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Learning the histone codes with large geno-
mic windows and three-dimensional chro-
matin interactions using transformer

Dohoon Lee 1,2, Jeewon Yang 3 & Sun Kim 3,4,5,6

The quantitative characterization of the transcriptional control by histone
modifications has been challenged by many computational studies, but most
of them only focus on narrow and linear genomic regions around promoters,
leaving a room for improvement. We present Chromoformer, a transformer-
based, three-dimensional chromatin conformation-aware deep learning
architecture that achieves the state-of-the-art performance in the quantitative
deciphering of the histone codes in gene regulation. The core essence of
Chromoformer architecture lies in the three variants of attention operation,
each specialized to model individual hierarchy of transcriptional regulation
involving from core promoters to distal elements in contact with promoters
through three-dimensional chromatin interactions. In-depth interpretation of
Chromoformer reveals that it adaptively utilizes the long-range dependencies
between histone modifications associated with transcription initiation and
elongation. We also show that the quantitative kinetics of transcription fac-
tories and Polycomb group bodies can be captured by Chromoformer.
Together, our study highlights the great advantage of attention-based deep
modeling of complex interactions in epigenomes.

The control of gene expression is carried out by diverse groups of
regulators, including transcription factors, coactivators, corepressors
along with genomic sequence elements. However, the basic premise
behind the interplay among these factors is the appropriate config-
uration of the covalent modifications of histone tails, or histone
modifications (HMs), at the relevant genomic regions since they play a
pivotal role in the regulation of chromatin accessibility. Thus, it can be
conceived that an amount of HMs and their combinations encode the
regulatory potential of the nearby genomic regions.

This notion is referred to as the ‘histone code hypothesis’1. There
have been a number of computational and quantitative approaches to
crack the regulatory codeof gene expression encodedbyHMs.Most of
them are predictive models that utilize the levels of HMs at promoters
surrounding transcription start sites (TSSs) to predict the expression

level of the corresponding gene. Notably, recent studies have shown
the superior performance of deep learning models compared to the
conventional machine learning models in this task2,3.

To date, deep learning has been making remarkable break-
throughs in diverse fields of computational biology, ranging from the
characterization of binding the specificity of DNA- and RNA- binding
proteins4 to the longstanding problem of the protein structure pre-
diction based on its amino acid sequence5. These successes of deep
learning in biology could not be achieved without the invention of
novel model architectures and also their clever applications for com-
plex biological problems. In that sense, the high complexity of histone
code indeed made it a great target for deep learning, as shown in the
existing approaches, but they still pose two major limitations that
motivate the development of a new approach.
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One is that they could only use narrow genomic windows around
TSSs. This is because the deep learning architectures that those
models were based on, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), were not effective in modeling
the dependencies within long sequences. CNNs are highly specialized
for learning local patterns of data, but it is challenging for them to
learn the distant dependencies between the patterns. Although
developed to model sequential data, RNN architectures also have dif-
ficulties in capturing the long-range dependencies clearly since the
information embedded in a single position becomes gradually diluted
and gets contaminated while themodel computation travels along the
positions between the two distant positions. Indeed, advanced forms
of RNN cells such as Gated Recurrent Units6 or Long Short-Term
Memory (LSTM)7 partially ameliorate this problem, but the intrinsic
inefficiency in modeling long sequences due to the recurrence still
remains.

Next, a majority of the deep learning models do not account for
the distal cis-regulation mediated by three-dimensional (3D) chroma-
tin folding, even though it has been widely known that the physical
interactions between core promoters and distal cis-regulatory ele-
ments critically modulates the gene expression8,9. In other words, the
regulatory information conveyed by the histone code is allowed to not
only propagate locally, but also jump between distant genomic loci
through 3D chromatin interactions10. Fortunately, the recent
advancement of high-throughput measurement technologies such as
Hi-C11 succeeded in providing a fine-resolution view of 3D chromatin
interactions at kilobase-scale and offered us with unprecedented
opportunities for exploiting such valuable information to model the
comprehensive view of gene regulation. There are few emerging stu-
dies that explicitly take the 3D chromatin interactions into con-
sideration to predict the gene expression. One such example is GC-
MERGE12, a graph neural network (GNN) to propagate information
between interacting genomic regions to predict the expression levels
of genes. Although it is a proof-of-concept model that cannot be
applied to genes without any chromatin interactions and only per-
forms 10kbpgenomic bin-level predictions but not at gene-level, it still
underscores the promise of modeling epigenomic contexts of distal
genomic regions along with those of promoters.

Meanwhile, a deep learning model architecture named transfor-
mer, which was originally developed for natural language processing13,
has been exhibiting great potential for understanding the latent
grammar of DNA sequences14, amino acid sequences15, and even their
alignments16. In particular, in this study, we noticed that the two main
functionalities of the transformer architecture are highly suitable to
tackle the two aforementioned challenges. First, transformers can
precisely model the long-range dependencies in sequential data. This
is elegantly done by the addition of positional encodings to input
sequences. These input features harboring positional information are
treated independently and fed into a subsequent self-attentionmodule
which calculates the all-pairwise dependencies between the input
features. Therefore, long-rangedependencies canbe capturedwithout
the interference of features located between the pair. Secondly, the
transformer architecture can also be applied to model unordered sets
of entities along with the interactions among them. Of note, this is not
straightforward for most of the deep learning architectures since the
operations comprising them depend on input positions. On the other
hand, the operations comprising the transformer are basically
permutation-invariant. The interactions between input features are
only considered in self-attention operations, and all the other opera-
tions are done in a position-wise manner, so they can be applied to a
model an unordered set of features. Together, these two strengths of
the transformer architecture make it a promising choice for the
quantitative modeling of histone codes by allowing us to utilize wider
genomic windows near TSSs and histone codes at multiple distal reg-
ulatory regions simultaneously.

Here, we present a transformer-based deep learning architecture
named Chromoformer to predict the gene expression levels based on
theHMs at thewide neighborhood of TSSs aswell as theHMsplaced at
the distal regulatory elements. Based on the model architecture con-
sisting of three variants of self-attention operations to reflect the
hierarchy of 3D gene regulation, Chromoformer achieves far better
predictive power compared to the other deep learning models for
gene expression prediction. Moreover, through the comprehensive
investigation on how the use of transformer architecture contributed
to the superior performance of the model, we demonstrate that the
long-rangemodeling of epigenetic context near TSS and simultaneous
integrative modeling of distal regulatory regions actually worked to
improve performances. Finally, we show that we could draw artificial
intelligence-driven hypotheses for the quantitative effect of cis-reg-
ulation by the two subdomains within nuclei, transcription factories,
and silencing hubs, through the interpretation of the dynamics of
latent embeddings of the regulatory states learned by Chromoformer.

Results
Chromoformer adopts three-level transformer architecture that
reflects the hierarchy of 3D gene regulation
The core design principle of Chromoformer is twofold. One is to
extract as much proximal regulatory information as possible from the
HMs at the core promoters, and the other is to incorporate the distant
histone codes whose information is transmitted to the core promoter
through 3D chromatin interactions. To fully utilize the transformer
architecture to model the complex dynamics of cis-regulations invol-
vingmultiple layers,we conceptually decomposed the gene regulation
into a three-layered hierarchy: (1) cis-regulation by core promoters, (2)
3D pairwise interaction between a core promoter and a putative cis-
regulatory regions (pCREs) and (3) a collective regulatory effect
imposed by the set of 3D pairwise interactions. To computationally
emulate this hierarchy, we introduced three transformer-based sub-
modules called Embedding, Pairwise Interaction, and Regulation
transformers that are specialized to learn the respective grammar of
gene expression regulation in the order of increasing complexity.

Before illustrating the model architecture, we briefly describe the
input features used throughout this study. Chromoformer was trained
using read depth values from histone ChIP-seq experiments for seven
major HMs (H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3,
H3K27ac, and H3K9ac) (Supplementary Fig. 1a). Read depths were
averaged and log2-transformed for fixed-sized bins across 40 kbp
regions flanking TSSs (Fig. 1a and Supplementary Fig. 1b). To account
for the distal cis-regulation, we additionally utilized the HM signals at
pCREs that are known to interact with the core promoter in the cor-
responding cell type (Supplementary Fig. 1c). For that, an experimen-
tally validated set of pCREs for each core promoter was obtained using
a publicly available collection of promoter-capture Hi-C (pcHi-C)
data17. The 3D chromatin interactions were characterized at the reso-
lution of HindIII restriction fragments. The interactions were char-
acterized at adequately high-resolution, as the median and average
length of those fragmentswere 4797 bpand5640bp, respectively, and
about 95% of them were less than 10 kbp (Supplementary Fig. 2).

The full model architecture used in this study is illustrated in
Fig. 1b. At the highest level, it consists of three independent modules
each of which accepts input features at different resolutions and in
turn produces an embedding vector of the regulatory state at the core
promoter. The resulting three regulatory embeddings are con-
catenated to form a multi-scale regulatory embedding which is sub-
sequently fed into fully-connected layers to predict the expression
level of the gene. The useofmulti-scale regulatoryembedding resulted
in better performance than using any single-resolution regulatory
embedding, and the combination of all three resolutions gave a
robustly higher performance increase than the combination of any
two resolutions (Supplementary Fig. 3). Meanwhile, combining
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Fig. 1 | Chromoformer model architecture. a Input features. To predict the
expression of a gene using levels of histone modifications (HMs), we extracted
binned average signals of HMs from both the core promoter and putative cis-
regulatory regions (pCREs). b Chromoformer architecture. Three independent
modules were used to produce multi-scale representation of gene expression
regulation. Each of the modules is fed with input HM features at different
resolutions to produce an embedding vector reflecting the regulatory state of
the core promoter. c Embedding transformer architecture. Position-encoded
HM signals of core promoter features are transformed into core promoter

embeddings through self-attention. d Pairwise Interaction transformer archi-
tecture. Position-encoded HM signals of pCREs are used to transform the core
promoter embeddings into Pairwise Interaction embeddings through encoder-
decoder attention. e Regulation transformer architecture. Using the whole set of
the core promoter and Pairwise Interaction embeddings and gated self-atten-
tion, the Regulation transformer learns how the pCREs collectively regulate the
core promoter. To guide the model to put greater attention to frequently
occurring three-dimensional (3D) interactions, the normalized interaction fre-
quency vector is added to self-attention affinity matrices.
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regulatory embeddings at different resolutions using self-attention
operation13,18–20 did not seem to have significant advantages over
concatenation, so we decided to concatenate regulatory embeddings
for the sake of the simplicity of the model (Supplementary Fig. 4). The
Embedding transformer (Fig. 1c) learns the histone codes acting at the
direct vicinity of a TSS and produces a fixed-sized vector that sum-
marizes the epigenetic state of the region. This submodule aloneworks
very similar to the existing machine learning models for HM-based
gene expression prediction, but we expected that the use of trans-
former architecture will allow the model to precisely identify relevant
signals within a wide-range view (up to 40 kbp) of core promoter HM
contexts without any performance degradation. Next, the resulting
core promoter embeddings are further updated by the Pairwise
Interaction transformer (Fig. 1d) in the context of pairwise cis-reg-
ulatory interactions between promoters and pCREs. Instead of using
typical self-attention layers as in the Embedding transformer, this
module is built with encoder-decoder attention layers. Since the
activity of a promoter is modulated by the contact with pCREs, the
encoder-decoder framework was chosen to reflect this by decoding
the promoter embeddings given the context of the pCRE features. We
call the resulting embedding vectors pairwise interaction embeddings
as they carry the information of one-to-one relationship between
promoters and pCREs. Finally, the Regulation transformer (Fig. 1e)
accepts a union set of the core promoter and pairwise interaction
embeddings and finally produces a regulatory embedding by inte-
grating them. This module models the whole landscape of cis-regula-
tion using gated self-attention layers. The normalized interaction
frequencies (see Supplementary Method 1) are injected to self-
attention score matrices to guide the model with the priorities of
interactions. Detailed explanation of the model is illustrated in Meth-
ods and Supplementary Note 1.

Chromoformer outperforms existing deep models for gene
expression prediction based on epigenetic features
We benchmarked the performance of Chromoformer with three
baseline deep-learning models using the optimal settings proposed in
the respective studies. We first trained DeepChrome2, a convolutional
neural network that learns the local combination of HMs through the
weights of convolutional filters to predict gene expressions. We also
trained AttentiveChrome3 and DeepDiff21 models. The former com-
bines LSTM and global attention mechanism to enhance the inter-
pretability of the model, and the latter extends it to predict the fold-
change of gene expression between a pair of cell types. Lastly, an HM-
based hybrid CNN-RNN model proposed by Kang et al.22 (HM-CRNN)
was also chosen for the comparison. It learns and captures the
meaningful local combination of HMs through CNN and comprehends
their sequential dependencies through RNN.

The predictive performance of Chromoformer was comprehen-
sively evaluated on three different gene expression prediction tasks:
Binary gene expression state classification, expression level regression,
and expression fold-change regression. In the binary gene expression
state classification task, model predicts whether an expression level of
a gene is above median or not. This problem formulation was first
proposed by Singh et al.2, and it has been so far widely adopted for
many studies, including the three aforementioned baseline studies. In
the expression level regression task, models were trained to predict
log2-transformed RPKM values, and the expression fold-change
regression task evaluates the performance to predict the expression
fold-changebetween the two cell types for eachgene. For each task, we
designed a tailored variant of Chromoformer models (Fig. 2a), all of
which are based on the multi-scale backbone of Chromoformer
(Fig. 1b–e). Chromoformer-classifier (Chromoformer-clf) was built for
the binary gene expression state classification task. It has a classifica-
tion head with fully-connected layers that produces a two-dimensional
probability vector denoting the probability of high or low expression.

Chromoformer-regressor (Chromoformer-reg) was designed for the
expression level regression task using a regression head producing a
single scalar. Chromoformer for fold-change regression (Chromo-
former-diff) adopts a Siamese neural network architecture to accept
HM profiles from two different cell types (Supplementary Fig. 5a). The
two Chromoformer backbone share their weights, so that the two HM
profiles can be embedded in the same latent space and their differ-
ences can be nonlinearly translated into fold-change value by the
subsequent regression head.

Model performances were evaluated for 11 cell types among the
127 cell types profiled by Roadmap Epigenomics23 and ENCODE
project24. Those 11 cell types were chosen because all of the gene
expression profiles, ChIP-seq data for seven major HMs, and pcHi-C
interaction profiles were publicly available for each of the cell types. A
total of 18,955 genes were split into four sets for 4-fold cross-validation
(CV), each consisting of 5045, 4751, 4605, and4554genes. For everyCV
fold, each set became a held-out validation set, while the other three
sets were used for model training. To avoid unwanted information
leakage from the training to validation set through 3D chromatin
folding involving promoter-promoter interaction, we ensured that no
two genes in different sets are located on the same chromosome.

As a result, our multi-scale Chromoformer model achieved sig-
nificant performance improvement over existing baseline deep learn-
ing models in all three tasks, suggesting that the proposed model
architecture was successful in modeling the regulatory hierarchy of
gene expression (Fig. 2b–f and Supplementary Figs. 5b, 6a, b and 7).
These results were consistently reproduced for all 11 cell types exam-
ined. In detail, for the binary gene expression state classification task,
Chromoformer-clf achieved significant performance improvement
over existing baseline deep learning models in terms of area under
receiver operating characteristic curve (ROC-AUC) (Fig. 2b), accuracy,
and average precision (Supplementary Fig. 6a, b). Besides, we found
that the prediction probabilities produced by Chromoformer-clf
showed a very high positive correlation with the actual expression
levels (Supplementary Fig. 6c). These well-calibrated prediction
probabilities for the quantitative expression levels support the use of
binary classification formulation for the quantitativemodeling of HMs.
Chromoformer-clf also far outperformed GC-MERGE, a GNN using
three-dimensional chromatin interaction to predict gene expression
(Fig. 2c). Importantly, GC-MERGE can only predict for genes involved
in at least one chromatin interaction. Also, GC-MERGE can only predict
the gene expression in the unit of 10 kbp genomic bins, therefore it
cannot produce gene-wise prediction when two or more genes are
present in the same bin. Therefore, Chromoformer was retrained from
scratch for a subset of geneswhoseexpressioncanbepredictedbyGC-
MERGE for a fair comparison. Meanwhile, Chromoformer-reg out-
performed the regression variants of benchmark models in terms of
Pearson’s correlation coefficient (Fig. 2d) and R2 (Supplementary Fig.
7). Chromoformer-diff also had significantly better performance over
the state-of-the-art model DeepDiff (Fig. 2e, f). Of note, it was also
much better than the regression performance using the ratio of pre-
diction probabilities of classificationmodels as predicted fold-changes
(Fig. 2e). Collectively, these results show the effectiveness of Chro-
moformer architecture in epigenetic gene regulation prediction.

Training with large window size and cis-regulatory interactions
contributed to the performance improvement in
Chromoformer
To dissect the performance of Chromoformer into the contributions of
individual factors, we first inspected for the effect of modeling wide-
range windows around the TSS up to 40kbp. By gradually increasing
the window size around TSS from 2kbp to 40kbp, we observed a
consistent performance increase for our model, while other deep
learning models showed considerable performance degradation when
the window size was larger than 10 kbp (Fig. 3a). Larger windows are
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Fig. 2 | Chromoformer outperformed existing deep learning models in pre-
dicting gene expression in various aspects. a Three variants of Chromoformer
evaluated in this study. Chromoformer-classifier (Chromoformer-clf) predicts
binary gene expression labels. Chromoformer-regressor (Chromoformer-reg)
predicts the expression levels (in log2RPKM)of genes. Chromoformer-diff predicts
the log2 fold-change of gene expression given the HM configurations of two dif-
ferent cell types for each gene. b Cross-validation (n = 4) performances of
Chromoformer-clf compared to the benchmark deep learning models that only
utilize the core promoter features. c Comparison of cross-validation (n = 4) per-
formances with GC-MERGE, a graph neural network model that utilizes 3D cis-
regulatory interactions. For fair comparisons, Chromoformer-clf models were
retrained from scratch using only a subset of genes that GC-MERGE can predict.

d Cross-validation (n = 4) performances of Chromoformer-reg compared to the
benchmark deep learning models. Prediction heads of benchmark models were
modified to produce single scalar values instead of binary labels. eCross-validation
(n=4) performances of Chromoformer-diff compared to the benchmark deep
learning models. Evaluation of the fold-change prediction based on the ratio of
classification probabilities are shown as a reference (denoted as DeepChrome-clf,
AttentiveChrome-clf, HM-CRNN-clf, and Chromoformer-clf). f Pairwise perfor-
mance comparison between DeepDiff and Chromoformer-diff. Throughout
b–e the center line denotes the median, the upper and lower box limits denote
upper and lower quartiles, and the whiskers denote 1.5× interquartile range. AUC,
Areaunder the receiver operating characteristic curve; CV,Cross-validation. Source
data are provided as a Source Data file.
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more likely to include TSSs of other genes, which jeopardizes themodel
performance since the model will be more prone to the spurious
attention towards those irrelevant TSSs. This is because the attention
score for each genomic position is computed against global context
vectors without accounting for the absolute distance to the target TSS.
In the case of the transformer architecture, however, scaled-dot pro-
duct attention with positional encoding allows the computation of
attention scores among all pairs of positions without introducing a
global context vector, thereby allowing us to query which position
within the input window the specific TSS of our interest is attending on.
Thus, these results emphasize the strength of the transformer archi-
tecture in pinpointing histone codes that are relevant to the regulation
of gene expression within a wide-range window around the TSS.

We next examined whether the incorporation of distal cis-reg-
ulatory interactions into modeling truly contributed to the perfor-
mance improvement. To this end, we eliminated Pairwise Interaction
and Regulation transformers from the Chromoformer model to see
how well it performs when trained without using distal cis-regulatory
interactions. We retrained the ablated Chromoformer models and
compared their performances to the intact Chromoformer model in
termsofROC-AUC (Fig. 3b). This revealed that theChromoformer in its
intact form showed significantly high performances in most of the
analyzed cell types (10 out of 11), implying that the inclusion of distal
pCREs and their interactions into deep modeling helped learning
epigenetic factors that govern the expression of genes. To further
support that this improvement is specifically due to the modeling of

Fig. 3 | Contributing factors to the superior performance of Chromoformer.
a Effect of input window size around TSS on the model performance. Chromo-
former and the other benchmark models were trained for five different window
sizes (2 kbp, 4 kbp, 10 kbp, 20 kbp, and 40kbp), while all the other training pro-
cedures were kept the same as previously. Bold lines denote the average validation
AUC across 4-fold cross-validation for each window size, while the shades denote
the standard error of them. b Effect of taking distal cis-regulations by pCREs into
account. We trained ablated Chromoformer models which only have the Embed-
ding transformer and thus cannot incorporate the cis-regulatory information
between the core promoter and pCREs. The resulting cross-validation (n = 4)

performances were comparedwith the intact Chromoformermodel. cComparison
of the cross-validation (n = 4) performances for a subset of genes without or with
known chromatin interactions. ROC-AUC scores of Embedding transformer-only
Chromoformer and intact Chromoformer were computed only for a subset of
genes thatdonot have known cis-regulatory interactions (Upper), and geneswith at
least one known cis-regulatory interactions. P-values from two-sided paired t-tests
are shown. In the boxplot, the center line denotes themedian, the upper and lower
box limits denote upper and lower quartiles, and the whiskers denote 1.5× inter-
quartile range. Source data are provided as a Source Data file.
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cis-regulatory interactions, but not due to the mere complexity of the
model, we investigated the modeling performance separately for the
genes whose promoters do not interact with any pCREs. Since no
biologically meaningful information would be transferred to the core
promoter embeddings of those genes through the Pairwise Interaction
and Regulation transformers, we can discern whether the dominant
factor that contributed to the performance increase was the infor-
mation transfer between genomic regions or the increased model
complexity itself. As expected, we observed that Chromoformer
showed no significant improvements for the majority of cell types
(Fig. 3c). Besides, the performance increase was still significant for the
genes having at least one interaction with pCREs (Fig. 3c). Further-
more, the contribution of intra-TAD interactions to the performance
were shown to be greater than inter-TAD interactions, again support-
ing the biological relevance of distal cis-regulatory interactions in
Chromoformer training (Supplementary Fig. 8). Together, it indicates
that the contribution of cis-regulatorymodeling is far greater than that
of increased modeling capacity arising from deeper layers.

Chromoformer learns to attend to the distant transcriptional
elongation signals at gene bodies
Given the improved performance of the Chromoformer model com-
pared to the other deep learning models, as well as the success of the
wide-range modeling of core promoter region, we then asked if there
are any unique patterns of HMs captured by Embedding transformers.
As the self-attention layers inside the embedding transformers were
designed to comprehend the dependencies of HMs at core promoters,
we postulated that any such dependencies that the Chromoformer
model is aware of can be revealed through the self-attention map it
yields. Therefore, the attention weights produced by the Embedding
transformer of Chromoformer-clf during the prediction were visua-
lized to analyze the internal behavior of themodel. Figure 4a shows an
example snapshot of attention weights during the prediction of the
expression of anti-silencing function 1 A (ASF1A) histone chaperone in
the H1 cells (Epigenome identifier E003). Interestingly, we observed
that a majority of attention heads were prominently giving strong
attention to 4-6 kbp downstream the TSS than any other specific
positions (Fig. 4a, b). This was rather unexpected since most of the
regulatory information delivered by HMs are known to be deposited
near the TSS, where the binding of transcription factors and tran-
scriptional initiationmostly take place. In linewith this notion, average
signals of HMsdisplayed their characteristic patternsmostly at the TSS
(Fig. 4c). Specifically, methylations at H3K4 and histone acetylations
were associated with higher levels of gene expressions, whereas high
levels of H3K9me3 and H3K27me3modifications were associated with
low expression of genes.

In striking contrast, the average H3K36me3 signal of the two
classes of genes (i.e., high/low expression) did not show any notable
difference at the TSS, but the differencewasmaximized at the 4–6 kbp
region downstream the TSS (Fig. 4d). H3K36me3 is established by the
addition of methyl groups at H3K36 by SETD2 histone methyl-
transferase, and SETD2 is known to be recruited to the C-terminal
domains of RNA polymerases in concert with the transcriptional
elongation25. Thus, H3K36me3 is widely appreciated as a transcrip-
tional elongation-associated HM that predominantly marks the bodies
of actively-transcribed genes. The average attention weights imposed
by the TSS-containing bin reached its maximum exactly at 4-6 kbp
region downstream the TSS (Fig. 4e), suggesting that the model was
well optimized to focus on the most discriminative genomic region in
terms of H3K36me3 signals. Intriguingly, the extent of the attention
given at the 4–6 kbp region downstream TSS was far greater for genes
with high expression than low expression (Fig. 4e). In other words, the
Embedding transformer was trained to adaptively control the amount
of attention given on the HMs at the gene body, based on the histone
context at the direct vicinity of the TSS, as illustrated in Fig. 4f. These

patterns of self-attentionweights were highly consistent across the cell
types examined (Supplementary Fig. 9). One explanation for this
behavior of the Embedding transformer is that themodel seeks for the
complementary evidence that reinforces its confidence for the initial
guess on the gene expression, which is basedon theHMstates near the
TSS. In this sense, H3K36me3 is a well-suited candidate for such a role
since its discriminative power resides where the other HMs do not
show large variabilities, hence being left as the only clear signal in
those regions. The importance of H3K36me3 at downstream gene
bodies was further supported by the feature ablation experiment.
When the H3K36me3 signals were excluded from model training and
only the other six HMs were used as input features, we observed a
significant decrease inperformance (Fig. 4g).Moreover,wediscovered
that the Embedding transformer predominantly lost specific attention
to the 4–6 kbp downstream region (Fig. 4h).

Notably, H3K36me3 ablation was the most detrimental in model
performance compared to the ablation of any other individual HMs
(Supplementary Fig. 10a). This implies that the distribution of
H3K36me3 may not be readily inferred by the other HMs, as shown by
its low spatial correlation with them (Supplementary Fig. 10b). Fur-
thermore, while ablating the combinations of other HMs correspond-
ing to the chromHMM-defined 50 chromatin states generally resulted
in poor performance, the effect of H3K36me3 almost seemed to be
independent (Supplementary Fig. 10c, d). We also noticed that abla-
tion of the two enhancermarks, H3K4me1 andH3K27ac, was not solely
sufficient to significantly degrade the performance of Chromoformer,
while further ablating H3K4me3 and H3K9ac incurred drastic perfor-
mance drop (Supplementary Fig. 10c). This implies the spatial corre-
lation or the redundancy of active HMs (Supplementary Fig. 10b) were
effectively compensating the absence of the regulatory information
conveyed by other active HMs. In addition, it may be due the com-
pensation through promoter-promoter interactions between active
promoters marked by H3K4me3 or H3K9ac that hint the existence of
the transcriptional hubs enriched with enhancers. Nevertheless, the
ablation of H3K4me1 and H3K27ac with additional HMs generally
showed high-performance degradation without H3K36me3 ablation,
suggesting the overall importance of HMs marking enhancers.

It seems that the importance of the feature representing tran-
scriptional elongation was particularly important in this problem set-
ting because themodelwas trained to predict the steady-state levels of
mRNA measured by RNA-seq. Steady-state levels of mRNA are deter-
mined not only by the transcriptional initiation, but also by various
factors, including the rate of transcriptional elongation and mRNA
stability. According to a study comparing different measurement
technologies used for gene expression prediction tasks26, predicting
the expression levels measured by cap analysis of gene expression
(CAGE) was shown to be easier than predicting RNA-seq-based
expression levels. This study also showed that H3K36me3 was pre-
dictive for RNA-seq-based expression levels, while core promoter HMs
including H3K4me3 were more useful for CAGE measurements. They
imply that the hidden factors, including the efficacy of transcriptional
elongation, reside in RNA-seq measurements, and they cannot be
readily accounted for with core promoter features alone. Thus, we
speculate that the superior performance of Chromoformermodelmay
arise from the ability to model the rate of transcriptional elongation,
which leaves its trace as H3K36me3 in the gene body. These results,
based on the great interpretability of the Embedding transformer,
collectively suggest that the Embedding transformer learned the dis-
tant correlation between histone codes dictating active transcription
near TSS and high levels of H3K36me3 representing transcriptional
elongation at gene body, especially at the gene bodies 4-6 kbp
downstream the TSS. Moreover, this in part explains why the perfor-
mance of Chromoformer showed consistent increase along the
increase of window size, as the model could collect additional evi-
dence for gene expression also from the gene body.
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Analyzing cis-regulome through cis-regulatory impactpredicted
by Chromoformer
We then examined the effect of modeling cis-regulation by distal
pCREs in detail. As it has already been shown that the inclusion of
Pairwise Interaction and Regulation transformers results in better
overall performance, we sought for a more detailed interpretation

for the gene-level effect of regulatory interaction modeling. To this
end, we devised a gene-level measure to quantify the predicted
impact of the cis-regulation based on the latent representation
learned by Chromoformer. Specifically, we measured the Euclidean
distance between the interaction-aware regulatory embedding
produced by Pairwise Interaction and Regulation transformers, and
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the original core promoter embedding resulting from Embedding
transformers (Fig. 5a). For convenience, we termed this quantity as
‘predicted cis-regulatory impact (PCRI)’.

To assure that PCRI truly reflects the dynamics of latent vector
representations as well as the effect of regulatory interactions, we first
asked how it eventually affected the prediction outcome probabilities.
The fold-change inpredictedgene expressionbetween the interaction-
aware Chromoformer-reg and interaction-free Chromoformer-reg was
measured for each gene to determine the amount of perturbation on
the prediction probability. As a result, fold-changes for the two groups
of genes with above and below half PCRI were significantly different
within each of the low expression and high expression groups of genes
in H1 cells (E003) (Fig. 5b). Similarly, PCRI and fold-change for the
highly expressed genes were positively correlated (Spearman’s
r = 0.39, p < 10−308) and PCRI and fold-change for the lowly expressed
genes were negatively correlated (Spearman’s r = −0.54, p < 10−308)
(Fig. 5c). In short, it can be summarized that high PCRI for highly-
expressed genes made those genes predicted with higher gene
expression, and high PCRI for lowly-expressed genes resulted in lower
predicted expression.

To get deeper insights into how the Chromoformer model
could accurately discern pCREs associated with the activation or
suppression of gene expressions, we analyzed the characteristics
of pCREs assigned for genes at the highest extreme in terms of
PCRI, i.e., genes predicted to have greatest impact by distal cis-
regulation. We collected 250 highly-expressed genes with the
highest PCRI values from each fold of the 4-fold CV and examined
the average signals of HMs near the pCREs associated with those
1000 genes. As a result, pCREs for highly-expressed genes with
high PCRI on average showed increased levels of HMs associated
with transcriptional activation compared to those for lowly-
expressed genes (Fig. 5d, shown for H1 cells). In particular, HMs
representing enhancers (H3K27ac, H3K9ac, and H3K4me1), active
promoters (H3K4me3 and H3K9ac) and active gene bodies
(H3K36me3) were enriched for those pCREs. This broad enrich-
ment of genomic elements associated with the greatest tran-
scriptional activation implies that Chromoformer learned the
existence of transcription factories, on which the active genes
and enhancers are gathered together for efficient transcription27.
Based on this observation, we sought for additional biological
evidence by examining whether those genes clustered at putative
transcription factories show enrichment for particular biological
functions. Interestingly, they were highly enriched for house-
keeping activities, including mRNA splicing, DNA replication,
ribosome biogenesis, and DNA damage response (Fig. 5e). We
also observed the enrichment of cell type-specific functions such
as telomere maintenance in stem cells (E003 and E016) and
immortalized cell lines (E114, E116, and E118), cell morphogenesis
and extracellular structure organization in mesenchymal stem
cells (E006) or iron homeostasis in liver cells (E066) and hepa-
tocellular carcinoma (HCC) (E118) (Supplementary Fig. 11). Taken
together, it can be speculated that Chromoformer reflected the
tendency of cells to ensure the robust expression of essential
genes for its function and survival through sequestering them

within transcriptionally active subcompartments harboring mul-
tiple enhancers28. On the other hand, pCREs for lowly-expressed
genes with high PCRI on average showed increased levels of
repressive marks such as H3K27me3 and H3K9me3 (Fig. 5f),
implying that Chromoformer also detected the transfer of the
suppressive regulatory information from the pCREs to the core
promoter. We conjectured that those pCREs represent tran-
scriptional silencers, since previous studies have shown the
potential functionality of distal H3K27me3-rich regions in tran-
scriptional repression29. The top 1000 genes which are predicted
to have strong suppressive cis-regulation showed extreme
enrichment towards developmental functions (Fig. 5g). One
representative example of the suppressive cis-regulatory inter-
actions is shown in (Fig. 5h) for Engrailed Homeobox 2 (EN2). As
expected, many of the pCREs showed high H3K27me3 signals.
Notably, one of the pCREs was located 1.5 Mbp away from EN2,
and the pCRE spanned the core promoter of Motor Neuron and
Pancreas Homeobox 1 (MNX1), which is another homeobox tran-
scription factor associated with development. The functional
similarity between the two highly distant, but interacting genes
implies the existence of silencing hubs, where the developmental
genes and silencers are sequestered together through 3D chro-
matin folding.

Assuming that the collection of the whole PCRI values can be
regarded as a cis-regulome of each cell type, we further asked
whether we can detect differential cis-regulation between cell types
and unveil its underlying basis in terms of histone codes. We
selected top 1000 genes having highest variances of normalized
PCRI (Methods) across the 11 cell types used in this study (Supple-
mentary Fig. 12) and performed hierarchical clustering with their
PCRI values. As expected, similar cell types were clustered together
and corresponding cell-type specific functions were highlighted by
high PCRI values (Fig. 6a). Notably, we observed that the cis-reg-
ulomes of healthy liver tissue and HepG2 HCC cells were tightly
clustered, but also found a small subset of genes that were being
subjected to HepG2-specific cis-regulation (Fig. 6a, black box). We
could not find any biological terms significantly enriched for these
genes unlike other clustered gene sets in the analysis, so it could be
speculated that they represent a consequence of cancer-specific
aberrant cis-regulation occurring in a stochastic manner. In support
of this notion, we could identify four individual genes (GNA12,
TRIB3, CCN2 and RBM39) tightly implicated in HCC30–34, which can be
thought as epigenetic hits by aberrant cis-regulation. The expres-
sion of the four genes were 9.3-, 6.0-, 4.1-, and 3.7-fold higher in HCC
than in healthy liver cells, respectively, in accordance with the
tendency of PCRIs (Supplementary Fig. 13). To interpret why the
Chromoformer predicted high PCRI values for those genes, we
visually inspected the histone modification landscape surrounding
the genes. For example, Fig. 6b shows histone modification land-
scapes around CCN2 in healthy liver and HCC cells. Comparing the
two landscapes revealed a putative enhancer region that is only
active in HCC (Fig. 6b, red arrow), which may explain higher PCRI as
well as higher expression of CCN2 in HCC. It highlights that the in-
depth interpretation of Chromoformer model prediction in the

Fig. 4 | Analysis of self-attention weights learned by the Embedding transfor-
mer. a Representative self-attention weight matrices for the prediction of the
expression of ASF1A in H1 cell. Each heatmap shows the attention weight for each
pair of genomic bins. The dotted lines indicate the 4–6 kbp region downstream
TSS.bDetailed description of the attentionweights learnedby the attention head 2
for 2 kbp-resolution Embedding transformer. Genome tracks representing the
normalized signals of the seven HMs are aligned with the attention weight matrix.
The dotted lines demarcate the regions 4–6 kbp downstream the TSS. The red
arrow indicates the TSS, and the purple arrow indicates the exon locatedwithin the
region 4–6 kbp downstream the TSS. c Average signals of the HMs other than

H3K36me3. Signals were separately averaged according to their expression labels
(High/Lowexpression).dAverageH3K36me3 signal.eAverage attentionweights of
the second attention head for 100 bp resolution bins. The grey shade denotes the
4–6 kbp region downstream the TSS. f Schematic diagram illustrating the behavior
of the Embedding transformer. g Cross-validation (n = 4) performances upon
H3K36me3 feature ablation. The center line denotes the median, the upper and
lower box limits denote upper and lower quartiles, and the whiskers denote 1.5×
interquartile range. hAttentionweights for TSS bin. Red and grey lines indicate the
average attention weights for genes having above-median and below-median
expression, respectively. Source data are provided as a Source Data file.
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Fig. 5 | Analysis of predicted cis-regulatory impact (PCRI). a Schematic diagram
illustrating the computation of the PCRI. b, c Relationship between PCRI and the
log2 fold-change of predicted gene expression between the interaction-aware and
interaction-free Chromoformer-reg in H1 cells (Epigenome identifier E003). Low
and high PCRI groups were split by themedian PCRI value. In b, p-values from two-
sided Wilcoxon rank-sum tests between genes with below-median PCRI (n = 4739
for both low and high expression groups) and above-median PCRI (n = 4738 and
4739 for low and high expression groups, respectively) are shown. In the boxes
within the violinplot, the white point denotes the median and the upper and lower
box limits denote upper and lower quartiles. d Average HM signals near the pCREs
interacting with top 1000 genes with the highest PCRI among highly and lowly
expressed genes. e Functional enrichment analysis of the top 1000 genes with the

highest PCRI among highly expressed genes in H1 cells. Benjamini-Hochberg
adjusted Fisher’s exact p-values are shown in negative logarithmic scale. f Average
HM signals near the pCREs interacting with top 1000 genes with the highest PCRI
among highly and lowly expressed genes. g Functional enrichment analysis of the
top 1000 genes with the highest PCRI among lowly expressed genes in H1 cells.
Benjamini-Hochberg adjusted Fisher’s exact p-values are shown in a negative
logarithmic scale. h Representative genomic region showing suppressive cis-reg-
ulatory interactions for EN2. Black curved lines below the H3K27me3 signal track
shows the 3D chromatin interactions centered at the core promoter of EN2. NCBI
RefSeq gene annotations are shown at the bottom. Source data are provided as a
Source Data file.
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Fig. 6 | Differential cis-regulome analysis using PCRI values. a Hierarchical
clustering of top 1000 genes having the highest normalized PCRI variances across
cell types. RepresentativeGO terms enriched for the corresponding setof genes are
shown on the right. b Histone modification landscape around the transcription

start site of CCN2 and its pCREs in Liver (E066) and HepG2 (E118) cells. Red shades
denote promoter regions andblue shades denote pCRE regions interactingwith the
promoter. Red arrow represents a putative enhancer region that seems to be only
active in HepG2 cells. Source data are provided as a Source Data file.
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form of differential cis-regulome analysis can reveal an epigenomic
origin of malignant gene expression.

Chromoformer learns the additive transcriptional activation at
transcription factories and switch-like suppression at
Polycomb-bound silencing hubs
To assess the quantitative characteristics of the two regulatory hubs,
namely transcription factories, and silencing hubs, we analyzed the
correlation between the levels of PCRIs and the number of pCREs
associated with transcriptional activation or suppression. First, to
define transcriptionally active regions across the genome, we utilized
the chromHMM-based chromatin state annotations available on the
RoadmapEpigenomicsProject. Among the 18 states, genomic intervals
representing active TSS, active gene bodies or enhancers were con-
sidered as active regions, andwe counted for each gene the number of
pCREs overlapping with the identified active regions. We found that
the number of the transcriptionally active pCREs and PCRI showed a
moderate but significant positive correlation (Spearman’s r = 0.15,
p = 1.3 × 10−42) inH1 cells (Fig. 7a). As the expression levels of genes also
increased in accordance with the increasing number of tran-
scriptionally active pCREs (Fig. 7b), it implies that Chromoformer
learned the additive dynamics of pCREs in transcription factories for
gene expression activation (Fig. 7e).

For silencing hubs, we considered the pCREs associated with
Polycomb group (PcG) proteins as functional silencers. Besides its
enzymatic role as a histone methyltransferase targeting H3K27, it has
been recently demonstrated that Polycomb repressive complex 2
(PRC2) functions as a mediator of the repressive cis-regulatory inter-
action between silencers and developmental promoters, promoting
the formation of PcG bodies35. To determine the number of PRC2-
bound silencers,weutilized theChIP-seq peaks for the twoof the three
core subunits of PRC2, namely EZH2 and SUZ12, from ENCODE. As a
result, we found the logistic increase of PCRI upon the increasing
number of pCREs overlapping with the EZH2 binding site in H1 cells
(Fig. 7c, d), which indicates that the switch-like transcriptional sup-
pression (Fig. 7f) by PRC2-mediated silencing hub was learned by
Chromoformer. Similar results couldbe reproduced for SUZ12 binding
(Supplementary Fig. 14a, b). Notably, this trend entirely disappeared
when tested for the number of non-specific pCREs irrelevant to PRC2
(Supplementary Fig. 14c), which is suggestive of the highly specific
nature of PRC2-mediated silencing. We further asked in which cell
types, other than H1, the switch-like dynamics of PRC2-mediated
silencing are observed. As a result, we found that such patterns in
mesendoderm, neural progenitor cells and HUES64 cells (Supple-
mentary Fig. 15). Interestingly, these cell types were already shown to
have close similaritieswhen the various cell typeswere clusteredbased
on their H3K27me3 mark in repressed Polycomb chromatin states23.
Thus, our results highlight that the similarities in 1D epigenomic states,
especially Polycomb-associated H3K27me3mark, can be recapitulated
by the similarities in the functional impact of cis-interactions. We also
examined if the pCREs associatedwith Polycomb repressive complex 1
(PRC1) has different patterns of gene silencing and observed similar
patterns (Supplementary Fig. 16). This may reflect the cooperativity of
PRC1 and PRC2 in their localization at Polycomb response elements36,
but we cannot exclude the possibility that the model missed some
genes that were subjected to PRC1- or PRC2-specific cis-silencing.

To date, the collective effect of distal cis-regulatory elements on
gene expression remains incompletely understood, but nevertheless,
the pioneering works exploiting modern technologies such as STARR-
seq37 or CRISPRi-FlowFISH38 certainly provide us with deep insights
about their dynamics. Intriguingly, the observations drawn from the
interpretation of trained Chromoformer models, which are optimized
to capture the quantitative characteristics of cis-regulation, highly
agree with the latest viewpoints from such studies. Our observations
on the additive transcriptional activation by active pCREs recapitulates

the results of a previous study on the quantitative characterization of
enhancer activity in Drosophila. The underlying mechanism for this
additivity has been explained by either of the interaction hub or pro-
moter competition model39. The former assumes multi-way interac-
tions between a promoter and several enhancers with independent
contributions, while the latter posits the one-to-one promoter-
enhancer interactions and demonstrates that the probability of con-
tact between a promoter and any enhancer increases as the number of
candidate enhancers increases. On the contrary, the quantitative nat-
ure of transcriptional silencing by PcG bodies with regard to the
number of PcG-bound silencers is yet to be fully characterized.

Our interpretation of Chromoformer leads to the hypothesis that
there exists a certain threshold of the local concentration of silencers
for PcG bodies to fully exert their suppressive function (Fig. 7c). It may
be due to the synergy with other repressive epigenetic factors,
including the DNA methylation induced by the HMs newly added by
those PcGs and other chromatin remodeling factors. In any case,
experimental validationof this hypothesis and further characterization
of the biological factors that determine the tipping point of the PcG-
mediated gene silencing will highly improve our understanding of
precise regulation of gene expression. Altogether, these results
demonstrate the utility of Chromoformer and, by extension, deep
learningmodels in the derivation of the new quantitative hypothesis in
the field of computational biology that would ultimately facilitate
experimental validations and thus new scientific discoveries.

Discussion
In the present study, we proposed a transformer-based deep learning
architecture named Chromoformer to model the quantitative role of
the histone codes in the regulation of gene expression. Chromoformer
greatly improved the performance of gene expression prediction by
modeling the three-level hierarchy of cis-regulation involving core
promoters and pCREs. By the analyses of self-attention weights, latent
embedding dynamics, and several feature ablation studies, we also
provided in-depth biological interpretations regarding the behavior of
the Chromoformer model. Thanks to the power of transformers for
comprehending distant dependencies in a sequence, Chromoformer
could successfully learn to focus on the specific region inside gene
bodies where the HMs associated with gene expression were the most
distinctive between highly expressed and lowly expressed genes.
Interestingly, the amount of attention paid to the gene body was
dependent on the epigenetic context of the TSS, implying that the
Chromoformer model captured the distant dependencies of the HMs
placed atTSS andgenebody.On theother hand, byusing transformers
to model pairwise relationships within an unordered set of features,
Chromoformer could learn how the information mediated by histone
code is propagated from pCREs to core promoters through 3D chro-
matin folding to regulate gene expression. Analysis of the latent
representations of histone codes learned by the model highlighted
that the expression of housekeeping and cell-type specific genes were
reinforced by the interaction with enhancers, whereas the expression
of developmental genes weremainly repressed by the interaction with
PRC2-bound silencers.

We explicitly used a pre-compiled knowledge of 3D chromatin
interactions to guide Chromoformer learning. Those experimentally
measured interaction frequencies were used to prioritize the pCREs
that will participate in the model training by being explicitly injected
into the self-attention score matrices. However, it also seems possible
to infer the interaction frequencies between pCREs and the core pro-
moters from genomic sequence information alone. This is because the
specificity of cis-regulatory interactions is largely governed by the
recognition of DNA sequence motifs by DNA-binding proteins
including transcription factors or CCCTC-binding factors (CTCFs),
which function as insulators that compartmentalize the 3D genome
conformations. Therefore, those binding motifs embedded in the

Article https://doi.org/10.1038/s41467-022-34152-5

Nature Communications |         (2022) 13:6678 12



genome may serve as hidden vocabularies that allow the inference of
the desired chromatin conformations solely based on the DNA
sequence. Results from the recent model named Enformer strongly
supports that such de novo prioritization of pCREs are more effective
when wider sequence information is used40, thereby suggesting the
exciting possibilities for the fully data-driven modeling of gene
expression regulation through the integration of genomic and epige-
nomic features using the transformer architecture. We leave this
transformer-based multi-omics integration as a further work.

The attention learned by the Embedding transformer that jumps
from an active TSS to the gene body suggests that the HMs placed at
gene bodies are indeed useful, if not the most critical, information
when predicting the steady-state gene expression levels. From this
result, we can consider the possibility that using the entire landscape
of histone codes distributed throughout a single gene may further
improve the predictive accuracy for steady-state mRNA levels. Fur-
thermore, as H3K36me3 is far more enriched at exons than introns,
utilizing the full-length gene annotation will be another effective gui-
dance for model training. As gene lengths and exon-intron distribu-
tions show great variability, we need some clever representation of
such biological prior knowledge. Again, the transformer architecture
would be one of the most powerful choices because one can flexibly

apply masks to deal with variable-length inputs and also can extend
positional encoding to form composite encoding that simultaneously
harbors information for both genomic positions and annotations for
gene structures.

The proposed training scheme for Chromoformer models is
highly expandable. For instance, we showed that Chromoformer
models can be trained for cell types from species other than human,
namelymouse embryonic stem cells, using relevant histone ChIP-seq24

and Hi-C profiles41, and the overall similarity between the grammars of
histone codes between the two species was demonstrated through
cross-species prediction performances (Fig. 8a–c). Also, cross-cell-
type prediction experiments showed that a Chromoformer model
trained in one cell type was still applicable to other cell types to some
degree (relative validation AUC>92%), with the cross-prediction per-
formances being higher for similar cell types (Fig. 8d). This implies that
Chromoformer trained in cell type-specific manner not only learned
cell type-specific features of gene regulation, but also still captured the
general rules that can be commonly applied to other cell types.
Chromoformer training can be extended to incorporate any additional
epigenomic feature if it can be represented as an array of genomewide
signal values. Such features include transcription factor ChIP-seq sig-
nals or the first principal component (PC1) signals used for

Fig. 7 | Characteristics of cis-regulation learnedbyChromoformer. aAssociation
between the number of transcriptionally active pCREs and PCRI. b Association
between the number of transcriptionally active pCREs and gene expression level.
c Association between the number of pCREs harboring EZH2 binding sites and
PCRI. d Association between the number of pCREs harboring EZH2 binding sites
and gene expression level. Throughout a-d, the number of genes having the cor-
responding number of pCREs are shown above the plot. In the boxplots, the center

line denotes the median, the upper and lower box limits denote upper and lower
quartiles, and the whiskers denote 1.5× interquartile range. e, f Illustrations for the
proposed hypothetical models for regulatory dynamics of e transcription factories
and f silencing hubs are shown. Pol II, RNA polymerase II; PcG bodies, Polycomb
group bodies; PRC2, Polycomb repressive complex 2. Source data are provided as a
Source Data file.
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compartment identification. As mentioned above, CTCF binding is a
crucial determinant of 3D genome structure, and the promoter-
proximal CTCF binding has been also highlighted in gene activation
through distal enhancer-promoter interaction42, as recapitulated in
Supplementary Fig. 17a. We could show that including CTCF gave
marginal but consistent increase in Chromoformer-clf performance
(Supplementary Fig. 17b), and the increase was greater for Embedding
transformer-only Chromoformer-clf model (Supplementary Fig. 17c).
On the other hand, informing Chromoformer of cell-type specific
genomic compartmentalization state43 using PC1 value as an additional
feature did not result in significant overall performance gain (Sup-
plementary Fig. 18a). Even though the compartmentalization corre-
lated with the levels of gene expression (Supplementary Fig. 18b, c), as
the absolute level of the association (Pearson’s correlation coefficient
0.12–0.19) is not great enough, we concluded that the predictive
power of compartment-level features did not exceed that of gene-level
HM features.

In summary, Chromoformer is another exemplary application
emphasizing the great potential of transformer architecture in mod-
eling biological sequences. This study also underscores the impor-
tance of developing specialized deep learning architectures effectively
embedded with biological prior knowledge, not only for the
improvement of the performance in predictive tasks, but also quanti-
tatively characterizing the complex relationships between biological
entities.

Methods
Promoter-centered 3D chromatin interactions
Experimentally validated core promoter-pCRE interaction pair
information is required to train a Chromoformer model. In this
study, we used publicly available data deposited in the 3DIV
database17 for promoter-centered long-range chromatin interac-
tions compiled by pcHi-C experiments comprehensively conducted
for various tissue types. Interactions were characterized at the
resolution of HindIII restriction fragments with median and average
length of 4797 bp and 5640 bp, respectively. We could also obtain
normalized interaction frequencies between the DNA fragments
from the database. The obtained frequencies were already pro-
cessed by a two-step normalization that accounts for the captur-
ability and distance-dependent background signals. Although the
significant interactions could be selected based on the estimated
FDR values provided along with each interaction, we considered an
interaction as significant if the normalized frequency was greater
than 1.5 in order to increase the sensitivity of chromatin interactions
during the Chromoformer training. Note that a normalized fre-
quency of 1.5 denotes that the ratio between the interaction and
background signal is 1.5.

Training data preparation
Consolidated ChIP-seq read alignments for seven major HMs
(H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K27ac,

Fig. 8 | Cross-species and cross-cell type prediction performances of Chromo-
former. a, b Cross-species prediction performances of Chromoformer-clf models.
a Cross-validation (n = 4) performances of Chromoformer-clf models, trained with
ES-Bruce4 mouse embryonic stem cells (mESC) or human embryonic stem cells
(hESCs), are shown for the prediction of (a) mESC gene expression and (b) hESC
gene expression. In the boxplot, the center line denotes the median, upper and

lower box limits denote upper and lower quartiles, and whiskers denote 1.5×
interquartile range. c Log2-transformed histone modification signals surrounding
human SOX2TSS andmouse Sox2TSS.dCross-cell type gene expressionprediction
performances. Colors represent the relative validation AUC compared to the
matched cell type Chromoformer-clf model (i.e., trained and evaluated for the
same cell type). Val, Validation. Source data are provided as a Source Data file.
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and H3K9ac) were obtained from the Roadmap Epigenomics
Project23 in tagAlign format. This alignment data could make a
highly homogeneous training dataset, since the reads were trun-
cated to 36 bp to reduce read length bias originating from the
difference in sequencing experiments, and also they were sub-
sampled to a maximum of 30 million reads to homogenize for read
depths. After sorting and indexing the alignments with Sambamba
v0.6.844, read depths along the hg19 reference genome were
computed for each base position using genomecov command of
Bedtools v2.23.045. For each given core promoter or pCREs, we
computed log2-transformed binned average signals of seven HMs
along non-overlapping genomic windows of size 100 bp, 500 bp,
and 2 kbp that fully covers the region and used those values as
input features for our model. Since the sizes of pCREs were not
fixed in our setting, we zero-padded pCRE featurematrices to make
their size agree with that of the core promoter feature matrices.
Specifically, we center-aligned the matrix and appended zero-
matrices of the appropriate size to the left and right side of the
input matrix. To determine prediction target labels, normalized
gene expression levels (in RPKM) were also downloaded from the
Roadmap Epigenomics Project. RefSeq annotation was used to
determine the TSS for each gene. Total 18,955 genes that were
appropriately annotated and had expression measurements were
selected for model training and evaluation. The whole data col-
lection and preprocessing pipeline is implemented in snakemake
workflow management system v6.5.346.

Gene-wiseprediction targets for the threeChromoformer variants
(Chromoformer-clf, Chromoformer-reg and Chromoformer-diff) were
derived as follows. Most simply, log2-transformed RPKM values were
used for Chromoformer-reg training. For Chromoformer-diff training,
we used log2 fold-change of RPKM values between two cell types as
prediction targets. To derive binary target labels for Chromoformer-clf
training, themedian expressionvalues across all genes in each cell type
were used as threshold values to assign genes with one of the two
labels: highly (1) or lowly expressed (0). In other words, a gene whose
expression is abovemedian was assigned with label “1”, and the others
were assigned with label “0”. This formulation of binary classification
of gene expression has been widely adopted for various machine-
learning approaches for gene expression modeling. Note that these
labels (“1” and “0”) do not have quantitative meanings, but just denote
the ordinal indices of binary classification labels. That is, “0” indicates
that the gene is assigned to the first class, and “1” indicates that the
gene is assigned to the second class.

Selection of cell types for model training
For Chromoformer-clf andChromoformer-regmodel training, we only
chose a subset of cell types analyzed in the Roadmap Epigenomics
Project for which the whole profiles of gene expression, HMs, and 3D
chromatin interactions were available. Since the 3D chromatin inter-
action profiles we used are not the official results of Roadmap Epige-
nomics but are obtained from an independent source, we manually
matched the epigenome IDs (EIDs) and cell typemnemonics from3DIV
database17. As a result, the following 11 cell types were selected for
Chromoformer training: H1 cells (E003, H1), H1 BMP4 derived
mesendoderm (E004, ME), H1 BMP4 derived trophoblast (E005, TB),
H1 derived mesenchymal stem cells (E006, MSC), H1 derived neuronal
progenitor cultured cells (E007, NPC), HUES64 cells (E016, H1), Liver
(E066, LI11), Pancreatic islets (E087, PA), A549 EtOH 0.02pct lung
carcinoma (E114, LG), GM12878 lymphoblastoid (E116, GM) and HepG2
hepatocellular carcinoma (E118, LI11).

Chromoformer model architecture
Chromoformer consists of three modules based on transformer enco-
ders: Embedding, Pairwise Interaction and Regulation transformer.

The embedding transformer has a single encoder layer, which
takes a binned average signal matrix Xinput of seven HMs at a core
promoter and summarizes it into a core promoter embedding matrix
Xemb that consists of fixed-sized latent embedding vectors. Before
Xinput is fed into themodule, seven-dimensional input features for each
of the n bins are first linearly projected into the dimension of demb

( = 128), then a positional encoding matrix P of dimension n×demb is
added to the input feature matrix of the same dimension in an
element-wise manner. Pij is defined as below.

Pij =

sin i

10000
2k

demb

� �
, if j = 2k

cos i

10000
2k

demb

� �
, if j =2k + 1

8>>><
>>>:

ð1Þ

It is worth noting that the inner product between any two-row
vectors (e.g., a-th and b-th rows) in the positional encoding matrix P,
namely Pa and Pb, only depends on the positional distance ∣a� b∣
between the two vectors. Therefore, by adding a positional encoding
matrix to the input feature matrix, the relative distance between any
two features can be recognized in the following multi-head attention
layers. A multi-head attention layer in Embedding transformer utilizes
a self-attention mechanism to capture inter-dependencies between
HM configurations at different positions that contribute to the reg-
ulation of gene expression. Importantly, those operations are done
separately for multiple heads so that the model can capture different
aspects of inter-dependencies between input features. Self-attention
operation in the transformer architecture is a special case of scaled
dot-product attention where the query, key and value matrices origi-
nate from the same sequence of features. Specifically, position-
encoded input feature matrix of dimension n×demb is linearly pro-
jected to produce three matrix Qemb, Kemb and Vemb of dimension
n×d0

emb, which semantically represents a query, key, and valuematrix,
respectively. d0

emb is set to 64. The n ×n matrix produced by a multi-
plicationofQemb andKT

emb is called apairwise affinitymatrix sinceeach
element of the matrix is equivalent to a dot product between the
corresponding pair of vectors from Qemb and KT

emb. It denotes an
amount of affinity between the two positions in the input sequence.
The pairwise affinity matrix is divided by

ffiffiffiffiffiffiffiffiffiffi
d0
emb

q
and softmax function

is applied to convert self-attention affinities into aweight that sums to 1
for each row. The value matrix Vemb is multiplied with the resulting
attention weight matrix to finally produce the output of self-attention
operation. The whole process of scaled dot-product can be summar-
ized as below:

AttentionembðQemb,Kemb,VembÞ= softmax
QembK

T
embffiffiffiffiffiffiffiffiffiffi

d0
emb

q
0
B@

1
CAVemb ð2Þ

In the Embedding transformer, the self-attention operation above
is separately done bymemb (= 2) heads and the resultingmemb vectors
of dimension d0

emb are concatenated to form a single
d0
emb ×memb =demb (= 128) dimensional vector so that the dimension of

input feature is preserved. Subsequently, the input sequence of fea-
tures right before the self-attention is added via residual connection
and then they are layer-normalized. The result is then subjected to the
linear projection layer into the dimension of δemb (= 128), nonlinear
activation by rectified linear unit (ReLU) and final linear projection into
the dimension of demb. This series of operations involving linear pro-
jection, nonlinear activation and another linear projection comprises a
position-wise feedforward layer.

PositionwiseFeedForward xð Þ=LinearðReLUðLinearðxÞÞÞ ð3Þ
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After another residual connection and layer normalization, the
core promoter embedding matrix Xemb is finally produced.

Pairwise Interaction transformer consists of two stacked layers to
update a core promoter embedding based on its pairwise interaction
with each pCRE and produce pairwise interaction embedding matrix
Xpair. The difference between encoder-decoder attention and self-
attention operation in the Embedding transformer is that encoder-
decoder attention separately builds query matrix and key-value
matrices. Specifically, query matrix Qpair is derived from Xemb (or
Xpair resulting from the first layer), while key and value matrices Kpair

and Vpair are built from position-encoded pCRE HM features XHM. In
short, the query, key and value matrices for the encoder-decoder
attention can be summarized as below, where LinearNoBias denotes a
linear projection function without a bias.

Qpair =
LinearNoBiasðXembÞ, first layer

LinearNoBiasðXpairÞ, second layer

(

Kpair = LinearNoBias XHM

� �
Vpair = LinearNoBias XHM

� �
ð4Þ

Then scaled dot-product attention is conducted between core
promoter queries and pCRE key-values as below, where d0

pair = 64 and
dpair = 128:

AttentionpairðQpair, Kpair,VpairÞ= softmax
QpairK

T
pairffiffiffiffiffiffiffiffiffiffi

d0
pair

q
0
B@

1
CAVpair ð5Þ

The rest of the operations, including position-wise feedforward
layer with δpair ( = 256), residual connections and layer normalizations
are the same as the Embedding transformer, finally producing the
pairwise interaction embedding Xpair.

To avoid excessive computational load and to make the training
batch fit in the memory of a single graphical processing unit (GPU)
during training, we only considered at most imax ( = 8) pCREs for each
core promoter. To determine the set of pCREs participating in the
training, all the candidate pCREs were prioritized according to their
normalized interaction frequencies with the core promoters since the
pCRE that is interacting more frequently is likely to be more infor-
mative in predicting the expression of the corresponding gene.

Regulation transformer consists of six stacked layers with gated
self-attention mechanism. The key function of the Regulation trans-
former is to updateXemb alongwith the whole set ofXpair‘s at the same
time to finally produce the regulatory embedding Xreg. To this end,
individual embedding vectors that exactly represent the genomic bin
where the relevant TSS is located are extracted from Xemb and Xpair‘s.
Then, they are concatenated side by side to form a composite input
matrix Xcomp of dimension imax + 1

� �
×demb (Recall that demb =dpair =

128). Specifically, those are the vectors at the midpoint of the
embedding matrices. Note that for genes having less than imax cis-
regulatory interactions, the rest of Xcomp was filled with dummy zero
vectors. The Regulation transformer does not need a positional
encoding since it does not assume any predefined order among the
embeddings. We only fix that the first row vector of the composite
input matrix is the core promoter embedding. This unordered set of
embeddings is fed to a gated self-attention mechanism to allow the
model to decide how much it will actively utilize the transformed
embedding carrying the interaction information. In addition to the
query, key, and value matrices, gated self-attention introduces a gate
matrix Greg that learns the amount of information transfer. The four
imax + 1
� �

×d0
reg matrices used for gated self-attention operation are

computed as below, where d0
reg = 32:

Qreg = LinearNoBias Xcomp

� �
K reg = LinearNoBiasðX compÞ
V reg = LinearNoBiasðXcompÞ
Greg = LinearNoBiasðXcompÞ

ð6Þ

Moreover, we added a vector of normalized interaction fre-
quencies f between the corresponding core promoter-pCRE pair as a
bias term to the self-attention matrix to inform the model with the
relative affinities of the pairwise interactions. An imax + 1

� �
× imax + 1
� �

bias matrix B is introduced, whose first row is filled with f and all the
other values are zero. Taken together, the attention operation used in
Regulation transformer can be written as below:

Attentionreg Qreg, Kreg, V reg, Greg

� �
= softmax

QregK
T
regffiffiffiffiffiffiffiffiffi

d0
reg

q + γB

0
B@

1
CAV reg � σðGregÞ ð7Þ

where γ, σ and � represent a learnable scalar coefficient, the sigmoid
function and the Hadamard product, respectively.

We concatenated three Xreg‘s resulting from independent mod-
ules learning from 100 bp, 500bp, and 2 kbp-resolution inputs,
respectively. Only the first row of the concatenated matrix, which
denotes the cis-regulation-aware embedding vector of the core pro-
moter was extracted and fed into the fully-connected head. In all the
three variants of Chromoformer models (Chromoformer-clf,
Chromoformer-reg and Chromoformer-diff), the fully-connected head
had a single 128-dimension hidden layer with ReLU activation. The
fully-connected head for Chromoformer-clf produces a two-
dimensional output representing the two prediction logits for each
binary expression label, while that for Chromoformer-reg produces a
single scalar representing the log2-transformed gene expression value.
In Chromoformer-diff, the fully-connected head is fed with a con-
catenated vector of two multi-scale regulatory embeddings from each
cell type and produces a single scalar representing the log2 fold-
change of gene expression. Moreover, Chromoformer-diff adopts two
auxiliary tasks predicting absolute levels of log2-transformed gene
expression for each cell type (Supplementary Fig. 5a). All of the
Chromoformer variants were implemented using PyTorch v1.9.047.

Model training and evaluation
All variants of Chromoformer models were trained for 10 epochs with
AdamW optimizer48 and the model resulting from the last epoch was
chosen as the final model. The initial learning rate was chosen as
3 × 10−5 and was decreased by 13% after each epoch so that it can
approximately shrink to half of its value after eachof thefive epochs. In
Chromoformer-clf, cross-entropy between the predicted probability
and one-hot encoded binary gene expression label was used as a loss
function. In Chromoformer-reg and Chromoformer-diff, mean
squared error (MSE) between the predicted scalar and target valuewas
used as a loss function. Batch size was fixed to 64. All the imple-
mentations for benchmark deep learning models were obtained from
the official code repositories provided by the respective authors. To
train the benchmarkmodels, we applied the optimal hyperparameters
that were previously identified for each benchmark model.

For GC-MERGE training, we needed to modify our input repre-
sentations of HM signals and cis-regulatory interactions as per
required. ChIP-seq read depths for each 10 kbp bin throughout the
genomewere calculated usingmulticov commandof Bedtools, and the
interaction frequencies between those 10 kbp genomic bins were
determined using the pcHi-C experiment results. Since GC-MERGE
predictions aremade for eachof the 10 kbpbins, but not for eachgene,
ambiguity arises when there are two or more genes in the same bin.
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The ambiguity is resolved by choosing a representative gene within
each bin and assigning it with the most frequently occurring labels in
that bin. This is done at the cost of reduced number of predictable
genes. To perform as fair comparison as possible, we went through
4-foldCV for both GC-MERGE andChromoformer using the same gene
set whose expression is predictable by GC-MERGE, by retraining
Chromoformer model.

Analysis of Embedding transformer self-attention
Each Embedding transformer has two independent attention heads, so
it produces two corresponding self-attention pairwise affinitymatrices
QembK

T
emb=

ffiffiffiffiffiffiffiffiffiffi
d0
emb

q
for each input. Since the full model consists of the

three independent single-resolution modules, we can extract six self-
attention weight matrices in total. We visualized the softmax-
normalized pairwise affinities, i.e., self-attention weights, for Fig. 4.
Note that all the self-attention weights were obtained at the time of
inference for genes in validation set.

Computation of the predicted cis-regulatory impact, normal-
ization and clustering
To compute predicted cis-regulatory impact (PCRI), we first defined a
multi-resolution core promoter embedding as the concatenation of
individual core promoter embeddings resulting from the three dif-
ferent input resolutions. Then, PCRI is defined as the Euclidean dis-
tance between themulti-resolution core promoter embedding and the
multi-resolution regulatory embedding for each gene. Importantly, we
standardized each embedding vector before calculating the Euclidean
distance to correct for the global shift arising from the transformation
itself. Similar to the self-attention analysis, the entire PCRI values dis-
cussed in themain text were calculated for genes in each validation set
to ensure that the model did not explicitly learn the optimal trans-
formation of latent embeddings reflecting cis-regulations for
those genes.

To cluster cell types and genes based on PCRI values, the values
were standardized (i.e., Z-score normalized) beforehand. The resulting
normalized PCRI values in general hadbell-shaped distribution around
zero (Supplementary Fig. 12). Average linkage hierarchical clustering
with correlation similaritywas conducted using top 1000genes having
highest across-cell variances of PCRI values.

Functional enrichment analysis of genes with high PCRI
For each of the four validation folds, we identified top 250 genes with
the highest PCRI values separately for each binary label. Functional
enrichment analysis of the union of the four gene sets were done using
Enrichr49. Gene ontology biological process terms with Benjamini-
Hochberg adjusted p-values <0.05 were selected as significantly
enriched terms.

Definition of polycomb-associated pCREs
To define pCREs associated with Polycomb-bound region, we used
irreproducible discovery rate (IDR)-thresholded ChIP-seq peaks for
Polycomb subunits determined in H1 cells that are publicly available in
ENCODE. Specifically, we downloaded EZH2 and SUZ12 ChIP-seq peaks
for PRC2, and RNF2 and CBX8 ChIP-seq peaks for PRC1 (Supplemen-
tary Table 1).

Mouse embryonic stem cell data processing
To evaluate the utility of Chromoformer for species other than human,
we processed the ENCODE reference epigenome of ES-Bruce4 mouse
embryonic stem cell (mESC) line from its raw histone ChIP-seq reads
(Supplementary Table 2). To be consistent with human data, the pro-
cessing pipeline followed that of Roadmap Epigenomics Project as
described below. After downloading FASTQ files, histone ChIP-seq
reads were first aligned to mm9 reference genome using bwa v0.7.17-
r118850. To normalize the effect of read length, each aligned read was

then truncated up to 36 bp. Also, the read depths were normalized by
subsampling the read alignment up to 3 million reads. Processed
alignments were converted to genomewide read depth signals using
bedtools genomecov. Besides, to determine the promoter-pCRE inter-
actions that are used for Chromoformer training, we used the nor-
malized interaction frequencies from publicly available Hi-C
interaction matrices of mESC41. The bulk RNA-seq gene expression
profile for ES-Bruce4 cells was also obtained from ENCODE under file
accession ENCFF166EXS [https://www.encodeproject.org/
experiments/ENCSR000CGU]. Gencode vM1 gene annotation was
used to determine the transcription site and promoter region for
each gene.

CTCF ChIP-seq data processing
To examine the effect of including CTCF signal inmodel training, we
obtained raw CTCF ChIP-seq reads from ENCODE. Only five cell
types had available CTCF ChIP-seq data in ENCODE: H1 cells (E003),
H1 derived neuronal progenitor cultured cells (E007), A549 lung
carcinoma (E114), GM12878 lymphoblastoid (E116), and HepG2
hepatocellular carcinoma cells (E118) (Supplementary Table 3).
CTCF ChIP-seq reads were processed in an exact same way as mESC
histone ChIP-seq reads (see above), but using hg19 reference
genome.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability
Histone ChIP-seq read alignments, mRNA expression profiles and
chromHMM chromatin states used in this study were downloaded
from Roadmap Epigenomics Web Portal23 [https://egg2.wustl.edu/
roadmap/web_portal/index.html]. Normalized interaction frequencies
for promoter-centered Hi-C experiments were obtained from hg19
pcHi-C data collection of 3DIV database [http://3div.kr/] under tissue
mnemonics H1, ME, TB, MSC, NPC, LI11, PA, LG, and GM. TF ChIP-seq
reads targeted for PRC1/2 subunits and CTCF were also downloaded
from ENCODE24 under accession codes specified in Supplementary
Tables 1 and 3. TAD and genomic compartmentalization information
(in PC1 values) were downloaded from the Supplementary Material of
Schmitt et al.43 Raw histone ChIP-seq reads and the mRNA expression
profile for ES-Bruce4 mouse embryonic stem cell data were also
downloaded from ENCODE24 under accession codes specified in Sup-
plementary Table 2. The accession code for the ES-Bruce4 mRNA
expressionprofilewas ENCFF166EXS [https://www.encodeproject.org/
experiments/ENCSR000CGU]. Hi-C interaction frequencymatrices for
ES-Bruce4 cells were downloaded from the data repository of Dixon
et al.41 NCBI RefSeq gene annotations were downloaded from UCSC
Table Browser [https://genome.ucsc.edu/cgi-bin/hgTables]. Gencode
vM1gene annotationsweredownloaded fromGENCODE [https://www.
gencodegenes.org/mouse/release_M1.html]. Source data are provided
with this paper.

Code availability
The source code for Chromoformer model are available at the GitHub
repository [https://github.com/dohlee/chromoformer] under
doi:10.5281/zenodo.715196651. Pretrained weights for Chromoformer-
clf models are available at Figshare under doi:10.6084/
m9.figshare.19424807.v152. Code implementations for benchmark
models were downloaded from the respective code repositories:
DeepChrome [https://github.com/QData/DeepChrome], Attentive-
Chrome [https://github.com/QData/AttentiveChrome], DeepDiff
[https://github.com/QData/DeepDiffChrome], GC-MERGE [https://
github.com/rsinghlab/GC-MERGE], and HM-CRNN [https://github.
com/pptnz/deeply-learning-regulatory-latent-space].
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