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How do we build up our knowledge of the world over time? Many theories of memory
formation and consolidation have posited that the hippocampus stores new informa-
tion, then “teaches” this information to the neocortex over time, especially during sleep.
But it is unclear, mechanistically, how this actually works—How are these systems able
to interact during periods with virtually no environmental input to accomplish useful
learning and shifts in representation? We provide a framework for thinking about this
question, with neural network model simulations serving as demonstrations. The model
is composed of hippocampus and neocortical areas, which replay memories and interact
with one another completely autonomously during simulated sleep. Oscillations are
leveraged to support error-driven learning that leads to useful changes in memory
representation and behavior. The model has a non–rapid eye movement (NREM) sleep
stage, where dynamics between the hippocampus and neocortex are tightly coupled,
with the hippocampus helping neocortex to reinstate high-fidelity versions of new
attractors, and a REM sleep stage, where neocortex is able to more freely explore exist-
ing attractors. We find that alternating between NREM and REM sleep stages, which
alternately focuses the model’s replay on recent and remote information, facilitates
graceful continual learning. We thus provide an account of how the hippocampus
and neocortex can interact without any external input during sleep to drive useful new
cortical learning and to protect old knowledge as new information is integrated.
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Building our knowledge of the world over time requires the ability to quickly encode
new information as we encounter it, store that information in a form that will serve us
well in the long term, and carefully integrate the new information into our existing
knowledge structures. These are difficult tasks, replete with pitfalls and trade-offs, but
the brain seems to accomplish them gracefully. The Complementary Learning Systems
(CLS) framework proposed that the brain achieves these feats through a division of
labor across two interacting systems: The hippocampus encodes new information using
a sparse, pattern-separated code, supporting rapid acquisition of arbitrary information
without interference with existing neocortical knowledge (1). The hippocampus then
replays this recently acquired information offline, gradually “teaching” this information
to the neocortex. The neocortex uses overlapping, distributed representations adept at
representing the structure across these memories, resulting in the construction and
updating of semantic knowledge over time. But how can these brain regions interact
autonomously, with no input from the environment, to produce useful learning and
reshaping of representations? How does the brain move from one memory to another
during offline replay, and which of these offline states does it learn from, and how?
CLS considered the possibility that sleep may be a useful time for this teaching to occur,

and other perspectives have also focused in on this idea, given the strong coupled dynamics
and parallel replay that occurs in these areas during sleep (2–4). Extant theories of consoli-
dation have focused particularly on stages 2 and 3 of non–rapid eye movement (NREM)
sleep, when nested oscillations associated with memory replay—hippocampal sharp wave
ripples, thalamocortical spindles, and neocortical slow oscillations—reflect especially strong
hippocampal–cortical interaction (2–11). These dynamics appear to be causally involved
in memory consolidation: Manipulations that enhance hippocampal–cortical synchrony
during sleep benefit memory (12–16).
Not all theories agree on whether offline hippocampal–cortical interactions serve to

increase the relative reliance on neocortex for episodic memories (17, 18), but most theo-
ries agree that the hippocampus helps to build and shape semantic representations in neo-
cortex (19, 20), and these theories often assign a central role to active processing during
sleep (ref. 21; cf. ref. 22). Here, we adopt the following core ideas, shared across several
perspectives: During sleep, the hippocampus actively helps to build neocortical semantic
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representations of information it has recently encoded, and this
process transforms the nature of the memories. We assume that
learning does occur directly in the cortex during initial awake
experience, but that it is not typically strong enough to support
behavior without offline hippocampal influence (23). We think
this process of the hippocampus helping to shape and strengthen
neocortical memory representations can usefully be referred to as
“systems consolidation” (24), although the way it is conceptual-
ized here deviates in several respects from Standard Systems Con-
solidation Theory (17).
Despite all of this evidence and theorizing that the hippo-

campus “teaches” the neocortex new information in order to
build up semantic representations during sleep, it is unclear,
mechanistically, how this occurs in autonomous offline interac-
tions. It does not seem likely that simple strengthening of exist-
ing connections through Hebbian learning will be sufficient—a
more sophisticated restructuring of representations seems to be
at work. The original CLS model simulations (1) did not
address these questions, since there was no true implemented
hippocampus (cf. ref. 25), and, as in many models of replay,
the order and nature of inputs to cortex were engineered by
hand. Here, we aim to fill this gap with a model that shows
how an implemented cortex and hippocampus can interact,
replay, and learn autonomously.
We will address two additional related limitations of the

original CLS framework, namely, that its solution to continual
learning was too slow, and that it relied on the implausible
assumption of a stationary environment (26). Hippocampal
replay of an episode—for instance, a first encounter with a
penguin—was hypothesized to be interleaved over days, weeks,
and months with a stationary (unchanging) distribution of bird
input from the environment, allowing careful integration of the
lone penguin encounter with the general structure of birds. This
strategy is slow because it relies on these continued reminders
over time about the distribution of information from the envi-
ronment. But sleep-dependent memory consolidation, including
integration of new information with existing knowledge, can
impact behavior quite quickly, over one night or several nights
of sleep (6, 7, 27–30). The CLS framework fails in nonstationary
environments because the environment no longer provides those
required reminders of old information. Humans do not have
this problem: We can, for example, speak one language much of
our lives and then move to a new place where we encounter only
a new language, without forgetting the first language. Norman
et al. (26) proposed that alternating NREM and REM sleep
stages across the course of a night may be the key to solving
these problems. The hippocampus and neocortex are less cou-
pled during REM (2), potentially providing an opportunity for
the neocortex to visit and explore its existing representational
space. This could serve to provide the reminders about remote
knowledge needed to avoid new information overwriting the
old, without having to wait for the environment to provide those
reminders.
We will present proof-of-concept simulations that demonstrate

1) how the hippocampus can begin to autonomously shape neo-
cortical representations during NREM sleep and 2) how alternat-
ing NREM/REM sleep stages allows for rapid integration of that
new information into existing knowledge. The hippocampus is
implemented as our C-HORSE model (Complementary Hippo-
campal Operations for Representing Statistics and Episodes),
which is able to quickly learn new categories and statistics in the
environment, in addition to individual episodes (31–33), allowing
for a more complete treatment of initial hippocampal learning
than has been considered in prior hippocampal replay models.

Once structured information is encoded in the hippocampus,
how is it then consolidated? We extend the model with a neo-
cortical area that serves as the target of consolidation and with
a sleep environment that allows learning and dynamics between
these areas to unfold autonomously offline (Fig. 1). Our learning
scheme leverages oscillations during sleep to support self-
supervised error-driven learning (26). Error-driven learning typi-
cally involves computing the discrepancy between the model’s
prediction and the actual state of the environment, and then
adjusting weights to minimize this error; this ability to contrast
“better” and “worse” states and to learn from these discrepancies
allows for more sophisticated representation shaping than Heb-
bian learning, which updates weights between neurons based on
simple coactivity, rather than contrasting two states (26, 34).
This raises the question of how error-driven learning might be
accomplished during sleep, when the brain cannot use the actual
state of the external environment as a target for learning. Here,
we show how stable patterns of internal activity during sleep can
serve as effective targets for offline error-driven learning. A short-
term synaptic depression mechanism supports autonomous tran-
sitions from one memory to the next, avoiding the need to
hand-engineer the model’s inputs and their ordering.

The model’s units employ a rate code, which means that
oscillations do not have a true frequency that would correspond
directly to particular frequencies of activity in the sleeping
brain. But we imagine that our NREM oscillations correspond
in function to sleep spindles, when individual replay events and
enhanced cortical plasticity have been shown to occur (35–37),
and our REM oscillations correspond to theta oscillations,
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Fig. 1. Model architecture and sleep algorithm. (A) The architecture
included C-HORSE (our model of the hippocampus; purple outlines), and a
neocortical layer as the target of consolidation (orange outline). (B) When
replaying attractor X, all units participating in the attractor have strong, sta-
ble activity during the plus phase. During the minus phase, oscillatory
phases of higher inhibition lead to lower activity, with the weakest units in
attractor X dropping out, and oscillatory phases of lower inhibition lead to
higher activity, causing activity spreading to a nearby attractor, Y. (C) Stabil-
ity trace for a real learning event, with background colors indicating the
plus and minus phases. When the model first falls into an attractor, its
activity is highly stable and triggers the plus phase. Short-term synaptic
depression gradually destabilizes the attractor. The stability drop causes
the plus phase to end, and the minus phase begins. As the attractor further
destabilizes, the minus phase ends.
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which have been associated with enhanced plasticity in that
stage (26, 38, 39). We simulate the difference between NREM
and REM sleep as a difference in the degree of communication
between the hippocampus and neocortex (2). There are, of
course, many other important differences between NREM and
REM sleep (3), but, for these simulations, we aimed to isolate
the contribution of this factor. Together, the simulations demon-
strate how sleep can build our neocortical knowledge over time,
with the hippocampus initially helping to construct neocortical
representations during NREM sleep, and the hippocampus and
cortex working together across NREM/REM stage alternation to
integrate this new information with existing knowledge.

Model Simulations

In the model, sleep is initiated with a single injection of noise
to all units, after which all external input is silenced. The model
then autonomously moves from attractor to attractor corre-
sponding to the memories of items learned during wake [exhib-
iting latching dynamics (26, 40)]. A “memory” is thus defined
as the pattern of stable activity across units in the model corre-
sponding to an item experienced during training. We use stabil-
ity in the model’s dynamics as a trigger to initiate a learning
trial. When the model initially falls into each attractor state,
activity tends to be highly stable from one processing cycle to
the next, and this high stability initiates a “plus” phase (Fig. 1
B and C). Short-term synaptic depression destabilizes the
attractor by temporarily weakening synapses in proportion to
the coactivity of their connected units. As stability drops, the
model transitions into a “minus” phase. Oscillations in inhibi-
tion levels are persistently present in the sleeping model, with
all the layers of the model on a synchronized oscillatory sched-
ule. However, the effects of the oscillating inhibition on activa-
tion become more prominent in the minus phase, as synaptic
depression begins to distort an attractor. These oscillations in
inhibition levels reveal aspects of the attractor that can be
improved: When inhibition is high, the weakest units in the
attractor drop out, revealing the parts of the memory that
would benefit from strengthening, and, when inhibition is low,
nearby potentially interfering memories or spurious associations
become active, revealing competitors whose weakening would
help stabilize the attractor (Fig. 1 B and C).
As the attractor activity further destabilizes, the minus phase

ends, and the model traverses to the next attractor. Weights are
updated at the end of every minus phase via Contrastive Heb-
bian Learning (CHL), which locally adjusts minus phase unit
coactivities (product of sender and receiver activity over time)
toward their plus phase coactivities (41). This serves to both
strengthen weak parts of an attractor (the contrast between the
plus phase and the higher-inhibition moments in the minus
phase) and weaken competitors (the contrast between the plus
phase and the lower-inhibition moments of the minus phase).
Once competitors are sufficiently weakened to avoid high inter-
ference, they no longer appear in the low-inhibition phase and
are not suppressed any further. The learning algorithm can
thus balance both overlap and separation in a manner that
reflects the structure of the input. Learning in a hidden layer
with distributed representations will tend to emphasize overlap,
but the low-inhibition phase of the oscillation serves as a check
on creating too much of this overlap. This algorithm is closely
related to the Oscillating Learning Rule (OLR) (26), which
used oscillations to similarly distort attractors and improve
memory, but the OLR requires the network to track where it
is in an oscillation and change the sign of the learning rule

accordingly. The current learning scheme does not require
tracking this information (but does require a measure of stabil-
ity). Our algorithm’s short-term synaptic depression-induced
traversal across memory attractors is also related to previously
proposed “latching” dynamics in cortical networks (40).

Simulation 1: Building Neocortical Representations of Novel
Information. In this simulation, we explored how the hippo-
campus helps to rapidly shape neocortical representations of
novel information. As a demonstration, we simulated a para-
digm in which we have found sleep effects that influence
behavior quickly (across a night of sleep or even a nap) and
that have hallmarks of the construction of new neocortical
knowledge (29, 42). We chose this study because it was repre-
sentative of a larger class of studies demonstrating a benefit of
sleep on memory for novel structured information (42); we did
not aim to target the details of the findings of this particular
study, although that would be a useful enterprise for future
work. In the experiment, participants were asked to learn the
features of 15 satellites belonging to three different classes
(Fig. 2A and ref. 29). Each satellite exemplar had features
shared with other members of the class, as well as features
unique to the exemplar. As in the human participant sleep
group, the model was first trained to a learning criterion of
66% and then allowed to sleep, with tests before and after sleep
to assess changes in performance (Figs. 2C and 3A). In this sim-
ulation, sleep corresponds to the dynamics of NREM, with
tight coupling between hippocampal and neocortical areas.

The model was trained during wake using feature inference,
which is analogous to how humans were trained in the experi-
ment. Each satellite’s seven features (five visual, class name, and
codename) were presented on separate input/output layers (rep-
resenting entorhinal cortex) as inputs to the hidden layers of
the model. Each training trial consisted of presenting the model
with a satellite with one feature missing, at which point the
model guessed the identity of the missing feature. The correct
answer was then clamped onto the corresponding layer. CHL
was used to update the weights based on the difference between
the model’s prediction and the correct answer (41). As in our
experiments with human participants (29, 41), we sought to
match model performance on shared and unique features dur-
ing wake training by querying unique features much more
often than shared features. The learning rate was much higher
in the hippocampus than cortex, so—while learning happened
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during wake throughout the model—behavior was initially
supported almost entirely by the hippocampus. Cortical repre-
sentations were, on average, less sparse than hippocampal repre-
sentations and reflected category structure more strongly. For
this paradigm, which requires integrating high-level verbal and
visual information, the neocortical module might correspond
to an area of the brain representing consolidated semantic
knowledge, like the anterior temporal lobe (43). Anterior cin-
gulate cortex/medial prefrontal cortex are also often involved as
important neocortical targets of systems consolidation (44, 45).
After the wake learning criterion was achieved, we allowed the

model to go into NREM sleep, enabling hippocampal–cortical
replay. Based on evidence for enhanced plasticity in sleep (46), we
increased the cortical learning rate in the model during NREM
sleep. To isolate the impact of replay on neocortical learning, we
paused hippocampal learning during sleep. The model traversed
from attractor to attractor corresponding to the studied satellite
exemplars. Replay occurred concurrently in the hippocampus and
neocortical modules. We found that replay was interleaved across
exemplars, with a modest preference for within-category transi-
tions (39.4% within-category transitions relative to chance 28.5%;
P < 0.001 by binomial test [N = 2,400, K = 945]; Fig. 3C). We
assessed performance changes as a result of NREM sleep and
found that performance on shared features improved significantly

(P < 0.001) while performance on unique features was preserved
across sleep (Fig. 3B), which corresponds to the pattern observed
in the human experiment shown in Fig. 2B as well as the behav-
ioral data from our imaging study using this paradigm (42). These
results depended on using an error-driven learning algorithm; sim-
ple Hebbian learning during sleep resulted in substantial forgetting
of unique information and less robust increases in shared feature
memory (SI Appendix, Fig. S1).

The preferential benefit for shared features could potentially
be related to their greater frequency of occurrence, given that
they appear many times across exemplars, whereas unique fea-
tures only appear with one exemplar. To rule out the possibility
that sleep is simply benefitting higher-frequency features, we
ran a separate set of simulations in which we added an extra
feature to each exemplar that appeared across categories but
was matched in frequency to the shared features. We found
that these “cross-cutting” features did not benefit from sleep
replay (Fig. 3B), suggesting that neocortical learning was sensi-
tive to the true category structure, rather than simply frequency
of feature appearance.

For each simulation, we assessed whether the number of times
a particular satellite was replayed was associated with improve-
ment in memory for that satellite. This resulted in a correla-
tion across 15 exemplars for each simulation, which we Fisher
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Fig. 3. Simulation 1: Category learning consolidation across one night of sleep. (A) Simulation protocol. (B) Change in full model performance from before
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transformed and averaged across simulations. We found that,
across simulations, there was a positive correlation between per-
formance changes and replay frequency (Fig. 3E), which was
especially strong for shared features, indicating that replay during
sleep was driving performance changes. This is consistent with
the results from our imaging study of this paradigm, where we
found that awake replay of the satellites in the hippocampus
(which we took to be representative of what would continue to
happen during sleep) predicted memory improvement across
sleep (42).
We next examined change in neocortical representations across

sleep. We conducted a representation similarity analysis by calcu-
lating pairwise correlations of patterns of neocortical unit activity
for all satellite exemplars presleep and postsleep. We found that,
from before to after sleep, there was increased within-category
similarity and no change in across category similarity (Fig. 3D).
The results from simulation 1 provide a way of thinking

about how the hippocampus can help the neocortex build up
new semantic representations. With a fast learning rate in the
hippocampus and a slow rate in the neocortex during wake
learning, the hippocampus will be responsible for most behav-
ior prior to sleep. Offline, the hippocampus can help the neo-
cortex to reinstate stable versions of the new memories. Because
the neocortex has more highly distributed representations than
the hippocampus, it tends to find the shared structure across
exemplars, resulting in improved understanding of the category
structure in this paradigm. These dynamics occur completely
autonomously, with three key ingredients: 1) Short-term synap-
tic depression causes the hippocampus and neocortex to move
in tandem from one attractor to the next, resulting in inter-
leaved replay of recent experience; 2) as synaptic depression
destabilizes an attractor, oscillations increasingly distort the
attractor to reveal aspects of the memory in need of change;
and 3) the model learns toward highly stable states and away
from the subsequent, relatively unstable states, resulting in
memory shifts and strengthening.

Simulation 2: Integration of Recent and Remote Knowledge.
We next turned to simulating the potential role of sleep in sup-
porting continual learning. We defined two related environments,
Env 1 and Env 2. Each environment contained 10 items, with
seven units each. Two out of seven units overlapped between the
first item in Env 1 and the first item in Env 2, between the

second item in Env 1 and the second item in Env 2, and so on.
There was no overlap across items within an environment. This
is a variant of the classic AB–AC interference paradigm (47–50).
To simulate new learning in Env 2 after having fully consolidated
Env 1 in neocortex, we trained the neocortical hidden layer fully
on Env 1. Next, the complete network was trained on the related
Env 2, with hippocampus primarily supporting performance, as
in simulation 1, given its faster learning rate. We then allowed
the model to go into either an alternating sleep protocol (alternat-
ing five times back and forth between epochs of NREM and
REM sleep) or into five sequential NREM epochs or five sequen-
tial REM epochs (Fig. 4A). NREM was implemented as above,
with strong coupled dynamics between the hippocampus and
neocortex, whereas REM allowed neocortex to explore its attrac-
tor space without influence from the hippocampus (for simplic-
ity, we allowed no hippocampal influence).

We expected that Env 2 replay would unfold during NREM
sleep in a manner analogous to simulation 1, with the hippo-
campus helping the neocortex to replay and learn the Env 2
patterns. During REM, with no influence from the hippocam-
pus, we expected that the neocortex would be able to replay the
well-consolidated remote Env 1 memories. This could serve to
provide reminders about Env 1 to prevent Env 2 from over-
writing Env 1. We observed, as expected, that NREM tended
to focus on Env 2 items (lower distance from plus phase pat-
terns to Env 2 items; Fig. 4B) whereas REM tended to focus
on the remote Env 1 items.

We found that alternating NREM and REM allowed the
neocortex to improve Env 2 performance without a cata-
strophic decrease in Env 1 performance (Fig. 4C). Consecutive
epochs of NREM sleep resulted in greater improvement in Env
2 performance, but also led to a much more substantial deterio-
ration in Env 1 performance. As expected, consecutive epochs
of REM sleep resulted in no improvement in Env 2 per-
formance, as well as no Env 1 damage. We also investigated
whether the mere presence of REM sleep is enough for preserv-
ing Env 1 performance or whether the alternating schedule is
critical. To test this, we ran a blocked schedule of five NREM
epochs followed by five REM epochs. We predicted that the
blocked schedule would not allow for the same level of Env 1
preservation. As predicted, we found that the blocked schedule
led to substantially greater Env 1 damage in comparison to
the alternating schedule (SI Appendix, Fig. S2), indicating that
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the alternating schedule is necessary for Env 1 protection—the
alternating schedule allows REM to intermittently reinstate
clean Env 1 items and repair any NREM-induced damage to
these items before the damage accumulates beyond repair.
We also sought to characterize the role oscillations play in these

simulations. We ran our simulations with the same task and either
turned off oscillations completely during sleep (SI Appendix, Fig.
S3) or selectively turned off oscillations in either NREM or REM
epochs in the alternating condition (SI Appendix, Fig. S4). We
found that, without oscillations, NREM sleep is substantially
worse at facilitating cortical learning of Env 2 items, and that
REM is impaired in its ability to protect Env 1 performance, indi-
cating that oscillations play an important role in our framework.
Alternating NREM and REM may thus support graceful

continual learning, with NREM helping to build neocortical
representations of recent information while REM acts to pro-
tect the old information from this new potential interference
(51). This alternation should be especially important to the
degree that new and old information overlap and therefore
threaten interference; when new information is unrelated to
prior knowledge (as in simulation 1), reminders of old knowl-
edge are likely not needed (52).

Discussion

Our simulations demonstrate how the hippocampus and neocor-
tex can interact autonomously offline to build new neocortical
knowledge and to gracefully integrate new information with exist-
ing cortical knowledge. Simulation 1 demonstrates how the hip-
pocampus can begin to shape neocortical knowledge during a first
bout of NREM sleep. We think of this as the very beginning of
systems consolidation, not the complete process. Still, one night
of sleep (or even a nap) is sufficient to appreciably change behav-
ior in many paradigms, including the task simulated here
(29, 42). Sleep begins by seeding the network with random activ-
ity. The network then falls into an attractor that happens to
resemble that activity, and moves from attractor to attractor due
to a short-term synaptic depression mechanism which weakens
synapses as a function of their recent activity. We find that this
mechanism results in interleaved replay of attractors, which sets
the stage for useful structure learning (1). When the network first
falls into an attractor, activity is highly stable, and the network
uses these stable states as targets to learn toward. Oscillations
then distort these attractors, revealing contrasting states to learn
away from—both weak parts of an attractor in need of strength-
ening and competing attractors in need of weakening. During
NREM, the hippocampus helps the neocortex reinstate strong
versions of attractors (the neocortex’s own attractors for new
information would not be strong enough to support offline learn-
ing on their own), and this autonomous error-driven learning
allows useful weight updates from these states. Most prior models
of replay, including the original CLS model, do not have this
fully autonomous dynamic, with some notable recent exceptions
(53–56). Typically, the model architect exerts some control over
the input to the model on a given replay trial, and, indeed,
defines what a “trial” is. However, a large part of the computa-
tional puzzle of understanding learning during sleep is under-
standing how the system can generate its own learning trials, and
our account adds to other recent efforts providing a demonstra-
tion of how this can work.
These mechanisms thus act as hypotheses for how sleep carries

out autonomous replay: Once the system has visited an attractor,
there should be an endogenous mechanism of leaving this attrac-
tor in order to transition to the next. We hypothesize that this is

accomplished by a form of adaptation at the synaptic level.
Unit-level adaptation or homeostatic mechanisms may also be
possible (54), although they should result in less ability to transi-
tion between closely related memories (which are likely to share
units). To define offline learning trials, we hypothesize that the
brain contrasts periods of stable activity with periods of per-
turbed activity, consistent with several accounts of biologically
plausible error-driven learning (57–59). We further hypothesize
that oscillations (spindles in NREM and theta in REM) enhance
neocortical learning during sleep by distorting attractors during
the unstable (minus phase) periods in ways that are informative
about flaws in the network’s representation. This implies that
dampening or eliminating these oscillations would reduce the
efficacy of learning during sleep, consistent with findings from
both NREM and REM sleep (38, 60).

In simulation 1, as in our human experiment results, we found
that these autonomous learning dynamics resulted in enhanced
memory for features of exemplars shared across a category, while
preserving memory for exemplar-unique features. This was not
due to shared features appearing more frequently in the stimulus
set, as frequency-matched features that appeared across categories
did not show this improvement. Sleep resulted in increased simi-
larity for neocortical representations of items in the same cate-
gory, consistent with the literature suggesting that sleep helps
to extract the structure or central tendencies of a domain
(45, 61–63). To the extent that detailed information is present in
the hippocampus, it should be able to help neocortex learn this
detailed information, and there is extensive evidence that sleep,
indeed, benefits retention of detailed information (28, 64, 65).
However, the overlapping nature of representations in the neo-
cortex (especially relative to the hippocampus) means that the
neocortex will tend to emphasize shared structure over the course
of systems consolidation.

In simulation 2, we explored the role of alternating NREM
and REM sleep stages in enabling successful continual learning.
We simulated learning of a new environment, reliant on the
hippocampus, after the neocortex had already consolidated an
old, related environment. We found that the hippocampus
helps build neocortical representations of the new environment
during NREM sleep (as in simulation 1), and the neocortex
then reinstates the old environment during REM sleep, allow-
ing for integration of the new information into neocortex with-
out overwriting the old. Our proposal is strongly consistent
with studies suggesting REM is important for integrating new
information with existing knowledge (66) and that this process
is set up by prior memory reactivation during slow wave sleep
(67, 68). It is also consonant, more generally, with the idea
that both NREM and REM sleep are critical for memory inte-
gration, with the ordering of the stages being consequential
(69, 70).

This simulation demonstrates how a night of sleep can serve
to protect against interference even in nonstationary environ-
ments. The original CLS framework did not provide an
account of this learning scenario, as it required the environment
to continue to provide reminders of old knowledge, the role
taken over by REM here. The sleep model of Norman et al.
(26) showed how REM can provide the necessary reminder and
repair function (71), but that model required continued expo-
sure from the environment over time to learn new knowledge,
the role taken over by NREM here. Deep neural networks per-
forming both experience replay and generative replay have had
impressive success in tackling the problem of continual learning
in complex nonstationary environments (72–76). Our approach
is related in benefitting from offline interleaved replay, but it
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fleshes out the autonomous interactions between the hippocam-
pus and cortex that may support this learning, and explains
how this can happen quickly upon transition to a new environ-
ment through the alternation of NREM and REM sleep.
Overall, we view the process of sleep-dependent memory

consolidation not as a simple strengthening of individual mem-
ories or weakening of noise (77) but, instead, as a restructuring
that acts to update our internal models of the world to better
reflect the environment over time. According to our frame-
work, new information learned over the course of one waking
period will be quickly encoded by the hippocampus. We pre-
dict that the hippocampus and neocortex will then concurrently
replay this information in interleaved order during NREM
sleep, with the hippocampus helping the neocortex reinstate
higher-fidelity versions of recent experiences than the neocortex
could support without hippocampal influence. This hippocam-
pally mediated interleaved replay should support new learning
in neocortex that serves to especially emphasize the structure of
the new domain, increasing representational overlap between
related entities. This prediction has not yet been directly tested,
but it is consistent with a finding of increased representational
overlap over time for related memories in the medial prefrontal
cortex (45). In keeping with recent findings in humans and
rodents (78, 79), we also predict that the hippocampus will sup-
port memory consolidation in situations where it was not required
for initial learning, so long as the hippocampus was encoding the
details of the experience in parallel with other regions.
Our account also makes predictions about sleepstage contri-

butions to memory consolidation. First, NREM sleep should
more frequently visit attractors corresponding to recent experi-
ence, and REM sleep should more frequently visit attractors
corresponding to remote, consolidated knowledge, although
this is not absolute. This prediction is consistent with the find-
ing that NREM dreams incorporate more recent episodic infor-
mation in comparison to REM dreams, which incorporate
more existing semantic information (80). There have been very
few empirical demonstrations of replay during REM (81, 82),
and our account suggests that this may be partly because REM
is not as focused on recent experience, which is the subject of
most experiments. Our account also predicts that integration of
new information without disruption to existing knowledge
requires NREM–REM alternations. If REM is suppressed, or
(more specifically) if replay during REM is suppressed, the
account predicts that old information that is related to new
information will eventually be overwritten (Fig. 4C).
Our model’s simulations are intended as demonstrations as

opposed to a full account of offline consolidation, but there are
exciting possible future directions for this work, as well as com-
plementary modeling frameworks that already help provide a
more complete understanding. For example, our current model
does not simulate changes in memory across periods of wake.
Often, sleep studies find a marked reduction in performance
with wake, including in our satellite category learning study
(29). Reductions in performance can be simulated through
interference caused by waking experience and/or decay in
weight strengths over time. However, the story is not so simple,
because awake replay can be beneficial for memory (83–86). It
may be that awake replay works against other causes of memory
degradation, and/or that awake replay does not result in the
kind of lasting improvements to performance that sleep replay
does; perhaps awake replay leads to short-term, local improve-
ments, but the specialized coordinated hippocampal–cortical
replay dynamics that exist during sleep are needed for persistent
systems-level change (87).

We have used the word “replay” in the manner it is used in
the modeling literature—offline reactivation of any information
previously experienced in the environment. Sometimes the
word is reserved, in the empirical literature, for the sequential
reactivation of states experienced in a particular order. Most of
the rodent literature has studied this sequential reactivation,
and it will be important for future versions of our model to
simulate these kinds of sequential paradigms, taking inspiration
from other modeling frameworks that have focused on simulat-
ing sequential reactivation (54, 88, 89).

Another limitation of our framework is that, although oscil-
lations are critical to our results, our use of a rate code (where
unit activation values correspond to a rate of firing across time)
makes the modeling of oscillations more abstract, and limits
our ability to explain or make predictions about detailed oscilla-
tory dynamics across the brain. However, a biologically detailed
thalamocortical neural network model using a Hebbian learn-
ing rule has been developed to engage with these dynamics and
provides important insights into how they may contribute to
memory consolidation (54–56). We view this model and others
that make more direct contact with lower level neural mecha-
nisms (90) as complementary to our approach. Having these
models at different levels of abstraction is useful in creating the
full bridge from individual neurons to dynamics across systems
to higher-level behavioral phenomena—for example, our use of
a rate code allows for easier simulation of more complex tasks,
and may help our framework scale to larger networks. Whereas
prior, more biologically detailed models have focused on the
idea of simple direct transfer of information from hippocampus
to cortex, our framework provides an account of qualitative
changes in the nature of memory over the course of systems
consolidation.

Another important missing piece in the current modeling
framework, which has been tackled in other frameworks
(52, 53, 88, 91, 92), is an explanation of how memories are
prioritized for replay, for example, along dimensions of emo-
tion, reward, or future relevance (61, 93). We and others have
also found evidence for prioritization of weaker memories for
offline processing (29, 42, 49, 71, 94). Prioritization of weaker
information is not something that falls naturally out of the cur-
rent framework; an additional tagging mechanism is needed to
mark memories with higher uncertainty or error during or after
learning for later replay.

Our current simulations focused on hippocampal influence
on neocortical representations during sleep, with hippocampal
learning turned off to isolate the effects of cortical learning, but
future simulations should also consider sleep-dependent learn-
ing locally within the hippocampus (39), including differential
learning in the monosynaptic pathway (MSP) and trisynaptic
pathway (TSP). Some of the behavioral change seen in the sleep
consolidation literature could arise from this local hippocampal
learning (22).

The hippocampus module in our framework is a version of
our C-HORSE model (31–33), which rapidly learns both new
statistical and episodic information, in its MSP and TSP,
respectively. The original CLS framework proposed that the
hippocampus handles the rapid synaptic changes involved in
encoding new episodes, in order to prevent the interference
that would occur from attempting to make these synaptic changes
directly in neocortex. The neocortex then slowly extracts the statis-
tics across these episodes to build up semantic information over
time (weeks, months, or years). But we can learn new semantic
and statistical information much more quickly than this (within
minutes or hours), and the hippocampus is likely responsible for
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much of this learning (31, 33, 79). Our view is thus that the
hippocampus acts as a temporary buffer for both statistics and
episodes—for any novel information requiring large synaptic
changes that might cause interference if implemented directly
in neocortex.
The hippocampus in the original CLS account (and also in

experience replay models) functions somewhat like the TSP in
our hippocampus model, replaying individual episodes and
exemplars with high fidelity. The MSP, however, is more sensi-
tive to the structure across experiences (31, 33). This suggests
the possibility of generalized replay, which has, indeed, been
observed (95, 96), and which may serve to catalyze the consoli-
dation of structured information (97).
We have modeled the hippocampus and one generic neocorti-

cal module, but, of course, the brain is much more heterogeneous
and hierarchical than this. We could consider the TSP and the
neocortex module as two points on a spectrum, with the TSP
learning very quickly using orthogonalized representations, and
the neocortex learning slowly using overlapping representations.
The MSP has intermediate learning speed and overlap in its rep-
resentations, and it is possible that hierarchically organized neo-
cortical regions form a gradient (98), with slower learning as a
region gets closer to the sensory periphery—from hippocampus,
to MTL cortex, to high-level sensory regions, to low-level sensory
regions. Each region could help train the adjacent slower region
through concurrent offline replay. The hippocampus—both the
MSP and TSP—may be especially important for tracking infor-
mation across the time period of 1 day (or across one waking
period, for animals sleeping in shorter bouts). Then, with the first
bout of sleep, the hippocampus starts to help adjacent neocortical
areas build representations of the new information from the prior
waking period.
While some learning does occur in the neocortex during initial

waking exposure, both in our model and in the brain, it may not
typically stabilize or be strong enough to support behavior prior
to hippocampal influence during sleep (23, 99, 100). When
information is strongly consistent with prior knowledge, there
may be the possibility for small tweaks that allow direct integra-
tion into neocortical areas without the need for extensive offline
restructuring (101, 102). Our account, as well as the original
CLS account, predicts that, with enough exposure, any informa-
tion, even completely novel information, can eventually be
learned in the neocortex without hippocampal influence [perhaps
explaining the high functioning of developmental amnesiacs
(103)]. However, novel information can be learned much faster if
it goes through the process of quick encoding in the hippocam-
pus followed by neocortical integration offline.
In summary, the model provides a framework for understand-

ing how the hippocampus can help shape new representations in
neocortex, and how alternating NREM/REM sleep cycles across
the night continues to allow additions to this knowledge as we
encounter new information over time. We hope it will inspire
empirical tests and provide a foundation for exploring the mecha-
nisms underlying a range of sleep-dependent memory findings.

Methods

Wake Training. We implemented our simulations in the Emergent neural net-
work framework (104). We departed from the Emergent default learning in
using a fully error-driven learning scheme with CHL (41). CHL computes errors
locally but behaves similarly to the backpropagation algorithm (59, 105). In
each trial, CHL contrasts two states: a “plus” state, in which targets are provided,
and a “minus” state, where the model makes a guess without a target. Given a
learning rate parameter ε and settled sender (s) and receiver (r) activations at

each synapse in the last cycle of the plus (+) and minus (�) phases, each weight
update (Δw) is calculated as

Δw = ε½ðs+r+Þ � ðs�r�Þ�:
In the first simulation, the model was trained on 15 satellite exemplars from

three categories (Fig. 2A). All results are averages across 100 model initializations.
All weights were randomly sampled from uniform distributions with every new ini-
tialization (means and ranges are listed in SI Appendix).

In simulation 2, the training protocol involved, first, overtraining the model
with only the neocortical hidden layer active on Env 1 items to simulate consoli-
dated remote knowledge. We trained the model for 30 epochs after reaching
zero error. We then switched to Env 2 training, with both the hippocampus and
neocortex engaged in learning; the learning process continued until our error
measure reached zero. Weight changes were calculated via CHL (Eq1) based on
the coactivation differences between the plus and minus phases in both simula-
tions. All results are averages across 100 model initializations.

Wake Testing. For both simulations, testing involved presenting the input pat-
terns and allowing the model to generate an output using its learned weights.
In simulation 1, performance was computed for each of the 78 shared and
27 unique features across the satellite exemplars on feature-held-out testing
trials in each testing epoch. The model’s performance on each trial was judged
as correct if it generated activity on the correct units greater than a threshold
of 0.5 and activity on incorrect units less than 0.5. Shared and unique
proportion-correct scores were then separately calculated by averaging binary
correct/incorrect responses in each feature category for each model initialization.
These results were then averaged across random initializations.

In simulation 2, testing involved presenting an item on the input layer and
then evaluating whether it generated activity on the correct units in the output
layer greater than a threshold of 0.5 and activity on incorrect units less than 0.5.
Each testing epoch consisted of testing all 10 Env 1 items and all 10 Env 2 items,
and performance on each environment’s items was calculated separately by aver-
aging binary correct/incorrect responses across the ten items.

Sleep Activity Dynamics. Sleep epochs were initiated with a random noise
injection, after which all external inputs were silenced. Recirculating activity
dynamics allowed the model to autonomously reinstate learned item attractors.
Each synapse in the model was subject to short-term synaptic depression on its
weight as a function of coactivation-induced calcium accumulation. Given Cainc ,
Cadec time constant parameters, s sender activation, r receiver activation, and wt
synaptic weight, the calcium update on each processing cycle was computed as

ΔCa = Caincð1� CaÞ
�
ðr � s � wtÞ � Cadec

�
Ca:

Given a calcium-based depression threshold parameter Cathr , and gain
parameter SDgain, synaptic depression was computed on the weights as follows:

If Ca > Cathr ,

Wt = Wt �
�
1 �

��
SDgain ð1� CathrÞ�1

�
ðCa� CathrÞ

��2
:

Inhibitory oscillations were implemented via a parameterized sinusoidal
wave. Given the default layer FFFB (Feedforward Feedback) inhibitory conduc-
tance Gi parameter Gidef , amplitude A, period P, a midline shift S and processing
cycle c, the FFFB Gi parameter Gic for a given cycle for each layer was set as

Gic = Gidef � A � sin
�
2π � ðP � cÞ�1

�
+ S:

Sleep Learning. Sleep learning events were defined by the stability of model
activity, calculated as the average temporal autocorrelation of layer activity in the
model. Given n model layers’ activity L indexed by i, processing cycle c and the
Pearson’s correlation function Corr, stability was computed as

Stability = ∑
n

i=0
CorrðLiðcÞ, ðLiðc � 1ÞÞn�1:

Plus phases were marked as contiguous cycles where stability was greater
than a strict plus threshold (0.999965 and 0.9999 for simulations 1 and 2,
respectively). Minus phases were marked by the periods following plus phases
where stability was greater than the minus threshold (0.997465 and 0.9899 for
simulations 1 and 2, respectively). These thresholds were set in order to obtain
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desirable plus and minus phase attractor dynamics in the two simulations. In a
scaled-up network exposed to many domains, it may be more feasible to keep
these parameters stable across tasks, a possibility that could be explored in
future work. Weights were updated at the end of every minus phase. Weight
changes were computed using a modified version of the CHL learning rule used
in wake training (Eq1). Changes were based on the difference in average minus
and plus phase coactivations at each synapse,

Δw = ε½ðs+r+Þ � ðs�r�Þ�:
This average allows coactivity dynamics throughout the minus phase (both high

and low phases of inhibition) to contribute to the contrast with the plus phase.

Sleep Stages and Simulation Protocols. NREM in both simulations involved
all C-HORSE layers and the neocortical hidden layer being active, allowing unim-
peded communication between the hippocampus and neocortex. We set up the
simulations with the possibility for bidirectional influence, given evidence that the
neocortex influences hippocampal replay (106), but, given the stronger learning of
new information in the hippocampus, we expect the effective influence to run
mostly from hippocampus to neocortex (107). Indeed, we found very similar
results when limiting the flow of activity from hippocampus to neocortex during
NREM. For REM sleep, C-HORSE and the neocortex were disconnected (lesioned
connection from entorhinal cortex to hippocampus), implementing the idea that
neocortex dynamics are less influenced by the hippocampus during REM. As we
were focused on neocortical learning, C-HORSE projections in both sleep stages
were nonlearning. Only input/output layer <�> neocortical layer projections
were updated during sleep.

In simulation 1, after the wake training criterion was achieved, the model
executed one 30,000-cycle epoch of NREM sleep. Test epochs before and after
sleep established performance change over sleep. In the second simulation, after
neocortex-only Env 1 item training and full model Env 2 item training, the
model either performed five alternating 10,000-cycle epochs of NREM and REM
sleep or five 10,000-cycle epochs of consecutive NREM. Test epochs established

performance after every sleep epoch. We did some parameter searching to find
the approximately best performing length of the sleep blocks. We found that, if
blocks were too short, there was not enough replay for there to be substantial
performance changes during sleep. If the blocks were too long in simulation 1
(for example, 100,000 cycles), we found that—while we replicated the shared
benefit—the model’s performance on unique features deteriorated, suggesting
eventual deterioration of replay dynamics. In simulation 2, if the sleep blocks
were too long (for example, 50,000 cycles), NREM sleep caused so much dam-
age to cortical Env 1 representations that REM sleep was not able to facilitate
their repair.

In the simulation 2 alternating condition, we ran 10 total sleep blocks with 5
alternating blocks of NREM and REM sleep each in order to match the number
of alternations in an average night of adult human sleep (108). To explore
whether the protection to Env 1 performance conferred by the alternating sched-
ule would continue with additional sleep blocks, we ran simulations in which
we allowed the model to sleep for either 15 alternating blocks of NREM and
REM each (30 total blocks) or 15 sequential NREM blocks. We found that, while
there was a reduction in Env 1 performance over the sleep blocks in both the
alternating NREM/REM and NREM-only conditions, there was a continued
substantial benefit conferred by the alternating NREM/REM condition to Env 1
performance.

Data, Materials, and Software Availability. Data deposition: Model code has
been deposited in GitHub (https://github.com/schapirolab/SinghNormanSchapiro_
PNAS22) (109).
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