysis of RT-qPCR product. AR pri-
mers were used as described previously [36] and IVL primers were
used as described previously [39]. All primer sequences utilized are
described in Supplementary Table S1.

2.4. Western blotting

Cells were lysed in RIPA buffer for 1 h on ice. Cell lysates were
centrifuged at 12,000 xg for 20 min at 4 �C, and the supernatant
was eluted with 5xSDS sampling buffer (100 mM Tris-HCl pH
6.8, 4 % SDS and 20 % glycerol with bromophenol blue) and boiled
for 5 min. The proteins were separated through 10 % SDS-PAGE gels
and were transferred to a nitrocellulose membrane by means of
trans-Blot SD wet transfer cell (Bio-Rad). The membrane was
blocked in 5 % skimmilk-PBS for 2 hrs, washed, and incubated with
primary antibodies in PBS containing 0.1 % Tween 20 (PBST) over-
night at 4 �C. Primary antibody was then removed by washing the
membrane three times in PBST. The membrane was then incubated
with secondary antibody for 1 h at RT. After three washes with
PBST, membranes were visualized with Odyssey� XF Imaging Sys-
tem. The intensity of bands was determined with Image StudioTM

Lite (LI-COR Biosciences). Antibodies against AR (1:2000, Cell Sig-
naling), ARV7 (1:1000, Abcam), CgA (1:5000, Abcam), NSE
(1:2000, Genetex), ASCL1 (1:1000, LS-Bio), NCAM1 (1:1000, Gene-
tex), b-actin (1:5000, Sigma-Aldrich), and LI-COR IRDye 800CW
Goat anti-Rabbit IgG (H + L), 0.5 mg (1:20000, LI-COR Biosciences)
and LI-COR IRDye 800CW Goat anti-Mouse IgG (H + L), 0.5 mg
(1:20000, LI-COR Biosciences) were used for western blotting
probing.

2.5. mRNA library preparation for bulk mRNA-seq

Three biological replicates at each time points, undifferentiation
and 14 days after the treatment, were collected. Total RNA was first
evaluated for its quantity, and quality, using Agilent Bioanalyzer
2100. For RNA quality, a RIN number of 10 was achieved. One hun-
dred nanograms of total RNA was used. cDNA library preparation
included mRNA purification/enrichment, RNA fragmentation,
cDNA synthesis, ligation of index adaptors, and amplification, fol-
lowing the KAPA mRNA Hyper Prep Kit Technical Data Sheet,
KR1352 – v4.17 (Roche Corporate). Each resulting indexed library
was quantified, and its quality accessed by Qubit and Agilent Bio-
analyzer, and multiple libraries pooled in equal molarity. The
pooled libraries were then denatured, and neutralized, before load-
ing to NovaSeq 6000 sequencer at 300 pM final concentration for
100 bp paired-end sequencing (Illumina, Inc.). Approximately
30–40 M reads per library were generated. A Phred quality score
(Q score) was used to measure the quality of sequencing. >90 %
of the sequencing reads reached Q30 (99.9 % base call accuracy).

2.6. Data analysis of mRNA-seq

The sequencing reads were mapped to the human genome hg38
using a RNA-seq aligner STAR (v2.7.2a) [40] with the parameter:
‘‘--outSAMmapqUnique 60”. Uniquely mapped reads were
assigned to genes based on GENCODE 31 using featureCounts
(v2.0.1) [41] with the following parameters: ‘‘-s 2 –p –Q 10 -O”.
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The genes were filtered out if they had<10 read counts in more
than half of samples. Gene expression was normalized by the
method of TMM (trimmed mean of M values) and subjected to dif-
ferential expression analysis using edgeR (v3.20.8) [42,43]. The dif-
ferentially expressed genes (DEGs) were defined by the cutoffs of
both false discovery rate (FDR) and fold change (FC) in the way
of FDR < 0.05 and |log2FC| > 1.
2.7. 10X Genomics single cell RNA sample preparation

On the day of harvest and after image acquisition at the micro-
scope, the 15 cm cell culture dishes were removed from the 37 �C
incubator, medium was removed via aspiration, and cells were
immediately washed once with 10 mL of 37 �C phosphate buffered
saline (PBS), pH 7.4. PBS was removed via aspiration and 3 mL
0.25 % trypsin (Corning) was added to the dishes. Dishes were
rotated for complete coverage of the trypsin and incubated on
the benchtop for 30 s. Roughly 2 mL of the trypsin was removed
via aspiration, and dishes were transferred to a 37 �C incubator
for exactly 4 min. 10 mL of 4 �C RPMI supplemented with 10 %
FBS was used for resuspension of the trypsinized cell suspension.
Viability was checked on Countess II FL automated cell counter
to ensure > 90 % viability. Cells were then centrifuged 4 min at
400x g at 4 �C to pellet the cells. Supernatant was aspirated and
discarded, then cells were washed with 1 mL 4 �C complete RPMI
three times. Final resuspension of cells in 400 lL 4 �C complete
RPMI was performed, and cell homogeneity and viability were
checked to ensure singlet cells at > 90 % viability would be deliv-
ered to Indiana University School of Medicine Chemical Genomics
Facility for 10X library preparation.
2.8. 10X Genomics single cell RNA library preparation and sequencing

The single cell gene expression analysis was conducted using a
10X Chromium single cell system (10X Genomics, Inc) and a Nova-
Seq 6000 sequencer (Illumina, Inc). To maximize quality of cell sus-
pension, cell harvest was optimized to retain > 95 % viability at
time of harvest following three washes in RPMI/10 %FBS. Following
storage on ice for delivery of cells to 10X sequencing facility, the
single cell suspension was subsequently washed a fourth time with
RPMI/10 % FBS, recentrifuged, and cell debris, dead cells and cell
aggregates were removed by discarding supernatant and resus-
pending cells. Each clean single cell suspension was then be
counted with hemocytometer under microscope for cell number
and cell viability. The single cell suspension viabilitywas over > 90 %
and minimal cell debris and aggregation were ensured prior to
loading. A target of 10,000 cells was used for loading; in practice,
following final analysis, between 6,890 and 11,620 individual cells
were identified per sample after all processing steps were com-
pleted. The cells were applied to a single cell master mix with lysis
buffer and reverse transcription reagents, following the Chromium
NextGEM Single Cell 30 Reagent Kits User Guide, CG000204 Rev D
(10X Genomics, Inc). Along with the single cell gel beads and par-
titioning oil, the single cell master mixture containing the single
cell suspension was dispensed onto a Single Cell Chip G in separate
wells, and the chip loaded to the Chromium Controller for GEM
generation and barcoding, followed by cDNA synthesis and library
preparation. At each step, the quality of cDNA and library was be
examined by Bioanalyzer and Qubit. The resulting library was
sequenced in a custom program for 28b plus 91b paired-end
sequencing on Illumina NovaSeq 6000. Depending on targeted cell
recovery, roughly 33,000 – 82,000 reads per cell were generated
and 91 % of the sequencing reads reached Q30 (99.9 % base call
accuracy). A Phred quality score (Q score) was used to measure
the quality of sequencing.
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2.9. Data analysis of scRNA-seq

Cellranger 6.0.1 (https://support.10xgenomics.com/) was uti-
lized to process the raw sequencing data generated. The sequenc-
ing reads achieved from FASTQ files were aligned to the human
reference genome hg38 with STAR, then traced back to individual
cells given the single cell barcodes. Gene expression of individual
genes were quantified based on the number of UMIs (unique
molecular indices) detected in each cell. The filtered gene-cell bar-
code matrices generated by cellranger were used for further anal-
ysis. Cells with too many detected genes, e.g., unique gene counts
over 8000, were filtered out. The gene expression was normalized
by total counts of the cell and multiplied by a scaling factor 10,000,
followed by log2 transformation. The first 26 principal components
(PCs) from the principal component analysis (PCA) were used to
cluster cells by a shared nearest neighbor (SNN) modularity
optimization-based clustering algorithm [44]. Uniform manifold
approximation and projection (UMAP) visualization of the result-
ing clusters and selected genes were performed with Seurat pack-
age [45]. Loom files were generated by velocyto [46]. scVelo [47]
was used to generate RNA velocity. Monocle 2 [48] was used to
generate trajectory.

2.10. CUT&RUN sample preparation

LNCaP cells were seeded into 15 cm cell culture dishes and trea-
ted with enzalutamide or DMSO for 14 days as described above. On
the day of harvest, cells were removed from 37 �C incubator and
placed on benchtop. Formaldehyde was added to the cell culture
media to final concentration of 0.1 % formaldehyde. Medium was
mixed and plates were incubated at ambient temperature prior
to quenching by addition of glycine to final concentration of
125 mM for 5 min. Media was removed and cells were washed
with 10 mL 4 �C PBS. PBS was removed and 3 mL trypsin was
added. Cells were detached from the plate and homogenized as
described above. Following washes, cells were resuspended in
1 mL complete RPMI at 4 �C supplemented with 10 % DMSO. Cells
were then frozen slowly to �80 �C for storage.

2.11. CUT&RUN assay

CUT&RUN was performed with light-fixed LNCaP cells (0.1 %
formaldehyde for one minute followed by 125 mM glycine quench)
and an automated protocol (autoCUT&RUN) derived from those
previously described [49–51]. In brief, for each CUT&RUN reaction
500 K nuclei [5 million cells/mL prepared in 20 mM HEPES pH 7.5,
150 mM NaCl, 0.5 mM Spermidine, 1x Roche cOmplete Protease
Inhibitor Cocktail] were dispensed to individual wells of a 96-
well plate, immobilized onto Concanavalin-A beads (Con-A; EpiCy-
pher #21–1401), and incubated overnight at 4 �C with 0.5 lg of
antibody (IgG, H3K4me3, H3K27me3, and H3K27ac antibodies
listed in Supplementary Table S2). All antibodies validated to his-
tone post-translation modification (PTM)-defined SNAP-ChIP
nucleosome standards as previously [52]. pAG-MNase (EpiCypher
#15–1016) was added / activated (2 h @ 4 �C) and CUT&RUN
enriched DNA (crosslink reversal not necessary for lightly fixed
samples) purified using Serapure beads after mixing at 2:1 (Bead:
DNA) ratio. Recovered DNA was quantified using PicoGreen and
reactions were normalized to 5 ng DNA (or entirety of the reaction
if < 5 ng DNA was recovered) before preparing sequencing libraries
(CUTANA CUT&RUN Library Prep kit; EpiCypher #14–1001). All
autoCUT&RUN steps were optimized / performed on Tecan Free-
dom EVO robotics platforms with gentle rocking for incubation
steps and magnetic capture for media exchange / washing steps.
Sequencing performed on a NextSeq2000, according to manufac-
turer’s instructions.
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2.12. CUT&RUN analysis

Bowtie2 [53] was used to align CUT&RUN sequencing reads on
the human genome (hg38). After duplicated reads removed by
Picard (https://broadinstitute.github.io/picard/), peak calling of
mapped reads was performed using SICER2 [54] with comparison
to the background reads from the IgG. The peaks were defined by
the cutoff of Bonferroni-adjusted p-value < 0.01. Differential peak
calling on histone mark signals between two conditions, before
and after the treatment, was performed using the command of
sicer_df in the package of SICER2. Genome regions with differential
signals were identified by FDR-adj p-value < 0.05 and plotted in the
heatmap using deepTools [55]. Signals of histone marks were visu-
alized using bigwig and bedgraph files from CUT&RUN data with
SparK [56].

2.13. Functional enrichment analysis

An online tool DAVID [57] was used for functional enrichment
analysis for gene ontology (GO) and pathways on selected genes,
e.g., either up- or down-regulated DEGs identified by mRNA-seq.
Enrichment analysis for cell annotations (Azimuth Cell Types
2021 [58]) and TFs was performed using EnrichR [59,60] given
the DEGs or marker genes detected for individual cell cluster based
on scRNA-seq data.

2.14. Statistical analysis

Statistical analysis was performed using GraphPad PRISM for
qPCR and western blot data except where otherwise stated. Fold
changes for RT-qPCR results were calculated on non-
exponentiated DDCt values. Student’s t test was performed
between groups. Analysis of single cell data was performed with
Cell Ranger, and bulk mRNA-seq was performed as described pre-
viously [61].

2.15. Data availability

All sequencing data have been deposited to the GEO database
with a super-series number GSE215945, including bulk RNA-seq
(GSE215653), single cell RNA-seq (GSE215943), and CUT&RUN
(GSE216118).
3. Results

3.1. Enzalutamide treatment of prostate cancer cells induces
neuroendocrine differentiation

Treatment of hormone-naïve prostate cancer (HNPC) LNCaP
cells with enzalutamide resulted in significant morphological
change in a dose dependent manner. Typical LNCaP morphology
is elliptical cell body with 2–4 polar appendages per cell (Fig. 1A,
DMSO). Following enzalutamide treatment, morphological transi-
tion to small, round cell bodies with low cytoplasm:nucleus ratio
and long neurite-like outgrowths are developed over course of
treatment (Fig. 1A). Quantification of morphology indicates a basal
level of NEL LNCaP cells at 6.9 %, which increases linearly to 22.5 %
(4 days of enzalutamide exposure), to 52.2 % (7 days), and near
complete NED induction at 80.1 % (14 days) (Fig. 1B). Quantitative
reverse transcription polymerase chain reaction (RT-qPCR) data
shows transcriptional upregulation of multiple NE markers genes,
namely ASCL1, CD56 (encoding NCAM1 protein), CHGA, and
ENO2 (Fig. 1C). Both ENO2 and CHGAwas significantly upregulated
by day 14 treatment. Chronologically, CD56/NCAM1 showed most
rapid upregulation at the transcriptional level, followed by ASCL1,
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Fig. 1. Enzalutamide treatment of prostate cancer cells induces neuroendocrine differentiation. (A) Brightfield images (scale bar = 100 lM) depicting LNCaP cells with no
treatment (DMSO), and enzalutamide treatment over 4, 7, and 14 days. (B) Quantified rate of neuroendocrine differentiation (NED) from A expressed as precent
Neuroendocrine (%NE)-like cells. (C-D) RT-qPCR analysis of NE-associated gene expression (C) and AR/AR-target gene expression (D) expressed as fold change. (E)
Representative images of western blot for protein-level quantitation of NE-markers and AR / ARv7 in LNCaP cells treated with DMSO or enzalutamide exposure for 4, 7, or
14 days. (F) Quantified densitometry from D. (G) Volcano plot from bulk mRNA-seq data comparing LNCaP cells treated after 14 days enzalutamide exposure vs DMSO control,
with upregulated genes in blue and downregulated genes in green. (H, I) Gene ontology (GO) significantly enriched in upregulated (H, blue) and downregulated (I, green)
genes upon 14-day enzalutamide exposure. Fold enrichments were shown as bars and statistical significances (-log10(q-value)) were shown as red dots. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ENO2, and then CHGA (Fig. 1C). Reflecting successful targeting of
AR, AR target gene KLK3 / PSA was almost completely silenced
immediately following AR targeting with enzalutamide (Fig. 1D).
AR, however, was elevated in a dose dependent manner following
enzalutamide treatment, with nearly 8-fold increased by day 14
(Fig. 1D). Similarly, a significant 12-fold increase of AR at the pro-
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tein level occurred at day 14 but was not nearly as pronounced at
days 4 and 7 when analyzed via western blot (Fig. 1E, F). Overall,
protein-level analysis confirms sequence of events observed with
RT-qPCR, in which NCAM1 is upregulated immediately following
enzalutamide exposure on day 4, and subsequently AR itself by
day 14 (Fig. 1E, F). NCAM1/CD56 exhibited the most significant
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upregulation of NE-associated markers at both mRNA and protein
levels, coinciding with morphological change observed by micro-
scopy by 4 days. As NCAM1/CD56 regulates the interaction
between cell membrane and extra cellular matrix in developing
neurons and neurites, we were pleasantly surprised to detect the
strong correlation between cellular morphology, transcript, and
protein level occurring simultaneously after enzalutamide
exposure.

Because enzalutamide treatment induced NED in over 80 % of
cells at 14 days, we first utilized bulk-level mRNA-seq at this time-
point for an unbiased analysis of the transcriptional reprogram-
ming events in therapy-induced NED. We identified 4,939
differentially expressed genes (DEGs) (Fig. 1G, Supplementary
Table S3) following 14-day treatment, and predictably observed
significant enrichment of gene ontology (GO) annotations for
neuronal-associated development, differentiation, and morphology
in upregulated DEGs (Fig. 1H), with corresponding enrichment of
cell cycle, DNA replication, and mitotic GO terms in the downreg-
ulated DEGs (Fig. 1I). In line with clinical observations of NEPC,
gene set enrichment analysis (GSEA) highlighted gene sets associ-
ated with neuronal development/differentiation, ErbB pathway,
cell:cell junction/adhesion, and signaling pathways for enzalu-
tamide treatment (Fig. S1A), while highlighting cell cycle advance-
ment, and chromatin maintenance for DMSO treatment (Fig. S1B),
largely in agreement with observations from GO enrichment anal-
ysis described in Fig. 1H/I.

Taken together, these results strongly demonstrated that enza-
lutamide treatment of hormone naïve LNCaP cells induce morpho-
logical, transcriptional, and translational changes which
recapitulate transdifferentiation of epithelial luminal cells into
neuroendocrine-like cells expressing clinically-relevant NE marker
genes. Further, unbiased bulk mRNA-seq also confirmed upregula-
tion of multiple neuronal differentiation and neurogenesis related
pathways and downregulation of actively mitotic and cycling cells.
To understand more about such reprogramming process, and as
NED is characterized as epigenetic rather than somatic or struc-
tural rearrangements in chromatin, we next examined the correla-
tion between gene expression changes and alterations of canonical
histone modifications H3K27ac, H3K4me3, and H3K27me3.

3.2. Epigenetic status of chromatin indicates NE-activation, AR-
signaling loss, and inhibition of cell cycle advancement

As recent reports have highlighted significant changes in NEPC
and neuroendocrine-like (NEL) cells at the chromatin structural
level [18,62], we also utilized cleavage under target and release
using nuclease (CUT&RUN) epigenomic profiling technique as tra-
ditional ChIP-sequencing input requirement was not amenable to
our model system in which cells stop cycling immediately on treat-
ment, and CUT&RUN input requirements are very low [51]. We uti-
lized CUT&RUN to monitor H3K4me3 (indication of active
transcription at gene promoter and exons), H3K27ac (canonical
activation and euchromatin status), and H3K27me3 (canonical
repression). The epigenetic status of H3K4me3, H3K27ac, and
H3K27me3 can help to substantiate the differential expression
observed via bulk mRNA-seq and RT-qPCR analysis. Additionally,
it may suggest distinct mechanisms underlying differential expres-
sion patterns.

In general, from 4,547 to 33,529 genome regions underwent
remarkable changes with different histone signals (Fig. 2A-C),
either up-regulated or down-regulated, while corresponding DEGs
simultaneously showed significant changes of gene expression
accordingly (Fig. 2D-F). The alternations of H3K4me3 signals
exhibited the highest positive correlation coefficient (R = 0.74)
with gene expression changes of corresponding genes (Fig. 2D,
Supplementary Table S4), followed by H3K27ac (R = 0.58, Fig. 2E,
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Supplementary Table S5). It is not surprising to see that
H3K27me3 had a negative correlation coefficient (R = -0.19) with
gene expression (Fig. 2F, Supplementary Table S6). Even though
altered H3K4me3, H3K27ac, and H3K27me3 may be associated
with different individual genes comprising the total list of DEGs,
the functional enrichment analysis on activated DEGs with
increased H3K4me3/H3K27ac (or decreased H3K27me3 due to role
as a repressive mark) further revealed that all histone marks
observed tended to regulate the same neuronal-related functions
by targeting same or different genes, e.g., neurogenesis, neuron dif-
ferentiation, nervous system development, and cell differentiation
or development (Fig. 2G). Enhanced H3K4me3 and H3K27ac also
shared functions such as cell migration, cell motility, and regional-
ization, while neuron projection or development, cell projection or
specially neuron projection, and dendrite were activated by
increased H3K4me3 and reduced H3K27me3 (Fig. 2G). DEGs desig-
nated for collagen trimer, response to wounding, or belonging to
the receptor complex can be tuned by both growing H3K27ac
and abated H3K27me3 (Fig. 2G). Of course, these histone modifica-
tions may target unique genes with specific biological functions,
e.g., Calcium signaling pathway and axonogenesis by H3K4me3,
epithelial cell differentiation by H3K27ac, or sodium ion transport
by H3K27me3 (Fig. 2G). Oppositely, signals of H3K4me3 and/or
H3k27ac tended to decrease around the repressed genes impli-
cated in cell cycle, rather than AR-target genes and NE-associated
genes, in the LNCaP cells after 14 days enzalutamide exposure
(Fig. 2H). For example, cell cycle genes, e.g., proliferative marker
MKi67 (Fig. 2I) as well as CDK1 and CyclinA2 (CCNA2) (Fig. S2A,
S2B), were observed with the similar patterns of epigenetic status.
Each of them showed loss of H3K27ac within 1–2 kb of promoter
and transcription start site (TSS), with concomitant loss of
H3K4me3 at overlapping locations.

General consistency was found between bulk mRNA-seq, RT-
qPCR and western blot analysis, and epigenetic status for NE-
associated genes, AR signaling, and proliferating epithelial associ-
ated genes. For example, the dramatic decreases of the expression
of AR target genes, e.g., KLK3/PSA (Fig. 2J), KLK2, and FKBP5
(Fig. S2C, S2D), were observed in agreement with significantly uni-
versal loss of H3K27ac from the promoter to the gene body. KLK2/3
also showed notable decreases of H3K4me3 which was not
observed for FKBP5. KLK3 exhibited loss of H3K4me3 spanning
the full gene, while KLK2 was only trimethylated at H3K4
upstream and including the transcription start site. Active gene
repression via H3K27me3 was not observed for any AR target
genes identified following enzalutamide treatment, suggesting
the decreased expression was due to loss of H3K27 acetylation
alone.

The expression levels of ASCL1 and SYP, which both are NE
markers, were elevated following 14-day treatment. The CUT&RUN
analysis suggests that ASCL1 upregulation was mediated predom-
inantly through de-repression by loss of H3K27me3, except for
small region close to the transcription start site (Fig. 2K). However,
SYP transcription seemed activated by deposition of H3K27ac upon
the treatment, indicating that SYP upregulation was due to activa-
tion rather than de-repression as observed with ASCL1 (Fig. S2E).

3.3. Time-resolved, single cell analysis reveals differences in
morphology, canonical AR-suppression, and activation of NEL
transcription signatures

Enzalutamide treatment induced remarkable changes in cellu-
lar morphology, epigenetic status of histone modification, subse-
quent changes in transcriptional programs, and resultant protein
expression and neuropeptide secretion in LNCaP cells. Most signif-
icantly, each of these phenomena were largely in agreement and
were highly reproducible between experiments. Because no



Fig. 2. Epigenetic status of chromatin confirms the strong associations between H3K4me3/H3K27ac/H3K27me3 and gene expression. (A-C) Genome-wide alterations of
H3K4me3, H3K27ac, and H3K27me3 before and after enzalutamide treatment. The heatmap shows significant alternations of histone modifications aligned to the peak
center, where colors from blue to red represent the histone signals (normalized RPKM � 10 within the bin size of 50 bp) from low to high. The above and below heatmap for
each histone modification indicates the increased and decreased signals, respectively, upon the treatment. The curve above each heatmap is the average of histone signals
accordingly. (D-E) Positive correlation between gene expression and H3K4me3 (D) or H3K27ac (E). (F) Negative correlation between H3K27me3 and gene expression. (G)
Shared or unique GO terms and pathways over-represented in up-regulated DEGs with increased H3K4me3/H3K27ac and/or decreased H3K27me3. (H) GO terms enriched in
down-regulated DEGs with decreased H3K4me3 or H3K27ac. (I-K) Differential epigenetic marks around one cell cycle marker Ki67 (I), AR target gene KLK3 (J), and NE master
transcription factor ASCL1 (K). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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somatic or structural changes would be expected in such a short
treatment window, clinical data suggest very little structural geno-
mic changes between CRPC/NEPC, and epigenetic status correlated
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well with altered transcription in our model system, we hypothe-
sized that ASI-induced NED is a largely epigenetic process. To
investigate this further, we decided to perform high resolution sin-
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gle cell RNA-sequencing (scRNA-seq) by utilizing the 10X genomics
platform and Cell Ranger software [63]. Following the same time
course described above, we isolated single cells from DMSO con-
trol, 4-day, 7-day, and 14-day enzalutamide treatment of LNCaP
cells and subjected them to scRNA-seq. To use a comparative
approach to analyze the model system, we also utilized morpho-
logical observation as depicted (Fig. 1A) as well as bulk mRNA-
seq screening (Fig. 1F).

Distinct cell subtypes were noticed given the scRNA-seq data
from DMSO control to after 14-day treatment (Fig. 3A). The popu-
lations of cell subtypes were distinguishing across different time
points (Fig. 3B). Some clusters were highly specific to the enzalu-
tamide samples from 4 to 14 days, e.g., clusters C2 and C5 (C2/5),
while several clusters decreased with the time points, e.g., clusters
C3, C6, C7, and C8 (C3/6/7/8), in addition to others which were
potentially transient-status cells more common to 4-day and 7-
day samples sets, such as C4 comprised mostly by cells of enzalu-
tamide day 4 and day 7 treatment (Fig. 3A-B). Among them, the
population of cluster C2 cells was almost exclusively specific to
14-day enzalutamide treatment, while clusters C3/6/7/8 were
almost completely exclusive of cells from 14-day enzalutamide
treatment. The RNA velocity analysis (Fig. 3C) and trajectory anal-
ysis (Fig. 3D) indicated a trajectory split starting from C3/6/7/8 and
branching to either C2/5 or to remaining transient clusters. These
approaches suggested two potential pathways for the shift, one
pathway mediated through C3/6/7/8 to finally NEL C2/5. The other
reached to clusters C4/10/11/12/17/18 etc. (Fig. 3C).

To understand the cell subtypes of these distinguished clusters,
we performed enrichment analysis on the signature genes identi-
fied by gene expression profile from each cluster profile utilizing
the Azimuth Cell Types 2021 annotation set [58] (Fig. 3E-F, Fig. S3-
A-C). Morphological analysis suggested that cells stop cycling
almost immediately on enzalutamide treatment, consistent with
successful targeting of AR in AR-driven cells, so it was not surpris-
ing to observe that clusters C3/6/7/8, which were lost in a dose/
time-dependent manner and almost entirely absent in 14-day trea-
ted cells, resembled actively cycling and mitotic cells based on Azi-
muth annotation (Fig. 3E). We named them as cycling or cycling-
like cells (CYCL). Conversely, C2/5 as the largest population of cells
in the 14-day treatment group resembled neuroendocrine and
dendritic cells based on the same annotation database (Fig. 3F),
suggesting that they are in fact NEL cells. Confirmed by our
scRNA-seq, genes in the downstream of AR signaling pathway,
e.g., KLK2/3, or genes mediated by AR, e.g., FKBP5, were repressed
in NEL cells (clusters C2/5) compared to CYCL cells (Fig. 3G). Con-
versely, expression levels of some NE-associated genes were much
higher in NEL cells than in CYCL cells, e.g., ENO2 and STEAP2
(Fig. 3H). STEAP2 is known as a gene supporting prostate cancer
progression as well[64].

The CYCL cells in C3/6/7/8 also had high enrichment scores of S
phase and G2M phase, while NEL cells in C2 showed no enrichment
for these cycle stages (Fig. S4A-B). Utilizing the Reactome
G0_And_Early_G1 dataset also showed enrichment in C3/6/7/8
exclusively, with no enrichment in the 14-day enzalutamide trea-
ted cells (Fig. S4C). We further checked the expression levels of
dimerization partner, RB-like, E2F and multi-vulval class B
(DREAM) targets [65], as the DREAM complex is a master epige-
netic regulator of cell cycle advancement and is frequently dysreg-
ulated in cancers [66]. These genes were significantly highly
expressed in CYCL cells (C3/6/7/8) in DMSO samples and earlier
stages (7–10 days) of the enzalutamide treatment that is com-
pletely lost after 14 days (Fig. 3I). Taken together, these results
indicate that following enzalutamide treatment, LNCaP cells exhi-
bit loss of cell cycle advancement with a strong gain of NE-
associated characteristics both transcriptionally, translationally,
and morphologically.
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3.4. ASI-induced NED induces shift from canonical to noncanonical AR
signaling pathways and development of NE-like cells with
heterogenous AR status

ASI therapy targets either the biosynthesis of testosterone or
the AR-mediated cellular response to testosterone. Therefore, we
utilized the scRNA-seq data to check AR status and AR signaling
pathway simultaneously. Immediately following enzalutamide
treatment, AR signaling sharply decreased for 4-day, 7-day, and
14-day treatment groups (Fig. 4A). This was driven largely by
AR-target genes KLK2, KLK3, and FKBP5 suppression immediately
following enzalutamide treatment. However, while enzalutamide
treatment largely suppressed androgen signaling and transcription
of canonical AR-target genes as expected, we were surprised to
observe that transcription of AR was upregulated roughly 4-fold
based on bulk mRNA-seq quantitation (Fig. 4B).

Heterogenous AR status and activation of noncanonical AR sig-
naling pathway activation in enzalutamide resistant cell lines has
recently been reported [19,67]. To assess whether our model sys-
tem was able to recapitulate the canonical / noncanonical AR sig-
naling switch described by He et. al., we calculated a
noncanonical AR signaling score and indeed observed dose/time-
dependent activation in enzalutamide-treated cells (Fig. 4C). Sur-
prisingly, despite using a single cell line in our experiment, we
were able to identify-two NEL clusters, C2 and C5, in our dataset
that demonstrated variable AR gene expression, with NEL C2
exhibiting higher AR expression than NEL C5 (Fig. 4D). As AR
upregulation followed long term exposure of LNCaP cells to enza-
lutamide (Fig. 4B), we next sought to determine if the differential
AR status in NEL C2 and C5 resulted in any functional consequence
to the cells, or if instead transcriptionally inactive AR was simply
higher in C2 and C5. Towards this end, we first identified DEGs
highly expressed in either C2 or C5 then performed DAVID enrich-
ment analysis on these DEGs. Distinct cellular functions were rec-
ognized to be enriched in C2 and C5, respectively (Fig. 4E, 4F). Both
NEL clusters indicated the enrichment for nervous system develop-
ment, axon guidance, and other neuronal/neuroendocrine related
functions, but the genes from C2 and C5 implicated in these path-
ways and functions are totally different. Moreover, NEL C2 showed
NE-associated secretory processes as well as cytoskeletal/morpho-
logical related processes (Fig. 4E). Conversely, NEL C5 exhibited
enrichment in the process of splicing, translation, and metabolism
(Fig. 4F). Together, these results suggest that two NEL clusters dis-
tinguished by heterogenous AR status exhibit clearly common and
distinct biological functional processes.

To evaluate epigenetic regulatory mechanism underlying, we
performed enrichment analysis of transcription factor (TF) motifs
against the signature genes comprising C2 (NEL/AR + ), C5 (NEL/
AR-), and CYCL cells (C3/6/7/8), respectively. ZNF217 and STAT3,
both associated strongly with NEPC, were enriched in C2 and C5
signature genes (Fig. 4G, 4H). As comparison, AR, as well as E2F,
FOXM1, and Myc motifs were over-represented in the signature
genes of CYCL cells (Fig. 4I). Observation of different TFs between
C2 and C5 further strengthened the heterogeneity of AR status in
NEL cells. For example, AR and CREB motifs were significantly
enriched in signature genes of C5 (Fig. 4H), while the more stem-
associated Yamanaka factor OCT4 was observed in NEL C2
(Fig. 4G). While differential motif enrichment does not rule out
C5 simply as a transitory state, it does recapitulate multiple clinical
reports that have demonstrated AR signaling retention within NEL
cells and suggests NEL phenotype does not fundamentally require
abrogation or AR or AR signaling. Interestingly, while AR motif was
enriched only for NEL C5 (Fig. 4H), NEL C2 indicated higher AR
expression (Fig. 4D), potentially suggesting cells of NEL C2 are
attempting to regain AR signaling through compensatory AR
upregulation.



Fig. 3. Time-resolved, single cell analysis reveals differences in morphology, canonical AR-suppression, and activation of NEL transcription signatures. (A) UMAP
representation of total cell population comprised of DMSO, 4 day, 7 day, and 14 day enzalutamide-treated LNCaP cells stratified by treatment. (B) Contribution of each
treatment condition (DMSO, enzalutamide (4, 7, 14 days)) to total cell population for each cluster. (C) RNA Velocity representation of UMAP-stratified cell population. (D)
Trajectory analysis exploring two-path split of major groups of cells after treatment. (E-F) Azimuth cell type enrichment for CYCL cell clusters (E) and NEL cell clusters (F). (G-
H) Violin plots for AR target genes (G) and NE-associated genes (H) stratified by CYCL and NEL cell clusters. (I) Feature plot of DREAM complex target gene expression in
individual cells under each treatment.
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Enzalutamide treatment of LNCaP cells represents a homoge-
nous in vitro model system, but surprisingly can recapitulate
heterogenous response to pharmacological targeting of AR by
showing differential AR expression, compensatory AR reactivation
at both the transcript and protein level, subpopulation-specific
retention of AR target gene expression and AR signaling score,
and two distinct NEL cell populations with opposing AR status.
The high resolution afforded by single-cell sequencing platform
collectively demonstrates that even within a single cell line and
only 14 days of enzalutamide exposure, subpopulations of cells
modulate AR status, AR signaling, and NEL transdifferentiation,
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resembling the same heterogeneity observed in both clinical sam-
ples and preclinical models.

4. Discussion

4.1. NED model systems and time-resolved analysis of ASI-induced
NED recapitulates clinically relevant transcription signatures and
provides sequence specificity

Clinical presentation of NEPC tissues can be mixed morphology
or can be predominantly NE, also called focal NEPC. Multiple stud-



Fig. 4. ASI-induced NED suppresses canonical AR signaling, cell cycle advancement, but not AR expression. (A-C) Heatmap of total cell population for DMSO and enzalutamide
treated LNCaP cells showing enrichment for AR signaling score (B), direct transcription of AR gene itself (B), and non-canonical AR signaling (C). (D) Violin plot depicting AR
expression at mRNA level for NEL C2 and C5. (E-F) DAVID enrichment of terms associated with more highly expressed gene signatures in NEL C2 (E) or NEL C5 (F). (G-I) TFs
enriched in NEL C2 (G), NEL C5 (H), and CYCL C3/6/7/8 (I), separately.
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ies indicate underlying RB1, TP53, and PTEN genomic or functional
loss are present in clinical NEPC samples without necessarily being
present at the same frequency in CRPC progenitor cells [13]. ASI
selective pressure is hypothesized to select for cells with genomic
perturbation of these genes prior to NED and progression to NEPC.
However, it is nearly impossible to generate mechanistic data on
clinically available samples alone, and model systems are neces-
sary. Normal epithelial tissue has been reprogrammed to undergo
NED following functional abrogation of TP53 and RB1, and PTEN
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(via AKT1 overexpression), but the experiment was performed
with underlying overexpression of BCL2 and MYC [27]. Cells with
AKT1, MYC, and BCL2 overexpression retained prostatic lineage
marker expression until functional loss of RB1 and TP53 was intro-
duced; activation of NE-associated transcriptional programs
required RB1 and TP53 [27]. The TRAMP mouse model, with
prostate-specific, SV40 T-mediated functional loss RB1 and P53,
spontaneously generates prostatic adenocarcinoma and can be
induced to develop NEPC following castration [68,69]. NEL tumors
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have also been reported in mice with loss of both PTEN and RB1,
with more aggressive features when TP53 is also lost [70]. Clini-
cally, NEPC tumors harbor significantly higher rates of RB1 and
TP53 loss [29,71], yet there is still no current answer if TP53 and
RB1 loss are required for NED induction or, instead, they simply
enable the more rapid proliferation of NEL cells compared to NEL
cells without these alterations [72]. Supporting this, TRAMP mice
show increased incidence of NEL tumor development from 5 % �
53 % following castration [73]. In LNCaP cells, functional knockout
of both TP53 and RB1 showed no development of NEL features
in vitro or in vivo; further, AR and SOX2 expression changes were
not detected, indicating TP53 and RB1 loss may be necessary, but
not sufficient, for NED [74]. LNCaP cells are TP53 and RB1-
competent, but do harbor one deleted allele of PTEN [75]. Our
model system demonstrates in single cell resolution that following
pharmacological targeting of AR, activation of NE-associated pro-
grams can occur independently of RB1/TP53 loss or repression of
epithelial markers. Further, we demonstrate a significant upregula-
tion of AR gene transcription, likely as compensatory mechanism
for pharmacological AR-inhibition, resulting in a significant
increase in AR at the protein level by day 14. We also detect that
even in TP53/RB1-competent background, transcription of com-
mon NE marker genes is detectable after 4 days of enzalutamide
exposure. We also demonstrated that NE marker NCAM1 (gene,
CD56), a neuronal cell adhesion marker, is rapidly upregulated by
day 4 at both the mRNA and protein levels, consistent with the
rapid development of NEL morphology also observed by day 4.
These results suggest a sequence of events in which initial mor-
phological change occurs rapidly following pharmacological AR
targeting, followed by functional upregulation of master regulator
transcription factors, followed by compensatory AR upregulation.
While the model system utilized for this research only replicates
the NED process in vitro, these results may support the model of
NEPC development in which NEL cells, or cells undergoing NED
process, retain receptivity to androgen-mediated growth and sur-
vival signals, and NEL cells that regain proliferative capacity in
an AR-dependent manner are then selected for under potent AR
targeting.

Neuronal splicing factor SRRM4 is a marker of NEPC, and over-
expression of SRRM4 in LNCaP cells has been reported to be
required for development NEL cellular morphology and transcrip-
tional programs in vitro and in vivo [76]; however, we did not
detect change in SRRM4 expression, and while SRRM4 clearly
mediates progression of established NEPC tumor cells [23], our
data demonstrate that SRRM4 is not required for initial stages of
enzalutamide-induced lineage plasticity. Further, a switch to NEL
morphology clearly preceded full activation of NE-associated tran-
scriptional change, although this merits further exploration of the
functional consequence. By observing the initial steps of therapy-
induced NED alone, our reported model system can rule out the
confounding variables that would otherwise be ubiquitous in
observations based solely on clinical samples.

4.2. Specific subpopulations of ASI-treated cells indicate dependency of
ASI-induced NED on AR pathway and divergence of NEL cells into
distinct clusters

Recent reports of patient-derived NEPC samples have high-
lighted heterologous AR status and noncanonical signaling [19],
suggesting that AR potentially serves a functional role in cells even
under enzalutamide treatment or potentially drive enzalutamide
resistance [67]. The results of our study suggest that both of these
features can be recapitulated in vitro with a simple 2D cell culture-
based platform when coupled with high resolution analytical
methods. We observed two distinctly NEL clusters following enza-
lutamide treatment. C2, which retained higher level of AR expres-
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sion and showed enrichment of AR pathway related terms, also
showed NE-associated secretory processes as well as cytoskeletal/-
morphological related processes, which would be in general agree-
ment with histological staining for neuropeptide secretion and
small cell morphology. Conversely, NEL C5 exhibited enrichment
of splicing, translation, and metabolism terms, which may indicate
that NEL C5 has either undergone more significant deviation away
from parental line or that NEL C5 represents a more plastic/transi-
tory state with variable cellular processes serving role as quiescent
cancer stem cell or therapy-resistant cell via plasticity in key cellu-
lar functions. The discrepancy between C2 and C5 may represent
the frequently clinically observed divergence of canonical AR-/
NE + NEPC tumor cells from more recently described AR+/
NE + cells. This lineage split of NEL cells results in a hypothesis that
genetic perturbations on different genes or pathways may lead to
the ability to regain proliferative capacity and result in further
divergence of the C2 and C5 cell populations into more distinct
subcategories of NEL cells. This avenue merits further explanation
and may be experimentally determined by introduction of clini-
cally relevant PTEN, TP53, or RB1 loss via inducible knockdown
with or without extension of time course.
4.3. Utility of in vitro ASI-induced NED model system as aid for
resistance-focused drug screening

By observing the early stages of ASI therapy-induced NED in a
single cell and time-resolved manner, and subsequently character-
izing the morphological, transcriptional, and epigenetic sequences
involved, we sought to develop a model system that can be applied
to pharmacological development beyond target engagement and
growth suppression but can be placed in the clinically relevant
context of disease progression. Loss of AR protein and transcrip-
tional activity are hallmarks of NEPC, but here we have successfully
demonstrated that they are not necessary for initial activation of
NE-associated transcriptional signatures and change in morphol-
ogy. Our model system has already provided evidence that canon-
ical NEPC characteristics – genomic or functional TP53 and RB1
loss, SRMM4-mediated alternative expression patterns, and upreg-
ulated EZH2 transcript and activity – may contribute more to the
maintenance of NEL phenotype and rapid growth/proliferation
than to the immediate development of plasticity and
enzalutamide-response.

Our goal with this model system is to provide a platform for the
screening of novel pharmacologically active compounds that may
inhibit components of the cellular plasticity process in the context
of ASI therapy-induced NED in prostate cancer cells. Significant
value exists in distinction of compounds that target existing NEPC
metastases versus compounds that would inhibit NED develop-
ment, and availibility of such compounds could present significant
ramifications for patient stratification.
5. Conclusion

Our model system provides a high-resolution and time-resolved
approach to screening for drugs to either inhibit the ASI therapy-
induced NED process or to resensitize developing NE-like cells to
ASI therapy and delay or prevent progression of NEPC. We recog-
nize that this model does provide value by focusing on a signifi-
cantly clinically relevant unmet need of deciphering the
underlying mechanisms of ASI therapy-induced NED even though
it doesn’t fully capture clinical NEPC development. Logical exten-
sions of this system are: 1) Performance on representative panel
of HNPC and CRPC cell lines, 2) Performance on GEMM tissue under
ASI therapy or castration, and 3) Inclusion of ATAC-seq or high-
throughput proteomics to confirm transcriptional changes with
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resultant functional heterochromatic repression or altered protein
content following transcriptional dysregulation.
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