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Abstract

Here we investigate the crucial role of trials in task-based neuroimaging from the perspectives 

of statistical efficiency and condition-level generalizability. Big data initiatives have gained 

popularity for leveraging a large sample of subjects to study a wide range of effect magnitudes 

in the brain. On the other hand, most task-based FMRI designs feature a relatively small number 

of subjects, so that resulting parameter estimates may be associated with compromised precision. 

Nevertheless, little attention has been given to another important dimension of experimental 

design, which can equally boost a study’s statistical efficiency: the trial sample size. The 

common practice of condition-level modeling implicitly assumes no cross-trial variability. Here, 

we systematically explore the different factors that impact effect uncertainty, drawing on evidence 

from hierarchical modeling, simulations and an FMRI dataset of 42 subjects who completed a 

large number of trials of cognitive control task. We find that, due to an approximately symmetric 

hyperbola-relationship between trial and subject sample sizes in the presence of relatively large 

cross-trial variability, 1) trial sample size has nearly the same impact as subject sample size on 

statistical efficiency; 2) increasing both the number of trials and subjects improves statistical 

efficiency more effectively than focusing on subjects alone; 3) trial sample size can be leveraged 

alongside subject sample size to improve the cost-effectiveness of an experimental design; 4) 

for small trial sample sizes, trial-level modeling, rather than condition-level modeling through 

summary statistics, may be necessary to accurately assess the standard error of an effect 

estimate. We close by making practical suggestions for improving experimental designs across 

neuroimaging and behavioral studies.
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1. Introduction

Sound experimental design is key for empirical science. While reasonable statistical models 

may effectively extract the information of interest from the data, one first has to ensure that 

there is enough information present to begin with. Since there are significant constraints 

to acquiring data, such as cost and finite acquisition time, the experimenter should aim to 

optimize the experimental design to maximize relevant information within those practical 

limitations. A poorly designed experiment will bury signal within noise and result in 

unreliable findings. Of critical importance for the detection of an effect of interest in both 

neuroimaging and behavioral studies is to determine an appropriate sampling of a population 

(i.e., subjects) and a psychological process/behavior (i.e., stimuli/trials of a task/condition). 

Here we explore how sampling these two dimensions (i.e., subjects and trials) impacts 

parameter estimates and their precision. We then discuss how researchers can arrive at an 

efficient design given resource constraints.

1.1. Statistical efficiency

Statistical efficiency is a general metric of quality or optimization (e.g., keeping the standard 

error of an estimate small, while also conserving resources). One can optimize parameter 

estimation, a modeling framework, or an experimental design based on this quantity. A more 

efficient estimation process, model, or experimental design requires fewer samples than a 

less efficient one to achieve a common performance benchmark.

Mathematically, statistical efficiency is defined as the ratio of a sample’s inverse Fisher 

information to an estimator’s variance; it is dimensionless and has values between 0 

and 1. However, since the model’s Fisher information is often neither known nor easily 

calculated, here we will refer more informally to a quantity we call “statistical efficiency” or 

“precision” of an effect estimate as just the inverse of the standard error. This quantity is not 

dimensionless and is not scaled to model information, but it conveys the relevant aspects of 

both the mathematical and non-technical meanings of “efficiency” for the estimation of an 

effect. Alternatively, we also refer to the standard error, which shares the same dimension as 

the underlying parameter, as a metric for the uncertainty about the effect estimation.

Sample size is directly associated with efficiency. As per the central limit theorem, a more 

efficient experimental design requires a reasonably large sample size to achieve a desired 

precision of effect estimation and to reduce estimation uncertainty. For example, with n 

samples x1, x2, …, xn from a hypothetical population, the sample mean μ = 1
n ∑i = 1

n xi

asymptotically approaches the population mean. As a study’s sample size n increases, 

the efficiency typically improves with an asymptotic “speed” of n (an inverse parabola). 

A related concept is statistical power, which, under the conventional framework of null 

hypothesis significance testing, refers to the probability that the null hypothesis is correctly 

rejected, given that there is a “true” effect, with a certain sample size. Here, we focus on 

efficiency or uncertainty instead of power to broaden our discussion to a wider spectrum of 

modeling frameworks.
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1.2. Subject sample size in neuroimaging

Statistical inferences are contingent on the magnitude of an effect relative to its uncertainty. 

For example, if the average BOLD response in a brain region is 0.8% signal change with a 

standard error of 0.3%, the statistical evidence is considered strong for the effect of interest. 

On the other hand, if the standard error is 0.6%, we would conclude that the statistical 

evidence for this effect is lacking because the data cannot be effectively differentiated from 

noise. Now if the standard error of 0.6% is based on data from only 10 participants, we may 

consider collecting more data before reaching the conclusion of a lack of strong evidence for 

the effect.

It is surprisingly difficult to predetermine an appropriate sample size in neuroimaging. In 

the early days a small sample size might have efficiently addressed many questions on how 

cognitive operations are implemented in the brain (e.g., mean brain activation in specific 

regions with large effect magnitudes alongside relatively low uncertainty). For example, 

based on data from somatosensory tasks, one study indicated that as little as 12 subjects 

were sufficient to detect the desired group activation patterns (without considering multiple 

testing adjustments) (Desmond and Glover, 2002) and 24 subjects would be needed to 

compensate for the multiplicity issue. A few power analysis methodologies have been 

developed over the years that are intended to assist investigators in choosing an appropriate 

number of subjects (e.g., fMRIPower (Mumford, 2012), Neurodesign (Durnez et al., 2016), 

Ostwald et al., 2019). Yet, even with these tools, power analyses are rarely performed in 

neuroimaging studies according to a recent survey (Szucs and Ioannidis, 2020): the median 

subject number was 12 among the 1000 most cited papers during 1990–2012, and 23 

among the 300 most cited papers during 2017–2018; only 3–4% of these reported pre-study 

power analyses. In fact, unless required for a grant application, most experiments are simply 

designed with sample sizes chosen to match previous studies.

Determining requisite sample sizes for neuroimaging studies is challenging. First, there is 

substantial heterogeneity in effect sizes across brain regions; thus, a sample size might be 

reasonable for some brain regions, but not for others. Second, the conventional modeling 

approach (massively univariate analysis followed by multiple testing adjustment) is another 

complicating factor. Because of the complex relationship between the strength of statistical 

evidence and spatial extent, it is not easy to perform power analysis while considering the 

multiplicity issue (e.g. permutation-based adjustment). Third, imaging analyses inherently 

involve multiple nested levels of data and confounds, which presents a daunting task for 

modeling. For instance, a typical experiment may involve several of these levels: trials, 

conditions (or tasks), runs, sessions, subjects, groups and population. Finally, there are 

also practical, non-statistical considerations involved, such as feasibility, costs, scanner 

availability, etc. Even though recent work has led to better characterizations of FMRI data 

hierarchy (Westfall et al., 2017; Chen et al., 2020; Chen et al., 2021), challenges of sample 

size determination remain from both modeling and computational perspectives.

Theoretically, a large subject sample size should certainly help probe effects with a small 

magnitude and account for a multitude of demographic, phenotypic and genetic covariates. 

As such, several big data initiatives have been conducted or are currently underway, 

including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development 
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(ABCD), Alzheimer’s Disease Neuroimaging Initiative (ADNI), Enhancing NeuroImaging 

Genetics through Meta Analysis (ENIGMA), UK Biobank Brain Imaging, etc. Undoubtedly, 

such initiatives are valuable to the research community and will continue to provide unique 

opportunities to explore various aspects of cognition, emotion and mental health. On the 

other hand, these initiatives come with high expenditure, infrastructure requirements and 

analytical hurdles (different sites/scanners/software). Is ‘big data’ really the best or only 

solution to achieving high precision for small-to-medium effects? For research questions 

where resources are limited (e.g., rare diseases, non-human primates), recruiting a large 

number of potential participants may be out of the question. In these cases, one may wonder 

what alternative strategies are available to achieve similar or even higher statistical efficiency 

with the limited number of participants or resources available.

In setting up an experiment, the choice of subject sample size is a trade-off between 

statistical and practical considerations. On the one hand, estimation efficiency is assumed to 

increase with the sample size; thus, the larger the subject sample size, the more certain the 

final effect estimation. On the other hand, costs (of money, time, labor etc.) increase with 

each added “sample” (i.e., subject); funding grants are finite, as is scanner time and even 

the research analyst’s time. Even though a cost-effectiveness analysis is rarely performed 

in practice, this trade-off does play a pivotal role for most investigations as resources are 

usually limited.

1.3. A neglected player: Trial sample size

The number of trials (or data points, in resting-state or naturalistic scanning) is another 

important sampling dimension, yet to date it has been understudied and neglected in 

discussions of overall sample size. Just as the number of subjects makes up the sample 

size at the population level, so does the number of trials serve as the sample size for 

each condition or psychological process/behavior. As per probability theory’s law of large 

numbers, the average effect estimate for a specific condition should asymptotically approach 

the expected effect with increased certainty as the number of trials grows. Trial sample 

size often seems to be chosen for convention, practical considerations and convenience (i.e., 

previous studies, subject tolerance). As a result, the typical trial sample size in the field is 

largely in the range of [10, 40] per condition (Szucs and Ioannidis, 2020).

It seems to be a common perception that the number of trials is irrelevant to statistical 

efficiency at the population level, other than the need to meet a necessary minimum sample 

size, as evidenced by the phrase “sample size” in neuroimaging, by default, tacitly referring 

to the number of subjects. We hypothesize that the lack of focus on trial sample size likely 

results from the following two points:

• Trial-level effects are usually of no research interest. Often investigators are 

interested in condition-level effects and their comparisons. Therefore, trial-level 

effects generally attract little attention.

• The conventional modeling strategy relies on condition-level summary 
statistics. The conventional whole-brain, voxel-wise analysis is usually 

implemented in a two-step procedure: first at the subject level where trial-level 
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effects are all bundled into one regressor (or into one set of bases) per condition; 

and second at the population level where cross-trial variability is invisible. Such 

a two-step approach avoids the computational burden of solving one “giant”, 

integrative model. However, as a result the cross-trial variability, as part of the 

hierarchical integrity of the data structure, is lost at the population level. As the 

ultimate attention is usually paid to population-level inferences, it is this focus 

on condition-level effects that leads to the unawareness of the importance of both 

trial-level variability and trial sample size.

We note that the main goal of most FMRI studies is to generalize the results, to both the 

condition and population levels. In order to achieve these dual goals, a study must include a 

sufficient number of samples, in terms of both trials and subjects, respectively. In practice, 

studies tend to focus mainly on population-level generalizability, and therefore most efforts 

have gone into increasing subject sample sizes (e.g., the increasing number of “big data” 

initiatives), while the trial sample size is typically kept at some minimal level (e.g., 20–40). 

As a result, we would expect the generalizability at the condition level to be challenging, in 

comparison to that of the population level. Condition-level generalizability is further reduced 

by the common modeling practice of ignoring cross-trial variability (Westfall et al., 2017; 

Chen et al., 2020).

A small number of studies have chosen a different strategy for experimental designs with 

focus on scanning a few subjects for an extended period of time, such as dozens of runs 

(e.g., Gonzalez-Castillo et al., 2012; Gordon et al., 2017), in order to obtain a large number 

of trials. These are variously depicted as “dense”, “deep” or “intense” sampling in the 

literature. Some argued that such a sampling strategy would be more advantageous due to its 

avoidance of potentially large cross-subject variability (Naselaris et al., 2021). Such studies 

should have the advantage of having high generalizability at the condition level. However, in 

practice, these studies tend to include only one or a few subjects, so that generalizability to 

the population-level would be limited.

1.4. The current study

The main goal of our current investigation is to examine the impact of trial sample size 

(i.e., stimulus presentations) per condition alongside the number of subjects on statistical 

efficiency. On the one hand, the investigator does typically consider the number of trials or 

stimuli as a parameter during experimental design, but it is largely treated as a convenient 

or conventional number which the subject is able to tolerate within a scanning session. On 

the other hand, from the modeling perspective, the trials are usually shrouded within each 

condition-level regressor in the subject-level model under the assumption that all trials share 

exactly the same BOLD response. Furthermore, only the condition-level effect estimates are 

carried over to the population-level model; therefore, trial sample size does not appear to 

have much impact at the population level. However, statistically speaking the trial sample 

size should matter, because increasing the number of trials in a study increases the amount 

of relevant information embedded in the data. Addressing this paradox is the focus of this 

paper, along with the issue of study generalizability.
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A related question is: can the information associated with trial sample size be leveraged 
statistically to improve estimation efficiency, in the same way that increasing the number 
of subjects would? It is certainly the case that increasing the number of trials in a study 

increases the amount of relevant information to be studied. Thus, do trial sample size and 

cross-trial variability play a role in statistical efficiency? And if so, how big of a role 

compared to the subject sample size?

In the current study, we adopt a hierarchical modeling framework, and utilize both 

simulations and an experimental dataset to show that trial sample size is an important 

dimension when one optimizes an experimental design. Importantly, we demonstrate that the 

“trial number” dimension has nearly the same weight and influence as its “subject number” 

counterpart, a fact which appears to have been underappreciated and underused in the field 

to date. As a result, we strongly suggest that the number of trials be leveraged alongside the 

number of subjects in studies, in order to more effectively achieve high statistical efficiency. 

In our modeling efforts, we compare the summary statistics approach of condition-level 

modeling (CLM) directly to a hierarchical framework of trial-level modeling (TLM) that 

explicitly takes cross-trial variability into consideration at the population level to examine 

the impact of cross-trial variability. We aim to provide a fresh perspective for experimental 

designs, and make a contribution to the discussion of ‘big data’ versus ‘deep scanning’ 

(Webb-Vargas et al., 2017; Gordon et al., 2017).

2. Trial-level modeling

First, we describe the formalization of our modeling framework (for convenient reference, 

several of the model parameters are summarized in Table 1). To frame the data generative 

mechanism, we adopt a simple effect structure with a group of S subjects who complete two 

task conditions (C1 and C2) while undergoing FMRI scanning. Each condition is exemplified 

with T trials (Fig. 1). We accommodate trial-level effects with a focus on the contrast 

between the two conditions, as is common in task FMRI. As opposed to the common 

practice of acquiring the condition-level effect estimates at the subject level, we obtain 

the trial-level effect estimates ycst of the cth condition (Chen et al., 2020) and assume 

the following effect formulation with c, s and t indexing conditions, subjects and trials, 

respectively:

ycst N μc + πcs, στ2 ;
π1s
π2s

N 0
0 , σπ1

2 ρσπ1σπ2
ρσπ1σπ2

σπ1
2

;

c = 1, 2; s = 1, 2, …, S; t = 1, 2, …, T ;

(1)

where μc codes the population-level effect of the cth condition, πcs indicates the deviation 

of sth subject from the population effect μc under the cth condition, σπc
2  and στ2 are the cross-

subject and within-subject cross-trial variances, respectively, and ρ captures the subject-level 

correlation between the two conditions.

One advantage of a trial-level formulation is that it allows the explicit assessment of the 

relative magnitude of cross-trial variability. For the convenience of discussion, we assume 
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homoscedasticity between the two conditions: σπ1 = σπ2 = σπ.2 Specifically, the ratio of 

cross-trial to cross-subject variability can be defined as,

Rv = στ
σπ

. (2)

Large trial-to-trial variability has been extensively explored (He and Zempel, 2013; Trenado 

et al., 2019; Wolff et al., 2021). Strong evidence based on electroencephalography indicates 

that the substantial cross-trial variability is mainly caused by the impacts of ongoing 

dynamics spilling over from the prestimulus period that dwarf the influence of the trial 

itself (Wolff et al., 2021). Furthermore, recent investigations show that the variability ratio 

Rv appears often to be greater than 1 and up to 100. For example, Rv ranged from 10 

to 70 for the contrast between congruent and incongruent conditions among 12 regions 

in a classic Flanker FMRI experiment (Chen et al., 2021). In a reward-distraction FMRI 

experiment, the Rv value ranged from 5 to 80 among 11 regions (Chen et al., 2020). 

Even for behavioral data, which are likely significantly less noisy than neuroimaging data, 

the cross-trial variability is large, with Rv between 3 and 11 for reaction time data in a 

reward-distraction experiment (Chen et al., 2020), cognitive inhibition tasks such as the 

Stroop, Simon and Flanker task, digit-distance and grating orientation tasks (Rouder et al., 

2019; Chen et al., 2021).

What role, if any, does trial sample size ultimately play in terms of statistical efficiency? 

Study descriptions typically do not discuss the reasons behind choosing their number 

of trials, likely a number selected by custom or convenience rather than for statistical 

considerations. Under the conventional analytical pipeline, each condition-level effect is 

estimated at the subject level through a regressor per condition. To examine differences 

between the conventional summary statistics pipeline through CLM and TLM as formulated 

in (1), we lay out the two different routes of obtaining condition-level effect estimates from 

subject-level analysis through time series regression: (A) obtain the cth condition-level effect 

ycs through a regressor for all the trials under the cth condition; (B) estimate the trial-level 

effects ycst using one regressor per trial and then obtain the condition-level effect through 

averaging,

ycs ⋅ = 1
T ∑t = 1

T ycst . (3)

Pipeline (A) includes the following two-step process: first average trial-level regressors 

and then perform CLM through time series regression. In contrast, pipeline (B) can be 

considered as swapping the two steps of averaging and regression in pipeline (A): regression 

occurs first (i.e., TLM), followed by averaging the trial-level effect estimates. As the two 

processes of averaging and regression are not operationally commutative, ycs and ycs are 

generally not the same. However, with the assumption of an identical and independent 

distribution of subject-level cross-trial effects,3 the latter can be a proxy when we illustrate 

2The subsequent discussion would still largely hold in the generic case of heteroscedasticiy σπ1 ≠ σπ2 .
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the variability of condition-level effect estimates (and later when we perform simulations of 

CLM in contrast to TLM):

V ar ycs ⋅ ≈ V ar ycs ⋅ = V ar 1
T ∑t = 1

T ycst = σπ2 + στ2

T . (4)

The variance expression (4) indicates that even though trial-level effects are assumed to be 

the same under the conventional CLM pipeline, cross-trial variability στ2 is implicitly and 

almost surreptitiously carried over to the population level. The important implication is that 

while the trial sample size T does not explicitly appear in the conventional CLM at the 

population level, it does not mean that its impact would disappear; rather, because of the way 

that the regressors are created, two implicit but strong assumptions are made: 1) all trials 

elicit exactly the same response under each condition, and 2) the condition-level effect ycs is 

direct measurement without any sampling error.

We now derive the expression for the standard error for the estimation of the contrast 

between the two conditions at the population level. Directly solving the hierarchical model 

(1) would involve numerical iterations through, for example, restricted maximum likelihood. 

Fortunately, with a relatively simple data structure with two conditions, we can derive an 

analytic formulation that contains several illuminating features. With the notions

yc ⋅ ⋅ = 1
ST ∑s = 1

S ∑t = 1
T ycst = 1

S ∑s = 1
S ycs ⋅

μ = μ2 − μ1,

and the variance expression (4), we have

Var yc ⋅ ⋅ = 1
S Var ycs ⋅ =

σπ2
S +

στ2
ST ,

Cov y1 ⋅ ⋅ , y2 ⋅ ⋅ = Cov 1
S ∑s = 1

S y1s ⋅ , 1
S ∑s = 1

S y2s ⋅

= 1
S2Cov ∑s = 1

S μ1 + π1s , ∑s = 1
S μ2 + π2s

= 1
S2 ∑s = 1

S Cov π1s, π2s =
ρσπ2
S .

Thus, the contrast between the two conditions at the population level can be expressed as

y2 ⋅ ⋅ − y1 ⋅ ⋅ N μ, σ2 , (5)

3While independence is likely an oversimplification, in practice the deviations from this assumption likely would not impact the 
results discussed here much.
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where the variance σ2 can be derived as

σ2 = Var y2 ⋅ ⋅ − y1 ⋅ ⋅ = Var y2 ⋅ ⋅ + Var y1 ⋅ ⋅ − 2Cov y1 ⋅ ⋅ , y2 ⋅ ⋅

= 2(1 − ρ)σπ2

S + 2στ2

ST = 2(1 − ρ)σπ2

S 1 + Rv2
(1 − ρ)T .

(6)

Importantly, the explicit expression for σ2 above allows us to explore the contributions of 

various quantities in determining the statistical efficiency for the contrast μ. We note that, in 

deriving the variance σ2, the average effects at the condition level, y1s and y2s, are assumed 

to have their respective conditional distributions; thus, trial sample size T and cross-trial 

variability στ directly appear in the formulation (6). In contrast, their counterparts in the 

conventional CLM pipeline, y1s and y2s, would be treated as direct measurements at the 

population level, leading to a one-sample (or paired) Student’s t-test. Below, in simulations 

we will use the one-sample t-test as an approximation for the conventional CLM pipeline 

and further explore this relationship. We note that it is because of this simplification in the 

CLM pipeline, that the impact of trial sample size T and cross-trial variability στ has been 

historically hidden from close examination.

The variance formula (6) has important implications for the efficiency of an experimental 

design or power analysis. One appealing aspect is that, when parameters ρ, σπ and στ are 

known, we might be able to find the required sample sizes S and T to achieve a designated 

uncertainty level σ. However, we face two challenges at present: the parameters ρ, σπ and 

στ are usually not empirically available; even if they were known, one cannot uniquely 

determine the specific sample sizes. Nevertheless, as we elaborate below, we can still gain 

valuable insight regarding the relationship between the subject and trial sample sizes in 

an experimental design, as well as their impact on statistical efficiency along with the 

parameters ρ, σπ and στ.

The variance expression (6) immediately reveals two important aspects of the two sample 

sizes. First, statistical efficiency, as defined as the reciprocal of the standard error σ, is an 

inverse parabolic function in terms of either the subject sample size σ−1 ∝ S  or the trial 

sample size σ−1 ∝ T . This implies that the efficiency of an experimental design improves 

as either sample size increases. However, this inverse parabolic relationship also means that 

the marginal gain of efficiency diminishes when S (or T) increases. In addition, subject 

sample size makes a unique contribution in the first term 2(1 − ρ)
σπ2
S , which represents the 

cross-subject variance. The two sample sizes, S and T, combine symmetrically in the second 

term 
2στ2
ST , which is the cross-trial variance. In the general case that the first term is not 

negligible compared to the second, we might say that the subject sample size influences σ2 

more than the trial sample size.

We can rearrange the variance formula (6) and express T as a function of S, with the other 

quantities treated as parameters:

Chen et al. Page 9

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



T = 2Rv
2σπ2/σ2

S − 2(1 − ρ)σπ2/σ2 . (7)

This expression shows more about the interplay between the two sample sizes within the 

σ estimation: namely that they have a hyperbolic relationship.4 This means that one can 

“trade-off” between S and T values for a given uncertainty σ, while all other parameters 

remain constant. If σπ, ρ and Rv were known, one could use the above expression to find 

possible combinations of S and T that are associated with a desired standard error σ.

Another important feature of the hyperbolic relation (7) is the presence of two asymptotes: 

one at T = T* = 0, and one where the denominator is zero at

S* = 2(1 − ρ)σπ2

σ2 . (8)

Each asymptote sets a boundary for the minimum number of respective samples required to 

have a given statistical efficiency (given the other parameters). For the number of trials, the 

requirement that T > T* merely means there must be some trials acquired. For the number of 

subjects, S* is typically nonzero, so the requirement S > S* can be a meaningful constraint.

These features and other relations within the expressions (6)-(7) can be appreciated with a 

series of example curves in Fig. 2. Each column has a fixed ρ, and each row has a fixed 

Rv. Within each panel, each curve is only defined where S > S* and T > T*, with the 

vertical asymptote for each curve shown as a dotted line (and the horizontal asymptote is the 

S-axis). Each solid curve displays the set of possible (S, T) combinations that would result in 

designs having the same σ, defining an isocontour of statistical efficiency. Thus, the possible 

trade-offs between S and T for a given σ are demonstrated along a curve. In terms of the 

“balance” of trade-offs between S and T, there are a few items to note:

1. As noted above, S* sets the minimum number of subjects required to be able to 

reach an uncertainty level σ.

2. When one is near the horizontal T = T* = 0 asymptote, there is very little 

marginal gain in σ by increasing the subject sample size S; this scenario 

corresponds to current “big data” initiatives collecting a large pool of subjects. 

Inversely, when approaching the vertical asymptote, we emulate the other 

extreme, the scenario of “deep scanning” with a lot of trials in only a few 

subjects, statistical efficiency barely increases when increasing the trial number. 

However, as indicated by the previous point, one would have to recruit a 

minimum number of subjects, S*, to reach a designated statistical efficiency 

for population-level analysis (Fig. 2). In practice, the subject sample size in most 

deep scanning studies is likely far below the threshold S*.

4The expression (7) maps directly into the general expression of a hyperbola with variables x and y: y = A + B∕(x − C), where the 
other parameters are constants that scale or shift the relationship. It could also be viewed in the symmetric hyperbolic form xy = D 
through the transformation y = T and x = S − C, where C and D are again some parameters. In these formulations, C plays the same 
role as a shift of the curve, which is discussed in the main text as the important parameter S* in (8).

Chen et al. Page 10

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Within the asymptotic region, the isocontour is symmetric around the line T − T* 

= S − S*, which simplifies here to T = S − S*; that is, if (S, T) is a point on an 

isocontour, then so is (T + S*, S − S*).

4. Because T* = 0 and S* > 0, the subject sample size S tends to have slightly more 

impact on reaching a statistical efficiency than the trial sample size T; however, 

as S* → 0, that difference decreases. For a given S*, the amount of subject 

“offset” also matters less as Rv increases: the isocontour moves further from the 

asymptote, so the values being traded off become relatively larger, diminishing 

the relative impact of S*. That is, in both cases, the T = S − S* relation from 

the previous point becomes well approximated by T ≈ S, and (S, T) is essentially 

exchangeable with (T, S).

5. Combining the previous two points, once paying the “fixed cost” of adding the 

minimal number of subjects S*, one can equivalently trade-off the remaining 

number of samples between S and T, while maintaining a constant uncertainty σ. 

Or, viewed another way, in gauging the relative importance of each sample size 

to reach a specific uncertainty σ, the number of subjects has an “extra influence” 

of magnitude S* over the trial sample size T.

6. As trial number increases and T → ∞, the lowest uncertainty σ that could 

be achieved would be given by the first term in the variance expression (6): 

2(1 − ρ)S−1σπ.

7. The gray dashed line in Fig. 2 shows the trajectory of optimized (Sopt, Topt) 

pairs, each defined for the constraint of having a fixed total number of samples 

(Appendix B). As Rv increases, the optimal trajectory approaches Sopt ≈ Topt. 

This is in line with the exchangeability or symmetry between the two sample 

sizes elaborated above in 4).

One can also observe from Fig. 2 the role that the correlation ρ plays in the estimation of σ 
and the hyperbolic relation between S and T. Namely, ρ does not affect the shape or slope 

of the hyperbola, but instead it just assists in determining the location of the S* asymptote, 

which can be appreciated from the expressions (6)-(8). In other words, the correlation ρ only 

changes the impact of the cross-subject variance component (the first term 2(1 − ρ)
σπ2
S  in (6)) 

but not that of the cross-trial variance component (the second term 
2στ2
ST  in (6)). All other 

parameters being equal, as ρ increases, the minimal number of subjects S* for a study design 

decreases. This makes intuitive sense: the smaller the correlation (including anticorrelation) 

between the two conditions, the more the hyperbola is shifted rightward (and thus the more 

difficult to detect the contrast between the two conditions). Additional views on the role of ρ 
are provided in Appendix B, in an idealized optimization case.

Finally, we note that we could express S* explicitly as a function of S and T by taking the 

expression (8) and substituting the value of σ2 formulation (6). This results in the following 

relationship of S* with the two sample sizes:
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S* = S

1 + Rv2

(1 − ρ)T

.
(9)

With S* expressed as a function of (S, T), one could rearrange this expression for T on the 

left-hand side, and calculate isocontours with S* held constant; these would have exactly the 

same shape and properties as those for uncertainty in Fig. 2. This is not surprising because 

there is a one-to-one correspondence between S* and σ, as shown in the S* definition (8).

2.1. Limit cases of trial-level modeling

To further understand the roles of various parameters, we consider different scenarios based 

on the variability ratio Rv and the number of trials T. First, we start with the last expression 

in the variance formulation (6), in particular the additive terms in square brackets. The 

second term is small when the variance ratio Rv is relatively low compared to the trial 

sample size T, producing this limiting behavior:

Case1 :Rv ≪ (1 − ρ)T σ2 ≈ 2σπ2

S (1 − ρ) S ≈ 2(1 − ρ)σπ2

σ2 = S* . (10)

Thus, in the case of low Rv (and/or large T), the second component in the full variance 

expression could be practically ignored, and the standard error σ essentially depends only 

on the number of subjects, σ ∝ (S)−1∕2; it is independent of the trial sample size T as well 

as cross-trial variance στ2. For example, with 20 ≤ T ≤ 200 and −0.5 ≤ ρ ≤ 0.5, this would 

require that Rv be around 1 or less. In such a case, the isocontours would be approximately 

vertical lines, essentially matching the full contours of the first two rows in Fig. 2; and S is 

approximately the asymptotic value S*. This relation also includes parts of the plots in the 

last three rows, as the isocontours become approximately vertical in the asymptotic limit of 

the trial number T reaching the hundreds or above.

Next, we consider the opposite limiting case. If the variability ratio Rv is relatively high 

compared to the trial sample size T, then the variance expression (6) becomes:

Case 2:Rv ≫ (1 − ρ)T σ2 ≈ 2
S

στ2

T ST ≈ 2στ2

σ2  and S* ≈ 0. (11)

The expression for σ2 shows that standard error can be expressed independent of the cross-

subject variability σπ and is dependent only on the cross-trial variability στ Rv. Additionally, 

we note that the standard error σ depends on both sample sizes equally, with an asymptotic 

speed of σ ∝ (ST)−1∕2. As a corollary of the relationship (9), we could say that the relative 

impact of S* has become negligible, and so that the trade-off relationship T = S − S* is 

well approximated by the exchange T ≈ S. Thus, the two sample sizes have equal impact on 

reaching an isocontour and can be equivalently traded off for each other. This is illustrated in 

all the isocontours except for σ = 0.125, 0.25 with ρ = 0.5 and Rv = 5 or all the isocontours 

except for σ = 0.125 (blue) with ρ = 0.5 and Rv = 10, 50 in Fig. 2. In practice, for typical 
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study designs that have 20 ≤ T ≤ 200 and ρ = 0.5, this limiting case would apply if Rv were 

approximately greater than, for example, 20 or 100 for the respective limits.

We comment briefly on the intermediate scenario, where Rv
2 has a moderate value compared 

to T. In this case, both sample sizes play some extent of role in the uncertainty σ. However, 

as noted above, the number of subjects plays a slightly larger role than the number of trials. 

This is observable by the presence of a non-negligible S* which offsets the (S, T) trade-off. 

In Fig. 2, relevant contours for this intermediate case are: σ = 0.125 (blue) with Rv = 5, 10, 

50 and those of σ = 0.25 (blue).

We also highlight one feature of the variability ratio Rv. From the above two limit cases for 

σ, we see that Rv has an important scale, based on the number of trials. That is, it is the size 

of Rv relative to T  that determines much of the expected behavior of the standard error, and 

even whether it has any meaningful dependence on the number of trials—in Case 1, σ was 

essentially independent of T. The correlation ρ plays a role in this as well, but typically T is 

something that the experimenter controls more directly.

To summarize, we note that subject sample size S always plays a crucial role in achieving 

an adequate level of statistical efficiency. In contrast, the impact of trial sample size T can 

be much more subtle. At one extreme, its role may be negligible if Rv is around 1 or less 

for most trial sample sizes currently used in practice (Case 1); in fact, this limit case is 

what is implicitly assumed when researchers select a small number of trials and accounnt 

for all trials via a single regressor under condition-level modeling. However, we emphasize 

that empirical data indicates that this low cross-trial variability scenario rarely occurs. At the 

other extreme, the trial sample size is almost as important as its subject counterpart if Rv is 

large relative to T (Case 2). In between these two limits lies the intermediate scenario where 

trial sample size is less important than subjects, but its influence remains sizeable. Based on 

the empirical values of Rv, we expect that most—if not all—experimental data will likely 

fit into the two latter cases, with T being an important consideration. This has the beneficial 

consequence for study designs that the trial sample size can be utilized to meaningfully 

trade-off with the subject sample size per the variance formulation (6).

3. Simulations

To further explore the impact of subject and trial sizes, we use numerical simulations to test 

and validate the theoretical reasoning laid out above.5 Suppose that trial-level effects ycst are 

generated through the model formulation (1) with population-level effects of μ1 = 0.5, μ2 = 

1.0 and a cross-subject standard deviation σπ = 1, all in the typical BOLD units of percent 

signal change. Simulations for five sets of parameters were conducted:

1. five subject sample sizes: S = 20, 40, 60, 80, 180

5Though, on a developmental note: the seeds of this paper originally sprouted from some simulations that investigated different 
modeling behavior as the number of trials was changed. The observation of interesting and unexpected patterns led to an analytic 
investigation, seeking to understand what was happening on theoretical grounds. Thus, these simulations were developed prior to 
from the analytic understanding and not created simply to prove the preceding equations. And, for those of us who are typically 
theoreticians, it has also been good to have a reminder of the power of experimental and simulation work.
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2. five trial sample sizes: T = 20, 40, 60, 80, 180

3. five cross-trial standard deviations: στ = 1, 10, 20, 50, 100

4. five subject-level correlations: ρ = 0.1, 0.3, 0.5, 0.7, 0.9

5. two modeling approaches: trial-level (TLM) and condition-level (CLM).

With the cross-subject standard deviation set to σπ = 1, the five trial samples sizes 

correspond to variability ratios of Rv = 1, 10, 20, 50, 100. With the population-level contrast 

μ = μ2 − μ1 = 0.5, the theoretical standard error is generally described by the expression (6), 

approaching the asymptotic expressions in (10) and (11) in some cases of Rv and T . The 

various combinations of parameters lead to 5 × 5 × 5 × 5 × 2 = 1, 250 different cases, each 

of which was repeated in 1000 iterations (with different random seeds).

To evaluate the simulated models, we define the following quantities for investigation. For 

example, for model parameters such as the contrast and its standard error, we calculate 

the mean (or median) and standard error of each of these two estimated parameter values 

across 1000 iterations. Firstly, the point estimate of a parameter is considered unbiased 
when the expected mean of the sampling distribution is equal to the population value; for 

the present simulations, this would be the case if the mean of the estimated contrast is 

approximately μ = μ2 − μ1 = 0.5 across the iterations. Secondly, the uncertainty information 

for each parameter is measured in the form of 95% quantile interval. We note that the 

uncertainty for the effect (i.e., contrast) is numerically obtained from the repeated sampling 

process while the point estimate for the standard error of the effect is assessed per the 

respective hierarchical model. Thirdly, we validate the standard error (or efficiency) of the 

effect estimate per the formulation (6). Finally, we investigate the presence of a hyperbolic 

relationship between the two sample sizes of subjects and trials.

Simulation findings are displayed in Figs. 3, 4, 5 and 6. Each plot shows a different way of 

“slicing” the large number of simulations, with the goal of highlighting interesting patterns 

and outcomes. Each plot shows results with correlations between the two conditions of ρ = 

0.5, but the patterns and trends are quite similar for other values of ρ, so there is no loss of 

generality by simply assuming ρ = 0.5. As noted above, the formula (8) and Fig. 2 show that 

changing ρ typically affects the value of S* and hence the location of the vertical asymptote, 

much more than the shape of the isocontours themselves.

We summarize some of the main findings from the simulations, which can be observed 

across the figures:

1. Effect estimation is unbiased, but its uncertainty varies. As shown in Figs. 3 

and 4, unbiased estimation was uniformly obtained at the simulated contrast of μ 
= μ2 − μ1 = 0.5 from both TLM and CLM. However, the estimation uncertainty, 

as indicated by each 95% highest density interval (vertical bar) among 1000 

iterations, is noticeably different across simulations. In particular, uncertainty 

decreases (larger bars) as Rv increases and improves (smaller bars) when the trial 

or subject sample size or both increase. TLM and CLM rendered virtually the 

same effect estimates.
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2. The standard error of effect estimation depends strongly on three factors: 
variability ratio, trial and subject sample sizes. Figs. 5 and 6 show the 

standard error σ estimates from the simulations. The standard error increases 

with Rv, and it decreases as either T or S (or ST) increases. Specifically, the 

median σ estimates from the simulations match largely well with the theoretical 

expectations, with TLM producing a median closer to the predictions than CLM, 

as well as a smaller percentile spread. The uncertainty of the effect estimation 

for μ, as indicated by the 95% quantile interval (error bar) in Figs. 3 and 4, 

was obtained through samples across 1000 iterations. On the other hand, the 

standard error estimates for σ, another indicator of uncertainty for the effect 

estimation of μ as shown in Figs. 5 and 6, were analytically assessed from the 

associated model. Nevertheless, these two pieces of uncertainty information for 

effect estimation are comparable from each other: the 95% quantile intervals in 

Figs. 3 and 4 are roughly two times the standard error estimates for σ in Figs. 5 

and 6.

3. The hyperbolic relationship is empirically confirmed in simulations. The 

confirmation can be seen in the close overlap of the estimated uncertainty (blue 

for TLM and red for CLM in Figs. 5 and 6) versus the theoretical prediction 

(green). The hyperbolic relation between the number of trials and the number of 

subjects should allow one to trade-off S and T while keeping other parameters 

(e.g., statistical efficiency) constant. In addition, when the variability ratio is 

relatively large (e.g., Rv ≥ 10), this relationship also appeared to be validated in 

the symmetric pattern in these simulations—see the cyan and magenta boxes in 

Figs. 3 and 5, which highlight sets of cells that have roughly equal efficiency. In 

other words, with relatively large Rv, this trade-off is directly one-for-one with 

an approximate symmetry (Case 2 in Section 2.1); for smaller variance ratios, 

the hyperbolic relationship becomes more asymmetric and needs to trade-off a 

greater number of trials than subjects to keep an equal efficiency.

4. Optimizing both trial and subject sample sizes is critical to maximize 
statistical efficiency. What is an optimal way to reduce effect estimate 

uncertainty? Figs. 3 and 5 suggest that increasing S and T together is typically 

a faster way to do so than increasing either separately. For example, start in 

the lower left cell of Fig. 3, where S = T = 20. Note that moving to another 

cell vertically (increasing T) or horizontally (increasing S) leads to deceased 

uncertainty (smaller percentile bars). Moving either two cells up (increasing T by 

40) or two cells right (increasing S by 40) leads to similar uncertainty patterns. 

However, moving diagonally (increasing each of T and S by 20) leads to slightly 

more reduced uncertainty, and this property holds generally (and also for the 

standard error in Fig. 5). This is expected from the theoretical behavior of the 

hyperbolic relationship (6). In other words, these simulations reflect the fact that 

to maximize statistical efficiency of experimental design both sample sizes T and 

S should typically be increased.

5. The differences between trial-level and condition-level modeling are subtle. 
TLM and CLM rendered virtually the same effect estimates (Figs. 3 and 
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4). However, Figs. 5 and 6 show that CLM may result in some extent of 

underestimation of the standard error σ, as well as an increased uncertainty 

of σ (i.e., larger bars in red), in certain scenarios. The extent to which an 

underestimation may occur depends on three factors: Rv and the two sample 

sizes. Specifically, when cross-trial variability is very small (i.e., Rv ≲ 1), the 

underestimation of condition-level modeling is essentially negligible unless the 

trial sample size T is less than 40. On the other hand, when cross-trial variability 

is relatively large (i.e., Rv ≳ 20), the underestimation may become substantial 

especially with a small or moderate sample size (e.g., Rv = 50 with ≲ 50 

subjects or trials). In addition, the underestimation is more influenced by subject 

sample size S rather than trial sample size T. This observation of substantial 

underestimation when trial sample size is not large illustrates the importance of 

TLM and is consistent with the recent investigations (Westfall et al., 2017; Chen 

et al., 2020).

We reiterate that the problems with CLM are not limited to the attenuated 

estimation of standard error. They are also associated with increased uncertainty 

across the board (larger error bars in red, Figs. 5 and 6). On the other hand, 

some extent of overestimation of standard error occurred for TLM under the 

same range of parameter values (blue lines in Figs. 5 and 6). In addition, the 

uncertainty of the TLM standard error estimation is right skewed (longer upper 

arm of each error bar in blue, Figs. 5 and 6). This was caused by a small 

proportion of numerical degenerative cases that were excluded from the final 

tallies because of algorithmic failures under the LME framework when the 

numerical solver got trapped at the boundary of zero standard error. Although 

no simple solutions to the problem are available for simulations and whole-brain 

voxel-level analysis, such a numerical degenerative scenario can be resolved at 

the region level under the Bayesian framework (Chen et al., 2020).

4. Assessing the impact of trial sample size in a neuroimaging dataset

4.1. Data description

The dataset included 42 subjects (healthy youth and adults) and was adopted from two 

previous studies (Smith et al., 2020; Chen et al., 2021). During FMRI scanning, subjects 

performed a modified Eriksen Flanker task with two trial types, congruent and incongruent: 

the central arrow of a vertical display pointed in either the same or opposite direction of 

flanking arrows, respectively (Eriksen and Eriksen, 1974). The task had a total of 432 trials 

for each of the two conditions, administered across 8 runs in two separate sessions. Only 

trials with correct responses were considered in the analysis. Thus, there were approximately 

380 trials per condition per subject (350 ± 36 incongruent and 412 ± 19 congruent trials) 

after removing error trials.

Data processing was performed using AFNI (Cox, 1996). Details regarding image 

acquisition, pre-processing and subject-level analysis can be found in Appendix A. Effect 

estimates at the trial-level for correct responses in each condition were obtained with one 

regressor per trial for each subject using an autoregressive-moving-average model ARMA(1, 
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1) for the temporal structure of the residuals through the AFNI program 3dREMLfit (Chen 

et al., 2012). For comparison, effects at the condition level were also estimated through the 

conventional CLM approach using one regressor per condition via 3dREMLfit. The main 

contrast of interest was the comparison between the two conditions (i.e., incongruent versus 

congruent correct responses).

4.2. Assessing cross-trial variability across the brain

The top row of Fig. 7 A displays axial slices of the effect estimate of interest, the 

contrast “incongruent versus congruent”. The lower row displays the variability ratio Rv 

associated with the contrast, which was estimated at the whole-brain voxel level through the 

model (1) using the AFNI program 3dLMEr (Chen et al., 2013). Translucent thresholding 

was applied to the overlays: results with p < 0. 05 are opaque and outlined, and those 

with decreasing strength of statistical evidence are shown with increasing transparency. 

Substantial heterogeneity exists across the brain in terms of the relative magnitude of 

cross-trial variability Rv (with most high Rv ≳ 50 in low-effect regions). Fig. 7 B shows the 

distribution of the voxelwise variability ratio Rv for the FMRI dataset, which has a mode of 

20 and a 95% highest density interval [6, 86]. These Rv values are consistent with previous 

investigations of variability ratios in neuroimaging (Chen et al., 2021; Chen et al., 2020) 

and psychometric data (Rouder et al., 2019). Interestingly, many of the locations with high 

effect estimates (dark range and red) had relatively low variability ratios, Rv ≲ 20 (dark 

blue and purple colors). The regions of high contrast and strong statistical evidence (and 

low-medium Rv) include6 the intraparietal sulcus area, several visual areas, premotor eye 

fields and inferior frontal junction, which are likely involved in the task. Most of the rest of 

the gray matter, as well as white matter and cerebrospinal fluid, had notably higher Rv ≥ 50.

4.3. Impact of trial sample size

Next, we investigated the impact of increasing trial sample size using the same Flanker 

FMRI dataset. Four different trial sample sizes were examined, by taking subsets of the 

total number available “as if” the amount of scanning had been that short: 12.5% (≈ 48 

trials from the first run during the first session); 25% (≈ 95 trials from the first run of both 

sessions); 50% (≈ 190 trials from the first session); and 100% (≈ 380 trials). Two modeling 

approaches were adopted for each of the four sub-datasets with different trial sample sizes: 

TLM through the framework (1) using the AFNI program 3dLMEr, and CLM through a 

paired t-test using the AFNI program 3dttest++.

Fig. 8 shows the values of effect estimates and the associated statistics in a representative 

axial slice as the number of trials increases, along with the comparisons of TLM vs CLM. 

Regions showing a large, positive effect (hot color locations in Fig. 8A) are fairly constant in 

both voxelwise value and spatial extent across trial sample sizes. Additionally, they are quite 

similar between the two modeling approaches, as the differences for these regions (third 

column) are small, particularly as the trial sample size increases. In general, regions with 

negative effects exhibit the most change as trial sample size increases, moving from negative 

values of fairly large magnitude to values of smaller magnitude; most of these regions 

6As evaluated using the AFNI GUI’s “whereami” functionality, referencing the Glasser MNI atlas (Glasser et al., 2016)
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also show corresponding weak statistical evidence (cf. Fig. 8B). The statistical evidence for 

regions with positive effects incrementally increases with the number of trials (Fig. 8B). The 

difference in statistical evidence between TLM and CLM (third column) are expressed as a 

ratio, centered on zero: in regions with strong statistical evidence, differences are typically 

small in the center of the region, with some differences at the edges; in the latter case, CLM 

tends to render larger values, which is consistent with having an underestimated standard 

error σ for a similar effect estimate (which was observed in the simulations in Figs. 5 and 6).

Fig. 9 displays a direct comparison of changes in statistical evidence with increasing 

number of trials. For both modeling approaches, TLM and CLM, most of the regions 

with positive effects show notable increase in statistical evidence with trial sample size. 

In scenarios where the cross-trial variability is relatively large (Case 2; cf. Fig. 7), one 

would theoretically expect statistical efficiency to increase with the square root of the trial 

sample size. Here, the number of trials doubles between two neighboring rows, which 

results in roughly a 2 − 1 ≈ 40% increase in the statistical value (given fairly constant effect 

estimates). Several parts of the plot show approximately similar rates of increase for CLM 

and TLM.

5. Discussion

Careful experimental design is a vital component of a successful scientific investigation. An 

efficient design would effectively “guide” and “divert” the information to the collected data 

with minimal noise; an inefficient design might lead to a loss of efficiency, generalizability 

or applicability, or worse, a false confidence in the strength of the obtained results. Adequate 

sampling of both subjects and trials is crucial to detect a desired effect with proper statistical 

evidence in task-related neuroimaging but also behavioral tasks. Historically, efforts to 

improve statistical efficiency have mostly focused on increasing subject sample size. In 

contrast, increasing trial number has received substantially less attention and is largely 

neglected in current tools to assess statistical power. In fact, there is little guidance in 

FMRI research on how to optimize experimental designs considering both within-subject 

and between-subject data acquisition. The present investigation has demonstrated how vital 

it is to consider trial sample size for any FMRI study.

5.1. Importance of trial sample size for statistical efficiency

In this investigation we show that, due to the hyperbolic relationship between the two sample 

sizes, the trial number plays an active role in determining statistical efficiency in a typical 

task-based FMRI study. Currently, many investigators tend to assume that only the number 

of subjects affects the efficiency of an experimental design through an inverse-parabolic 

relationship. Thus, most discussions of efficiency improvement focus on increasing the 

subject sample size, and the number of trials is largely treated as irrelevant. Assuming a 

negligible role for trial sample size would be valid if the cross-trial variability was small 

relative to cross-subject variability (first two rows in Fig. 2). However, converging evidence 

from empirical data indicates that the cross-trial variability is usually an order of magnitude 

larger than its cross-subject counterpart. As a result, trial sample size is nearly as important 

as subject sample size. In other words, in order to improve the efficiency of an experimental 
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design, a large number of both trials and subjects would be optimal (see last three rows 

in Fig. 2). Alternatively, trial sample size can be utilized in a trade-off with the number of 

subjects to maintain similar design efficiency.

In practice, additional considerations such as cost, scanner time, habituation, subject fatigue, 

etc. will play an important role in a study design. These might affect the overall balance 

between the sample sizes of subjects and trials. For example, in a study of 10,000 subjects 

(such as the UK Biobank), it seems unfeasible to recommend having 10,000 trials per 

subject. Even if scan costs were covered for such a large number of trials, subject fatigue 

and habituation would mitigate the benefits of optimizing theoretical statistical efficiency. 

However, even for smaller scales in terms of number of trials, one could see efficiency 

benefits by having 100 versus 50 trials, for example. Hence, a positive note from the current 

investigation is that adding one more trial often would be more cost effective than adding 

one more subject; adding subjects is typically much more expensive than adding a bit 

more scan time. When a study includes a larger trial sample size, one might opt to tweak 

the design, such that multiple runs and/or multiple sessions are used to reduce fatigue. In 

summary, while additional practical considerations may make having roughly equal sample 

sizes unfeasible in some cases, most FMRI studies would benefit greatly from increasing the 

trial number.

The current work also sheds some light on the state of power analyses in neuroimaging. 

In theory, one could stick with the conventional practice in the larger field of psychology/

neuroscience of estimating a study’s power (i.e., largely estimating the required sample 

size given a certain effect size). It is more difficult to provide an optimization tool that 

could assist the investigator to achieve the most efficient experimental design. Westfall 

et al. (2014) offered a generic power analysis interface that could aid researchers in 

planning studies with subject and trial sample sizes for psychological experiments. While 

our analyses, simulations and example experiment have shown the importance of having an 

adequate trial sample size, optimizing these study parameters is practically impossible given 

the number of unknown parameters involved in psychological and neuroimaging studies. 

Nevertheless, similar to trade-offs that can be made in power analyses, our discussion here 

emphasizes the importance of being aware of the trade-off between the two sample sizes: 

one can achieve the same or at least similar efficiency through manipulating the two sample 

sizes to a total amount of scan time or cost, or increase the efficiency by optimizing the two 

sample sizes with least resource cost.

5.2. Trial-level versus condition-level modeling: Accounting for cross-trial variability

At present, most neuroimaging data analysis does not consider triallevel modeling of BOLD 

responses. Even in scenarios where trial-level effects are a research focus (e.g., machine 

learning), within-subject cross-trial variability has not been systematically investigated. 

Recent attempts to model FMRI task data at the trial level (Chen et al., 2021) have revealed 

just how large the variance across trials within the same condition can be—namely, many 

times the magnitude of between-subjects variance. Traditional analysis pipelines aggregate 

trials into a single regressor (e.g., condition mean) per subject via condition-level modeling. 

This pipeline relies on the assumption that responses across all trials are exactly the same, 
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and therefore the cross-trial variability is largely ignored. Interestingly, cross-trial variability 

is not even necessarily smaller for experiments that have sparse, repetitive visual displays 

(e.g., such as the Flanker task with simple arrow displays) compared to experiments which 

feature stimuli with more pronounced visual differences (e.g., smiling human faces with 

various “actors” who differ in their gender, age, race, and shape of facial features). Another 

potentially important aspect is the integration of multiple data modalities such as FMRI and 

EEG through hierarchical modeling (Turner et al., 2016). Similar challenges and proposals 

have also been discussed in psychometrics (Rouder and Haaf, 2019; Haines et al., 2020; 

Chen et al., 2021) as well as in other neuroimaging modalities such as PET (Chiang et al., 

2017), EEG (Cai et al., 2018; Rohe et al., 2019) and MEG (Cai et al., 2018).

Cross-trial variability appears largely as random, substantial fluctuations across trials, and it 

is present across brain regions with no clear pattern except bilateral synchronization (Chen 

et al., 2020). In other words, a large proportion of cross-trial fluctuations cannot be simply 

explained by processes such as habituation or fatigue. However, there is some association 

between trial-level estimates and behavioral measures such as reaction time and stimulus 

ratings when modeled through trial-level modeling at the subject level. The mechanisms 

underlying cross-trial fluctuations remain under investigation (e.g., Wolff et al., 2021).

To more accurately characterize the data hierarchy, we advocate for explicitly accounting for 

cross-trial variability through triallevel modeling. Another reason for this recommendation 

is conceptual because researchers expect to be able to generalize from specific trials 

to a category or stimulus type. Simply because trial-level effects are of no interest to 

the investigator does not mean that they should be ignored as commonly practiced. As 

demonstrated in our simulations, to support valid generalizability, we suggest using trial-

level modeling, especially when the trial sample size is small (i.e., 50–100 or less, Fig. 6) 

to avoid sizeable inflation of statistical evidence (or the underestimation of the standard 

error). It is worth noting that triallevel modeling presents some challenges at both the 

individual and population level. The computational cost is much higher, with a substantially 

larger model matrix at both the subject and population level. In addition, larger effect 

estimate uncertainty, outliers, and skewed distributions may occur due to high collinearity 

among neighboring trials or head motion; experimental design choices, such as the inter-trial 

interval, can be made to help reduce these issues. Recent investigations (Molloy et al. 

2018; Chen et al., 2020; Chen et al., 2021) provide some solutions to handle such complex 

situations under the conventional and Bayesian frameworks.

5.3. Beyond efficiency: Trial sample size for generalizability, replicability, power and 
reliability

Properly handling uncertainty, replicability and generalizability lies at the heart of statistical 

inferences. The importance of considering the number of trials in a study extends beyond 

statistical efficiency to other prominent topics in neuroimaging. In particular, statistical 
efficiency relates to the interpretation and perception of results within a single study, but trial 

sample size will also have important effects on the properties that a group of studies would 

have—for example, if comparing results within the field or performing a meta analysis.
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First, replicability within FMRI has been a recent topic of much discussion. This focuses on 

the consistency of results from studies that address the same research question separately, 

using independent data (and possibly different analysis techniques). Concerns over low 

rates of agreement across FMRI studies have primarily focused on the subject sample size 

(e.g., Turner et al., 2019). We note that replicability is essentially the same concept as 

uncertainty, which was discussed in Section 3: characterizing the spread of expected results 

across many iterations of Monte Carlo simulations mirrors the analysis similar datasets 

across studies. As shown in that section and in Figs. 5–6, increasing the number of trials 

plays an important role in decreasing uncertainty across iterations—and by extension, would 

improve replicability across studies. While some investigations of FMRI replicability have 

called for more data per subject (e.g., Nee, 2019), the present investigation provides a direct 

connection between the number of trials and uncertainty/replicability.

Generalizability is a related but distinct concept that refers to the validity of extending the 

specific research findings and conclusions from a study conducted on a particular set of 

samples to the population at large. Most discussions of generalizability in neuroimaging 

have focused on the sample size of subjects: having some minimum number of subjects to 

generalize to a population. However, FMRI researchers are often also interested in (tacitly, 

if not explicitly) generalizing across the chosen condition samples: that is, generalizing to 

a “population of trials” is also important. From the modeling perspective, generalizability 

can be characterized by the proper representation of an underlying variability through a 

distributional assumption. For example, under the hierarchical framework (1) for congruent 

and incongruent conditions, the cross-subject variability is captured by the subject-level 

effects π1s and π2s through a bivariate Gaussian distribution, while the cross-trial variability 

is represented by the trial-level effects through a Gaussian distribution with a variance 

στ2 In contrast, the common practice of condition-level modeling in neuroimaging can be 

problematic in terms of generalizability at the condition level due to the implicit assumption 

of constant response across all trials (Westfall et al., 2017; Chen et al., 2020), which 

contradicts the reality of large cross-trial variability.

For generalizability considerations, there should also be a floor for both subject and trial 

sample sizes as a rule of thumb. Various recommendations have been proposed for the 

minimum number of subjects, ranging (at present) from 20 (Thirion et al., 2007) to 100 

(Turner et al., 2018); these numbers are likely to depend strongly on experimental design, 

tasks, region(s) of interest (since effect magnitudes will likely vary across the brain), 

and other specific considerations. Similarly, no single minimum number of trials can be 

recommended across all studies, for the same reasons. Here, in a simple Flanker task 

we observed that the effect estimate fluctuated to some extent when the trial sample size 

changed from approximately 50 to 100 (see Fig. 8), although we note that the fluctuations 

were quite small in regions of strong statistical evidence. On the other hand, the same figure, 

along with Fig 9, shows that the statistical evidence largely kept increasing with the number 

of trials, even in regions that showed strong evidence at 50 trials.

Test-retest reliability can be conceptualized as another type of generalizability: namely, 

the consistency of individual differences when examined as trait-like measures including 
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behavior (e.g., RT) or BOLD response. Unlike population-level effects that are assumed to 

be “fixed” in a statistical model, test-retest reliability is characterized as the correlation of 

subject-level effects, which are termed as “random” effects under the linear mixed-effects 

framework. The generalizability of reliability lies in the reference of subject-level effects 

relative to their associated population-level effects. For example, subject-specific effects 

characterize the relative variations around the population effects. A high reliability of 

individual differences in a Flanker task experiment means that subjects with a larger 

cognitive conflict effect relative to the population average are expected to show a similar 

RT pattern when the experiment is repeated. Due to their smaller effect size compared to 

population effects, subject-level effects and reliability are much more subtle and may require 

hundreds of trials to achieve a reasonable precision for reliability estimation (Chen et al., 

2021).

5.4. The extremes: “big data” and “deep data”

Partly to address the topics of replicability and generalizability, people have proposed both 

big data studies with a large subject sample size (thousands or more) and deep (or dense) 
sampling studies with a large trial sample size (hours of scanning, several hundreds or 

thousands of trials). In the former, the number of trials is rarely discussed, and similarly for 

the latter, the number of subjects is rarely discussed. In the current context of assessing the 

interrelations between the two sample sizes, this means that these two options represent the 

extreme tails of the hyperbolic asymptotes (e.g., see Fig. 2). Additional simulation results 

(not shown here), which simulated these two extreme scenarios of deep scanning (3 subjects 

and 5000 trials) and big data (10000 subjects and 20 trials), indicated that effect estimate 

and uncertainty follow the general patterns summarized in Figs. 3–6: a large sample size of 

either trials or subjects leads to reduced standard error; a minimum number of subjects is 

required to achieve a designated standard error at the population level. Unsurprisingly, effect 

estimation for deep scanning has large uncertainty while it is relatively precise for big data.

Between these two competing opinions, big data seems to be more popular. The goals of 

these initiatives are to detect effects that are potentially quite small in magnitude, as well 

as to examine demographic variables and subgroups. However, if the number of trials is 

not considered as a manipulable factor in these cases, an important avenue to increased 

statistical efficiency is missed. In other words, an extremely large number of subjects is not 

necessarily the most effective way to achieve high efficiency when considering the resources 

and costs to recruit and collect data. Even though such large numbers of subjects would lead 

to the statistical efficiency gain at an asymptotic speed of inverse parabolic relationship with 

the number of subjects, our investigation suggests that high efficiency could be achieved 

with substantially fewer subjects if the experiment was designed to leverage the two sample 

sizes. Additionally, as noted above, “generalizability” comes in multiple forms, and these 

studies, albeit many subjects, still run the risk of not being able to properly generalize to 

a population of trials or stimulus category. Given the enormous cost of scanning so many 

subjects, this could be a lost opportunity and be inefficient, both statistically and financially. 

These studies might be able to save resources by scanning fewer subjects while increasing 

the number of trials, namely by utilizing the S − T trade-offs noted in this work. Hence, 

Chen et al. Page 22

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



slightly smaller big data—with a larger number of trials—might be more cost-effective, 

similarly efficient, and generalize across more dimensions.

The other extreme of extensive sampling with a few subjects has gained attraction. For 

example, Gonzalez-Castillo et al. (2012) collected 500 trials per condition during 100 runs 

among only three subjects and revealed strong evidence to support that most brain regions 

are likely engaged in simple visual and attention tasks. Gordon et al. (2017) argued that a 

large amount of within-subject data improves precision, reliability and specificity. Naselaris 

et al. (2021) advocated the extensive sampling of a limited number of subjects for its 

higher productivity of revealing general principles. We agree that a large trial sample size 

with a few subjects does provide an unique opportunity to explore subject-level effects. 

However, we emphasize that, without an enough number of subjects to properly account 

for cross-subject variability, one intrinsic limitation is the lack of generalizability at the 

population level, as evidenced by the minimum number of subjects required for each 

particular uncertainty level (see S* in Fig. 2). Therefore, these kinds of studies will surely be 

useful for certain kinds of investigations, but the associated conclusions are usually limited 

and confined to those few subjects, and will not be able to generalize at the population level.

5.5. Limitations

We have framed study design choices and statistical efficiency under a hierarchical 

framework for population-level analysis. It would be useful for researchers to be able 

to apply this framework directly for planning the necessary numbers of subjects and 

trials to include in a specific study. However, in addition to effect magnitude as required 

in traditional power analysis, in general we do not a priori know the parameter values 

in the hierarchical model (e.g., ρ, στ, σπ in the model (1)) that would make this 

possible. Moreover, as seen in the Flanker dataset here, these parameter values are likely 

heterogeneous across the brain. In general, study designs can be much more complicated: 

having more conditions can lead to a more complex variance-covariance structure, for 

example. Some evidence indicates that the role of sample sizes may be different for 

classifications (such as multivoxel pattern analysis). As the spatial distribution of the effect 

within a region is crucial in these analytical techniques, the accuracy of statistical learning is 

more sensitive to cross-voxel variability than to its cross-subject and cross-trial counterparts 

(Davis et al., 2014).

There are limitations associated with a large number of trials. Even though increasing the 

number of trials can boost statistical efficiency, it must be acknowledged that this does 

increase scanner time and study cost. Additionally, adding trials must be done in a way 

that does not appreciably increase fatigue and/or habituation of the subject (particularly 

for youth or patient populations), otherwise the theoretical benefits to efficiency will be 

undermined. These practical considerations are important. Although, as noted above, in most 

cases adding one trial will be a noticeably lower cost than adding one subject, most studies 

fit scenarios where adding trials should effectively boost statistical efficiency. Splitting trials 

across multiple scans or sessions is one way in which this problem has been successfully 

approached in some studies with a larage trial samle size (e.g. Gonzalez-Castillo et al., 2012; 

Gordon et al., 2017).
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The incorporation of measurement error remains a challenge within the conventional 

statistical framework. Specifically, FMRI acquisitions do not measure BOLD response 

directly, even though that is typically the effect of interest. Instead the effect is estimated 

from a time series regression model at the subject level. Thus, the effect estimates at 

the subject level, as part of the two-stage summary-statistics pipeline, contain estimation 

uncertainty. Ignoring this uncertainty information essentially assumes that the measurement 

error is either negligible or roughly the same across subjects, an assumption that simply 

is not met in FMRI due to noise in the acquired data and imperfect modeling. Therefore, 

incorporating subject-level measurement error at the population-level can calibrate and 

improve the model fit. Another modeling benefit is that the uncertainty information could 

be used to better handle outliers: instead of censoring at an artificial threshold, outliers 

can be down-weighted by their uncertainty (Chen et al., 2020). This modeling strategy has 

been widely adopted to achieve higher efficiency and robustness in traditional meta-analysis 

(Viechtbauer, 2005). Even though the methodology has been explored in straightforward 

population-level analyses through condition-level modeling (Worsley et al., 2002; Woolrich 

et al., 2004; Chen et al., 2012), its adoption is algorithmically difficult for hierarchical 

modeling under the conventional statistical framework. However, it would be relatively 

straightforward to include subject-level measurement errors under the Bayesian framework 

(Chen et al., 2020); yet, computational scalability presently limits its application to region-

level, not whole-brain voxel-wise, analysis.

Finally, here we only examined task-based FMRI with an event-related design. It is 

possible that cross-trial variability and other parameters might differ for block designs. 

As each block with a duration of a few seconds or longer can be conceptualized as a 

“bundle” of many individual instantaneous trials, a block design could be viewed as more 

efficient than its event-related counterpart (Pernet et al., 2015). In addition, the saturation 

due to the cumulative exposure, as expressed in the convolution of a block with the 

assumed hemodynamic response function, may also lead to much less cross-block variability 

compared to an event-related experiment. Resting-state and naturalistic scanning are other 

types of popular FMRI acquisitions. Although we do not know of specific investigations 

examining the joint impact of number of “trials” (i.e., within-subject data) and subjects on 

statistical efficiency in resting-state or naturalistic scanning, we suspect that our rationale 

is likely applicable: the number of data points may play just as important of a role as the 

number of subjects in those cases (Gordon et al., 2017; Lynch et al., 2020). Questions have 

been raised about the minimal number of time points needed in resting state, but not from 

the point of view of statistical efficiency. These are large topics requiring a separate study.

5.6. Suggestions and guidance

Based on our hierarchical framework, simulations and data examination, we would make 

the following recommendations for researchers designing and carrying out task-based FMRI 

studies:

1. When reporting “sample size”, researchers should be more careful and refer 

distinctly about “subject sample size” and “trial sample size”. Each is distinct 

and important in its own right.
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2. When reporting the number of trials in a study, researchers should clearly note 

the number of trials per condition and per subject. Too often, trial counts are 

stated in summation, and it is not clear how many occurred per condition. 

This makes it difficult to parse an individual study design or for meta analyses 

to accurately combine multiple studies. For example, one might have to track 

through total trials, find the total number of participants in the final analysis, and 

make assumptions about relative distributions of conditions. These steps had to 

be performed for many entries in a recent meta analysis of highly cited FMRI 

studies (Szucs and Ioannidis, 2020), where a large number of papers did not even 

include any reporting of trial counts. The former situation is inexact and involves 

unwelcome assumptions, while the latter makes evaluating a study impossible. It 

should be easy for a researcher to report their trial counts per condition and per 

subject, to the benefit of anyone reading and interpreting the study. It would be 

important to provide descriptive statistics in scenarios where the final number of 

trials is different per subject, due to, for instance, the exclusion of trials based on 

subject response.

3. While we have studied the relation of statistical efficiency to subject and trial 

sample sizes, it is difficult to make an exact rule for choosing these sample 

sizes. Nevertheless, from the point of view of optimizing statistical efficiency, 

one could aim for a roughly equal number of trials and subjects. In practice, 

there are typically many more factors to consider, making a general rule difficult. 

However, adding more trials is always beneficial to statistical efficiency, and 

will typically improve generalizability. For example, if the resources for subjects 

are limited, an experiment of 50 subjects with 200 trials per condition is nearly 

efficient as a design of 100 subjects with 100 trials (or 500 subjects with 20 

trials) per condition.

4. In addition to the statistical efficiency perspective, one should also consider 

generalizability, which would put a floor on both trial and subject sample sizes. It 

is difficult to create a single rule for either quantity, given the large variability of 

study designs and aims; indeed, suggestions for a minimum number of subjects 

have ranged from 20 to 100 (and will likely continue to fluctuate). As for trial 

sample size, we consider 50 as a minimum necessary number for a simple 

condition (e.g., the Flanker task). With a more varied task, such as displaying 

faces that can have a wider range of subtle but potentially important variations, 

using a larger number of trials would likely improve generalizability.

5. When choosing a framework between trial-level and condition-level modeling, 

the former is typically preferable. But the latter could be adopted when the trial 

sample size is reasonably large (i.e., > 50 – 100), since one might expect similar 

results, and condition-level modeling has the advantage of less computational 

burden. For smaller trial sample sizes, trial-level modeling shows clear benefits 

in terms of generalizability and accuracy of effect uncertainty; it is also quite 

computationally feasible in this range.
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6. Conclusion

For typical neuroimaging and behavioral experiments, the trial sample size has been mostly 

neglected as an unimportant player in optimizing experimental designs. Large multi-site “big 

data” projects have proliferated in order to study small to moderate effects and individual 

differences. Through a hierarchical modeling framework, simulations, and an experimental 

dataset with a large number of trials, we hope that our investigation of the intricate 

relationship between the subject and trial sample sizes has illustrated the pivotal role of 

trials in designing a statistically efficient study. With the recent discovery that cross-trial 

variability is an order of magnitude higher than between-subject variability, a statistically 

efficient design would employ the balance of both trials and subjects. Additional practical 

factors such as subject tolerance and cost/resources would also need to be considered, but 

the importance of trial sample size is demonstrated herein.
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Appendix A.: Flanker Image acquisition and preprocessing

Image Acquisition.

All procedures were approved by the National Institute of Mental Health Institutional 

Review Board. Participants provided written informed consent; for youth, parents provided 

written informed consent, while youth provided assent. Neuroimaging data were acquired 

from 24 adults (> 18 years; age: 26. 81 ± 6. 36 years) and 18 youth (< 18 years; age: 14. 

01 ± 2. 48 years) on a 3T GE Scanner using a 32-channel head coil across two separate 

sessions. After a sagittal localizer scan, an automated shim calibrated the magnetic field 

to decrease signal dropout from a susceptibility artifact. Echoplanar images were acquired 

during two sessions at the following specifications: flip angle = 60°, echo time = 25 ms, 

repetition time = 2000 ms, 170 volumes per run, four runs per session, with an acquisition 

voxel size of 2.5 × 2.5 × 3 mm. The first 4 volumes from each run were discarded during 

pre-processing to ensure that longitudinal magnetization equilibrium was reached. Structural 

images were collected using a highresolution T1-weighted magnetization-prepared rapid 

acquisition gradient echo (MPRAGE) sequence for co-registration with the functional data 

with a flip angle of 7° at a voxel size of 1 mm isotropic.

Image Preprocessing.

Neuroimaging data were processed and checked using AFNI version 20.3.00 (Cox, 1996). 

Standard single subject preprocessing included specifying the following with afni_proc.py: 

de-spiking, slice-timing correction, distortion correction, alignment of all volumes to a 

base volume with minimum outliers, nonlinear registration to the MNI template, spatial 

smoothing to a 6.5 mm FWHM kernel, masking, and intensity scaling. Final voxel size 

was 2.5 × 2.5 × 2.5 mm. We excluded any pair of successive TRs in which the sum head 
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displacement (Euclidean norm of the derivative of the translation and rotation parameters) 

between those TRs exceeded 1 mm. TRs in which more than 10% of voxels were outliers 

were also excluded. Participants’ data were excluded if the average motion per TR after 

censoring was greater than 0.25 mm or if more than 15% of TRs were censored for motion 

or outliers. In addition, 6 head motion parameters were included as nuisance regressors in 

individual-level models.

Subject-level Analysis.

At the subject level, we analyzed brain activity with a time series model with regressors 

time-locked to stimulus onset reflecting trial type (incongruent, congruent), also using 

afni_proc.py. Regressors were created with a gamma variate for the hemodynamic response. 

The effect of interest at the condition level was the cognitive conflict contrast (“incongruent 

correct responses” versus “congruent correct responses”) with a total of 32,005 observations 

across two sessions of the Flanker task, which corresponds to approximately 350 ± 36 

incongruent trials and 412 ± 19 congruent trials per subject. We compare two approaches at 

the whole-brain level: a conventional condition-level modeling with regressors created at the 

condition level and trial-level modeling with trial-level regressors.

Appendix B.: Determining optimal sample sizes

The question of how to optimize the selection of subject sample size S and trial sample size 

T in an experiment, given the constraint of a fixed total number of samples, can be addressed 

with the classical method of Lagrange multipliers. Let X be a 1D vector of variables, f(X) be 

the objective function whose extrema are to be found, and g(X) = 0 express the constraint. 

Then we can create the Lagrange function:

L(X, λ) = f(X) − λg(X), (B.1)

where λ is an unknown scalar parameter, introduced temporarily but not affecting final 

values.

For the present study, we have X = (S, T), and N = S + T represents the total number 

of samples to be partitioned between subjects and trials. We want to find the values of 

(S, T) for which σ2 is a minimum (i.e., minimal uncertainty or maximal efficiency) for an 

experimental design constrained to have N total samples, and for which Rv, σπ, στ and ρ 
are just constant parameters. Therefore, we use the variance expression (6) as the objective 

function f(S, T). The formula for the number of total samples N can be fitted into the 

following constraint expression,

g(T , S) = N − (T + S) = 0, (B.2)

which can then be used in the Lagrangian formulation (B.1), along with our definition of f(S, 

T), yielding:

L(S, T , λ) = 2(1 − ρ)σπ2

S + 2στ2

ST − λ(N − T − S) . (B.3)
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From calculating the partial derivatives of L with respect to each variable and setting each 

derivative to zero, one obtains the following system of equations:

∂L
∂S − 2(1 − ρ) σπ2

S2 − 2στ2

S2T
+ λ = 0,

∂L
∂T − 2στ2

ST 2 + λ = 0,
∂L
∂λ − (N − T − S) = 0.

(B.4)

Solving this set of equations (and in the process eliminating λ), one obtains the optimal 

values of subject and trial sample sizes that minimize σ:

Topt = Rv
2

(1 − ρ) 1 + (1 − ρ)N
Rv

2 − 1 ,

Sopt = N − Topt .
(B.5)

The optimized value of σ = σopt can then be obtained by putting these values for S and T in 

the variance expression (6). Examples of (Sopt, Topt) contours are shown in Fig. B.1. In each 

panel, the same constraint N = T + S is shown with a dashed line, and the optimized (Sopt, 

Topt) is shown with a dot, along with the associated isocontour for the optimized σopt.

Fig. B.2 presents the information in the formula (B.5) in additional ways. In the first panel, 

the strong relation between Topt and Rv is apparent: for very small variability ratios, the 

optimal number of trials is near zero; but as Rv increases, Topt → N∕2, meaning that dividing 

the samples even between trials and subjects optimizes the statistical uncertainty. The middle 

panel shows the near linear rise in σ with Rv. For small values of Rv, the correlation ρ 
has some impact on the σ values, but for larger variability ratios the correlation becomes 

inconsequential. Finally, the right panel shows the “shift” or “imbalance” term S*, which 

decreases strongly with Rv.

While the relations in the formula (B.5) are not intuitively obvious, we can understand 

the analytic behavior in limiting cases, parallel to those in the main text. First, we can 

investigate the Case 1 limit of small variability ratio Rv, which in this case is compared with 

the total number of samples N. In the specified limit, the following derivations approximate 

the optimal T, S and σ:

Case1:Rv ≪ (1 − ρ)N 1 + (1 − ρ)N
Rv

2 − 1 ≈ (1 − ρ)N
Rv

2

Topt ≈ Rv
2N

(1 − ρ) Topt ≲ 1
Sopt = N − Topt Sopt ≳ N − 1

σopt2 ≈ 2(1 − ρ)σπ2

N − Topt
σopt2 ≈ 2(1 − ρ)σπ2

N
Sopt* ≈ Sopt .

(B.6)
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In the above limit, Topt shrinks toward zero mathematically, but we have used the notation 

“≲ 1” to denote that in practice, the number of trial samples cannot become less than 1. As a 

corollary, Sopt approaches N but in practice would need to be halted at “N − 1”. Finally, we 

note that in this limit σopt2  is basically independent of στ and T. This case and these features 

are reflected in the first panel of Fig. B.1.

In the opposite case of large variability ratio, one has the following relations:

Case2:Rv ≫ (1 − ρ)N 1 + (1 − ρ)N
Rv

2

1/2
≈ 1 + (1 − ρ)N

2Rv
2

Topt ≈ N /2
Sopt ≈ N /2

σopt2 ≈ 8στ2

N2

Sopt* ≈ (1 − ρ)
Rv

2 Sopt* ≈ 0.

(B.7)

In this limit, the optimized efficiency occurs when the total number of samples is equally 

divided into trials and samples (as a corollary, the “imbalance” towards subject number 

S* shrinks toward zero). Then, the optimized efficiency depends only on the cross-trial 

variability and the product of the two sample sizes. This case and these features are reflected 

in the last panel of Fig. B.1.

Fig. B.1. 
The panels are similar to Fig. 2, showing σ isocontours, but here the background opacity 

increases with increasing statistical efficiency. In each panel, the example constraint N = T + 

S = 100 is shown with a dashed line, and the optimized (Sopt, Topt) pair is shown with a dot, 

along with the associated isocontour for the optimized σopt.
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Fig. B.2. 
Visualizations of the information in the formula (B.5). Given N = 100 total samples, what 

is the optimal number to partition as trials? The answer depends strongly on the variability 

ratio Rv: for very low Rv, the optimal number of trials is relatively low; as Rv increases, Topt 

approaches N∕2 (where Topt = Sopt). The behavior is similar across correlation values, with ρ 
primarily affecting the rate at which Topt reaches N∕2. The middle and right panels show how 

the optimal uncertainty σopt and minimal subject sample size Sopt*  change as functions of Rv 

and ρ.
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Fig. 1. 
Hierarchical structure of a dataset. Assume that in a neuroimaging study a group of 

S subjects are recruited to perform a task (e.g., the Eriksen Flanker task; Eriksen and 

Eriksen, 1974) with two conditions (e.g., congruent and incongruent) and each condition is 

instantiated with T trials. The collected data are structured across a hierarchical layout of 

four levels (population, subject, condition and trial) with total 2 × S × T = 2ST data points at 

the trial level compared to S across-condition contrasts at the subject level.

Chen et al. Page 33

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Uncertainty isocontours of subject and trial sizes. Each solid curve shows all pairs of 

subjects and trials that lead to the same uncertainty σ. The study properties are defined by 

the other parameters: each column shows a different value of ρ (0.5, 0 and −0.5), and each 

row has a different value of Rv (0.1, 1, 5, 10, 50). In each case, σπ = 1, so σ has the same 

numerical value as Rv. For a given uncertainty σ, there is a vertical asymptote occurring at 

S* (dotted line, with color matching the related solid curve), which is the minimum number 

of subjects necessary to achieve the desired uncertainty. In the first column, the five vertical 

asymptotes occur (corresponding to the five σ values) at S* = 64, 16, 4, 1, 0.25; in the 

second and third columns, each vertical asymptote occurs at twice and thrice the value in 

the first column, respectively. The gray (dashed) line shows a trajectory of (S, T) pairs that 

optimize the uncertainty σ for a given total number of samples (Appendix B). This (Sopt, 
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Topt) curve is nearly flat for small Rv, but approaches T = S symmetry as the variability ratio 

Rv increases.

Chen et al. Page 35

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Simulation view 1: Effect estimate vs variability ratio (x and y-axes), for various numbers 

of trials (panel rows) and subjects (panel columns). Results from trial-level modeling (TLM) 

are shown in red, and those from condition-level modeling (CLM) are shown in blue. Each 

horizontal line tracks the mean, and each vertical bar indicates the 95% highest density 

interval of effect estimates from 1000 simulations. In both cases, results typically look 

unbiased (the mean values are very near 0.5). Estimates are quite precise for low Rv and 

more uncertain as the variability ratio Rv increases, as indicated by their 95% quantile 

intervals. The approximate symmetry of uncertainty interval between the two sample sizes, 

when the variability ratio is large (e.g., Rv ≥ 10) is apparent: the magenta and cyan cells each 

highlight sets of simulations that have roughly equal uncertainty: note how the simulation 

results within each magenta block look nearly identical to each other, even though the values 
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of S and T differ (and similarly within the cyan blocks). The correlation between the two 

conditions is ρ = 0.5; the S, T and Rv values are not uniformly spaced, to allow for a wider 

variety of behavior to be displayed.
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Fig. 4. 
Simulation view 2: Effect estimate vs number of trials (x and y-axes), for various variability 

ratios (panel rows) and numbers of subjects (panel columns). These effect estimates are the 

same as those shown in Fig. 3 (again, each red or blue horizontal line tracks the mean, and 

each bar indicates the 95% highest density interval across the 1000 simulations; ρ = 0.5). 

However, in this case the cells have been arranged to highlight the impact of the variability 

ratio.
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Fig. 5. 
Simulation view 3: Standard error vs variability ratio (x- and y-axes), for various numbers 

of trials (panel rows) and subjects (panel columns). Each solid line tracks the median of 

the estimated standard error σ, and its 95% highest density interval (vertical bar) from 1000 

simulations is displayed for each Rv, T and S. Results from trial-level modeling (TLM) 

are shown in red, and those from condition-level modeling (CLM) are shown in blue; the 

predicted (theoretical) standard error based on the formula (6) is shown in green. The dotted 

line (black) marks the asymptotic standard error when the variability ratio Rv is negligible 

(i.e., σ in Case 1) or when the number of trials is infinite. The dashed line (gold) indicates 

the standard error of 0.25 below which the 95% quantile interval would exclude 0 with 

the effect magnitude of μ = 0.5. As in Fig. 3, one can observe the approximate symmetry 

between the two sample sizes when the variability ratio is large (e.g., Rv ≥ 10): the magenta 
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and cyan cells each highlight sets of simulations that have roughly equal efficiency (cf. Fig. 

3). The correlation between the two conditions is = 0.5.

Chen et al. Page 40

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Simulation view 4: Standard error vs number of trials (x- and y-axes), for various variability 

ratios (panel rows) and numbers of subjects (panel columns). These standard errors are the 

same as those shown in Fig. 5 (again, each bar shows the 95% highest density interval 

across the 1000 simulations; ρ = 0.5). However, in this case the cells have been arranged to 

highlight the impact of the variability ratio, and the range of the y-axis in each cell varies per 

row. The dotted line (black) marks the asymptotic standard error when the variability ratio is 

negligible (i.e., σ in Case 1) or when the number of trials is infinite. The dashed line (gold) 

indicates the standard error of 0.25 below which the 95% quantile interval would exclude 0 

with the effect magnitude of μ = 0.5.
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Fig. 7. 
Example FMRI study, showing effect estimates and variability ratio (Rv) values in the brain. 

The relative magnitude of cross-trial variability was estimated for the contrast “incongruent 

congruent” in the Flanker dataset with the hierarchical model (1). (A) The effect estimates 

for the contrast and Rv values are shown in axial slices (Z coordinate in MNI standard 

space for each slice; slice orientation is in the neurological convention, right is right). For 

the purpose of visual clarity, a very loose voxelwise threshold of two-sided p < 0. 05 was 

applied translucently: suprathreshold regions are opaque and outlined, with subthreshold 

voxels become increasingly transparent. Several parts of the brain have relatively low 

variability (Rv < 20), particularly where the contrast is largest and has strong statistical 

evidence. In some regions of the brain the Rv values tend to be much higher (Rv ≳ 50). (B) 

The mode and 95% highest density interval (HDI) for the distribution of Rv values in the 

brain are 20 and [6, 86], respectively.
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Fig. 8. 
Examining differences in model outputs for both trial-level modeling (TLM) and condition-

level modeling (CLM) with various trial sample sizes (created by subsampling the full set of 

trials). The approximate total number of trials per subject are: 350 ± 36 incongruent trials 

and 412 ± 19 congruent trials. A single axial slice (Z = 0) is shown in each case; translucent 

thresholding is applied, as shown beneath the data colorbars. (A) Effect estimates of the 

contrast between incongurent and congruent conditions are relatively large and positive in 

regions with strong statistical evidence, not varying much with the number of trials or 

between the two modeling approaches of TLM and CLM. (B) The strength of statistical 

evidence for both TLM and CLM improves incrementally with the trial sample size. TLM 

and CLM rendered quite similar statistical results in most regions, with the latter showing 

somewhat larger statistical values at the edges (consistent with having a similar effect 

estimate and underestimated σ, resembling simulation results).

Chen et al. Page 43

Neuroimage. Author manuscript; available in PMC 2022 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Statistical evidence with varying number of trials (Z = 0 axial slice). For both TLM 

and CLM approaches, the relative change in statistical value for the contrast between 

incongruent and congruent conditions, as the trial sample size doubles, is displayed as a 

map of the ratio of t-statistic magnitudes, centered on one. Thus, red shows an increase in 

statistical value with trial sample size and blue shows a decrease. The patterns for TLM and 

CLM are quite similar, increasing in most suprathreshold regions. In regions with relatively 

small cross-trial variability, it is expected that statistical efficiency should improve with the 

square of the trial sample size, since the number of trials doubles between two neighboring 

rows, one would expect about TLM2T /TLMT − 1 ≈ 2 − 1 ≈ 0.4 fractional increase, which is 

generally consistent with the results here.
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