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Instant quantification of sugars 
in milk tablets using near‑infrared 
spectroscopy and chemometric 
tools
Chanat Thanavanich1, Nutthatida Phuangsaijai1, Chanidapha Thiraphatchotiphum1, 
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Milk tablets are a popular dairy product in many Asian countries. This research aimed to develop an 
instant and rapid method for determining sucrose and lactose contents in milk tablets using near‑
infrared (NIR) spectroscopy. For the quantitative analysis, a training set composed of laboratory‑scale 
milk samples was generated based on a central composite design (CCD) and used to establish partial 
least squares (PLS) regression for the predictions of sucrose and lactose contents resulting in  R2 values 
of 0.9749 and 0.9987 with the corresponding root mean square error of calibration (RMSEC) values of 
1.69 and 0.35. However, the physical difference between the laboratory‑scale powder and the final 
product milk tablet samples resulted in spectral deviations that dramatically affected the predictive 
performance of the PLS models. Therefore, calibration transfer methods called direct standardization 
(DS) and piecewise direct standardization (PDS) were used to adjust the NIR spectra from the real milk 
tablet samples before the quantitative prediction. Using high‑performance liquid chromatography 
(HPLC) as a reference method, the developed NIR‑chemometric model could be used to instantly 
predict the sugar contents in real milk tablets by producing root mean square error of prediction 
(RMSEP) values for sucrose and lactose of 5.04 and 4.22 with  Q2 values of 0.7973 and 0.9411, 
respectively, after the PDS transformation.

Milk tablets are considered an alternative nutritious snack. This snack not only delivers a pleasant taste of milk 
but also is a good source of high-quality nutrients such as protein, carbohydrates, and calcium. Along with milk, 
sugars are among the major ingredients of milk tablets. Often, sucrose is added to sweeten the milk  tablets1. 
Lactose is the main carbohydrate found in raw milk  material2. Determination of sugar contents is important for 
quality control evaluation. In addition, variations in the amount of sugars can influence the nutritional quality 
of the finished product contributing to the eating texture of the milk  snack3,4.

Traditionally, the quantification of sugar in milk can be achieved using chemical titration  methods5. These wet 
laboratory methods can be simple; however, the experimental procedures are time-consuming and often result in 
large amounts of chemical waste. Several analytical techniques, such as high-performance liquid chromatography 
(HPLC)6,7, electrochemical  analysis8,9, and nuclear magnetic resonance (NMR)10, were also used to accomplish 
the quantification task. Nevertheless, a significant drawback was that complicated sample preparation methods 
were required before the sample detection process. Therefore, these tests are not suitable for manufacturing plants 
where many samples are obtained from a continuous online production process.

Near-infrared (NIR) spectroscopy investigates the vibrational interaction between samples and electromag-
netic radiation in a region of 800–2500 nm. NIR detection has several advantages over other spectroscopic 
detections in that a large number of samples can be non-destructively measured within a short period without 
extensive sample preparation. The NIR spectra can be related to interesting chemical properties in the samples 
using a calibration model called partial least squares (PLS)  regression11–13, where the relationship information 
between the spectral data and the chemical property is mathematically investigated. This correlation information 
can then be used to estimate the chemical properties of unknown samples. For example, the NIR spectrometers 
were recently applied for compositional analysis of  cow14 and  human15 milk.
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Generally, determinations achieved by calibration models are based on the previous knowledge provided by 
a set of training samples. Accordingly, variations of the test samples could be estimated by those found in the 
training set to get the optimal predictive results. Hence, the training samples can significantly characterize the 
predictive performance of the calibration models. However, in the production process where variations of the 
final process samples are not expected and should be limited, the final products from the manufacturing process 
may not contain enough variability to establish a training set for developing accurate and robust calibration 
models. For example, the training samples in powder form that were prepared in a laboratory room had differ-
ent physical structures when compared to the final process samples that were eventually pressed into tablets. 
Sarraguça and  Lopes16 reported that using laboratory-scale samples in the powder form provided more accurate 
predictive results than the tablet samples produced by the production process. Additionally, Peerapattana et al.17 
observed that powder samples of mangosteen pericarp retained in glass vials resulted in better predictive results 
for the prediction of alpha-mangostin content compared to the samples retained in transparent capsules.

Calibration transfer (CT) involves a group of chemometric methods that can be used to minimize incon-
sistencies from different instrumental  measurements18. After establishing the standardization using the CT 
methods, a system involving the calibrated model can be developed in which one instrument (primary) can be 
substituted for another instrument (secondary) and vice versa. For instance, a calibration transfer method called 
piecewise direct standardization (PDS) was used to minimize the variations between a top-bench spectrometer 
and a portable NIR  detector19,20. As a result, the estimation of the portable NIR measurement can be based on 
the data-based NIR spectra collected from the top-bench NIR spectrometer. In addition, by following the same 
methodology, different variations among agricultural product samples could be identified and systematically 
discarded from unknown samples for adulteration  detection21.

This research developed an instant method for the detection of the sugar contents in milk tablets based on 
the NIR detection. In addition, calibration transfer methods were adopted to adjust the different variations in 
the NIR spectra between the laboratory-scale milk samples and the milk tablets obtained from the final process. 
The quantitative analysis was based on multivariate predictions of the PLS models aiming to instantly quantify 
the concentrations of sucrose and lactose in the milk tablet samples.

Materials and methods
Details of milk samples. A total of 13 different milk tablet brands were obtained from local grocery stores 
in Chiang Mai, Thailand. The relevant details of the milk tablets are summarized in Table 1. The samples were 
divided into three groups, namely training (T1–T3), internal validation (I1–I3), and external validation (E1–E7) 
samples. Each milk tablet was ground into a fine and homogeneous powder using a ceramic mortar and pestle. 
To generate systematic variations representing the sugar contents in the milk samples, a central composite design 
(CCD) structure was  used22, comprising nine experiments for each sample. For example, for samples T1, T2, and 
T3, amounts of sucrose (analytical grade, > 99% purity, RCI Labscan, Bangkok, Thailand) and lactose (analytical 
grade, > 99% purity, KEMAUS, NSW, Australia) were added to the milk powder according to the coded values of 
the CCD structure presented in Table 2. Then, a combination of the three CCD model samples was used to con-
struct the training set, which resulted in a total of 27 milk samples. The use of the CCD structure was to ensure 
that the variation in the recorded NIR spectra was related to the concentrations of the sugars in the milk samples 
and that the number of training samples was sufficient for establishing the prediction  models23. Samples I1, I2, 
and I3 were used to establish internal validation samples, while the variations in the sugar contents were also 
generated based on the CCD model. Therefore, 27 additional milk powder samples were used to construct the 
internal validation set. Samples E1–E7 were used as the external samples to represent the independent test set. 
These were utilized to evaluate the performance of the calibration models when real samples were introduced.

Table 1.  Concentrations of sucrose and lactose in milk tablet samples.

Sample names

Concentration of 
sugars (%w/w)

Sucrose Lactose

1. T1 (training) 21.31 36.24

2. T2 (training) 27.11 28.66

3. T3 (training) 14.20 26.46

4. I1 (validation) 27.76 25.71

5. I2 (validation) 27.00 33.40

6. I3 (validation) 22.31 28.48

7. E1 (test) 21.78 38.99

8. E2 (test) 39.04 0.000

9. E3 (test) 43.69 0.000

10. E4 (test) 28.04 28.47

11. E5 (test) 20.06 30.68

12. E6 (test) 16.72 29.32

13. E7 (test) 25.48 28.94
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It should be noted that two main types of milk tablets were used in this research. Samples E2 and E3 were 
non-milk-containing tablets or “cheap milk tablets” where artificial milk flavor was added to achieve product 
satisfaction. On the other hand, the rest of the milk samples were produced from cow’s milk as raw material and 
were referred to as “premium milk tablets”.

NIR spectral detection. The NIR spectra of the milk powder (9.00 g) were acquired using a NIR transpor-
tation module (width × length × depth: 5.7 × 29.4 × 2.0 cm) equipped with the NIRSystem 6500 (Multi-Mode™ 
Analyzer, Foss, USA) in the range of 400–2500 nm at a 2 nm sampling interval, yielding 1050 data points per 
spectrum. An average of 64 scans was used for each sample. The samples of the milk tablets were placed inside 
the NIR transportation module. Layers of the milk tablets were directly attached to the containing glass follow-
ing the measurement conditions of the powder samples. The milk samples were maintained at a room-controlled 
temperature of 25  °C for at least 6  h before the NIR detection. Prior to the analysis, the NIR spectra were 
pretreated by standard normal variate (SNV) to eliminate errors caused by the light scattering during the NIR 
measurement. Then, they were mean-centered so that the analysis focused on the variance from the data mean 
rather than the absolute values.

HPLC analysis of sugar determination. Sugar contents in the milk tablet samples were measured using 
high-performance liquid chromatography (HPLC). For sample preparation, 1.00 g of each ground milk tab-
let was dissolved in 10 mL ultra-pure water and kept in a water bath (Julabo Labortechnik GMbH, Seelbach, 
Germany) at 55 °C for 5 min. Then, HPLC-grade acetonitrile was added for protein  precipitation24,25. After the 
denaturation, the sample solution was centrifuged at 10,000 rpm for 5 min. The clear solution was then filtered 
through a 0.45 µm nylon syringe filter (Agilent Technologies, CA, USA).

The chromatographic analysis of sugar contents in the milk tablets was carried out with a high-performance 
liquid chromatograph (Agilent 1100 HPLC system, CA, USA) with an Agilent ZORBAX  NH2 column (5 µm, 
4.6 mm inner diameter, 150 mm length) operating at 25 °C. The samples were auto-injected into the HPLC system 
with an injection volume of 10 µL. A mixture of HPLC-grade acetonitrile and ultra-pure water (75/25%v/v) was 
used as a mobile phase with a flow rate of 1.00 mL/min. A refractive index detector (RID) was operated at 25 °C. 
The sugar contents were determined using the external standard calibration curve of the sucrose and lactose 
standards resulting in  R2 values of 0.9907 and 0.9896, respectively. The concentration values of the sugars in the 
studied milk tablet samples are summarized in Table 1.

Chemometric analysis. Standardization of NIR spectra using DS and PDS calibration transfers. Although 
both forms of the milk samples (tablet and powder) were considered solid, there were differences, for example, 
in particle size and tablet compaction pressure. These physical variations resulted in significant deviations in the 
recorded NIR  spectra26. Calibration transfers are multivariate correction methods that can be applied to stabilize 
variations that may have occurred due to differing instrumental and measurement conditions. In this research, 
they were used to account for any signal discrepancies between the spectra obtained from the tablet samples and 
the powder samples. Piecewise direct standardization (PDS) is an extension algorithm of a conventional method 
called direct standardization  DS27,28. The DS method describes the correlation between the two data matrices 
(Xm and Xs referring to master and slave data) by calculating a transformation matrix (F) using multiple linear 
regression models such as MLR, PCR, and PLS:

The extension in the PDS algorithm is that each spectral point of the master data (Xm,j) is specifically related 
to a spectral subset of the slave data (Xs,j). The PDS algorithm involves the following steps:

Step 1: Select the spectral points of the master data (Xm,j) at wavelength j.
Step 2: Define the subset spectra of the slave data (Xs,j) nearby wavelength j to form index j − k to j + k

Xm = Xs × F

Table 2.  The CCD structure for generating the training samples.

No. of samples

Code values
Amount of sugar 
added (%w/w)

Sucrose Lactose Sucrose Lactose

1 − 1 − 1 0.000 0.000

2 − 1 0 0.000 15.00

3 − 1 1 0.000 30.00

4 0 − 1 15.00 0.000

5 0 0 15.00 15.00

6 0 1 15.00 30.00

7 1 − 1 30.00 0.000

8 1 0 30.00 15.00

9 1 1 30.00 30.00
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where k is the window size controlling the amount of the spectral data which will be used in the calculation.
Step 3: Establish the regression coefficient

where bi is a vector containing regression coefficients.
Step 4: Generate the transformation matrix (F) by organizing the bj into a diagonal matrix

where n is the number of spectral channels included.
Step 5: Standardize the spectra of unknown samples (Xs,un) using F to obtain the modified spectrum (Xs,PDS)

In this research, the DS and PDS transformations were used to account for the inconsistencies between the 
spectra obtained from the powder samples and the tablet samples. These transformation methods investigated 
the correlation between the two datasets. After that, the resulting correlation information was applied to adjust 
the NIR spectra of the milk tablet samples. Consequently, the adjusted data could be compatible when making 
the prediction using the calibration model established from the NIR spectra of the powder samples without the 
need to recalibrate the model.

The model optimization was based on a previously published  report21. The correlation matrices in both DS 
and PLS were determined using PLS regression which was calculated using the training samples and optimized 
based on the internal validation samples.

PLS for quantitative analyses. Partial least squares (PLS) regression is among the most potent analysis meth-
ods of multivariate calibration  models29. The significant advantage of the PLS algorithm is that the variations 
obtained from both the predictive and response parameters are simultaneously extracted and then used to con-
struct the prediction model. With the use of the PLS model, the correlation between these information blocks 
could be maximized. In most cases, PLS could successfully offer the optimal predictive performance for the 
prediction of the NIR spectral  data11,30.

In this research, the NIR spectra and the sugar contents were, respectively, used as predictive and response 
parameters for the PLS models. The PLS calculation was done following the procedure described in the previously 
published  literature29. The leave-one-out cross-validation method was applied to identify the optimal number 
of PLS latent  variables31. According to Table 1, PLS models were developed using training (T1–T3) samples as 
calibration data. To validate the models, internal validation (I1–I3) and external validation (E1–E7) samples 
were used for validation and prediction, respectively.

The predictive performance of the PLS models in terms of prediction accuracy was reported by root mean 
square error of calibration (RMSEC) and root mean square error of prediction (RMSEP). The coefficients of 
determination for the calibration  (R2) and prediction  (Q2) values were calculated to determine the robustness of 
the models. In addition, the standard error of the cross-validation (SECV) and the ratio of prediction to devia-
tion (RPD) were employed to compare the different predictive performances of the calibration  models32. The 
calculations of the PLS model, PDS calibration transfer, and statistical analyses were implemented using in-house 
MATLAB scripts (MATLAB, The Math Works Inc., Natick).

Results and discussion
NIR detection. Exploratory data analysis of NIR spectra data. Figure 1A illustrates the NIR spectra record-
ed from the milk samples. The corresponding PCA score plot of the NIR spectra was generated to demonstrate 
the characteristic differences among the milk samples presented in Fig. 1b. In this research, the training and vali-
dation samples were generated based on the CCD experiments to induce systematic variations due to the sugar 
concentrations. In the PCA score plot, the samples were scattered across the PCA space, wherein a greater PC1 
value represented the sample with high sucrose content. On the other hand, higher PC2 values were associated 
with the samples with high lactose content.

Consequently, it was clear that the sample organizations were achieved due to the variations in the sugar 
contents. This demonstrated that the NIR detection could analyze the milk samples with different sugar contents. 
Most of the test samples were placed within the region of the training samples implying the suitability of the 
generated training samples. Test sample no. 10 (E10) was located slightly away from the main cluster; however, 
this could be due to the extracted malt, which was utilized as a flavoring agent and resulted in yellow–brown 
double-layer tablets.

NIR spectral transformation of milk tablet samples. Figure 2 presents the difference in the NIR spectra between 
the powder and tablet milk samples. The NIR spectra of milk tablets (E1–E7) were recorded before and after 
grinding into powder. In Fig. 2a, the shapes of the NIR spectra obtained from both physical states were relatively 
similar. However, the powered milk samples resulted in relatively lower levels of absorbance, which could be 
related to the particle size of the samples. This outcome corresponded to the finding of a previous report noting 
that tablet compaction pressure resulted in more intense penetration with higher absorbance intensity of the 

Xs,j= [xs,j−k · xs,j−k+1, . . . ,xs,j+k−1 · xs,j+k]

Xm,j = Xs,j × bj

F = diag (bT1 , b
T
2 , . . . b

T
j , . . . b

T
n )

Xs,PDS = F × Xs,un
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NIR  spectra26. The variation that occurred because of the sample’s physical conditions could be confirmed in the 
PCA score plot shown in Fig. 2b. From the score plot, the milk samples without any transformation process were 
separately clustered into two main groups, wherein the tablet and powder samples were placed differently on the 
PCA space. The clear separation between the sample clusters implied that the physical differences caused more 
variation than chemical compositional differences between milk samples. In other words, in this experiment 
with the PCA visualization, the physical variation identified between the powder and the tablet samples could be 
systematically captured by the first two PCs.

After the spectral data recorded from the tablet samples were transformed using the PDS transformation 
process, the shape of the spectra was significantly changed and became very similar to that of the powder sam-
ples, as shown in Fig. 2a. The success of the spectral transformation can be confirmed by the PCA score plots 
shown in Fig. 2b, in which the transformed samples were placed nearly exactly in the identical PCA locations as 
the powder samples. In this case, PDS transformation could effectively remove the variation that occurred due 
to the physical state of the samples. Commonly, PDS transformation is used to adjust for any differences in the 
experimental conditions; for example, the difference observed in the sample detection methods using two differ-
ent instruments, namely primary and secondary. The correlation between the instruments was investigated based 
on the PLS-NIPAL algorithm during the modeling  process33. As a result, systematic variations in the spectral data 
obtained from both instruments were extracted concurrently, while also maximizing their covariance values. 
This correlation information could be used to transform the detection signal from the secondary instrument 
with respect to the covariation structure of both instruments. Consequently, the transformed signals could be 
well-suited to the prediction models established from the primary instrument without requiring the prediction 
model to be regenerated. In this experiment, the reconstruction of the transformed NIR spectra was based on 

Figure 1.  (a) NIR spectra of the studied milk samples (powder) and (b) PCA score plot of the corresponding 
NIR spectral data.

Figure 2.  (a) NIR spectra of the test milk samples (powder and tablet) and (b) PCA score plot of the milk 
samples after the DS and PDS transformations.
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the systematic structure, which could be effectively captured by the PCA modeling, as previously discussed. 
Therefore, PDS could be successfully adapted to the translation of the NIR spectral data of the tablet samples. 
These results indicated the effective utilization of the PDS transformation model for stabilizing the NIR spectra 
recorded from samples with different physical appearances.

In this research, the DS adjustment which was based on a single calculation of the correlation matrix pro-
duced unsatisfactory estimates of the NIR spectra. However, the visualization of this spectral transformation was 
based on the use of raw NIR spectral data without data pretreatment. This global adjustment using DS could be 
sensitive to the drift in the spectral baseline as visualized in Fig. 2a and this demonstrated that the calculation 
based on the spectral subsection could improve the performance of the calibration transfer process. The effect 
of this data adjustment on the prediction performance will be discussed in the prediction of the sugar content 
using the PLS model.

Detection of sugar contents using PLS. Prediction of internal validation samples. The NIR spectra of 
the training samples were used to establish PLS calibration models to estimate the sugar contents in the milk 
samples. Using the PLS1 algorithm, the calibration model was constructed independently to predict each type of 
sugar. The validation samples were used to investigate the predictive performance of the developed PLS models, 
and the predictive results were summarized in Table 3.

The PLS model for the prediction of the sucrose content resulted in calibration performance values for 
RMSEC, RMSEP,  R2, and  Q2 of 1.69, 2.67, 0.9749, and 0.9373, respectively. At the same time, the prediction 
of the lactose content generated predictive results for RMSEC, RMSEP,  R2, and  Q2 values of 0.35, 0.79, 0.9987, 
and 0.9943, respectively. A relatively small value of RMSECs implied that the PLS successfully fitted the data 
and that the calibration models adequately modeled the response parameter variations. The PLS models could 
generate high  R2 and  Q2 values implying that the developed models were stable and could successfully be used 
to estimate the sugar contents in the prepared powder samples. These results corresponded to the correlation 
graphs presented in Fig. 3a,b, where the predicted samples were placed approximately close to the diagonal lines 
of the graphs suggesting that most of the samples had slight differences between the reference and the predicted 
sugar concentrations. The values of  Q2 were slightly lower than the  R2 values implying that the models were not 
prone to the overfitting problem.

In general, RPD values allow for a comparison of the prediction accuracy of the different models. Higher 
values of RPD would indicate a better predictive ability corresponding to lower bias and SECV values along with 
higher  Q2 values. The established model for lactose prediction had a higher RPD value than the prediction of 
sucrose, indicating that the PLS model had a better predictive performance. These findings suggest that lactose, 
a naturally occurring sugar in milk, could be used to obtain additional related information from other compo-
nents, such as the fats and proteins presented in the raw-milk material. In comparison to the sugar naturally 
found in food products, sucrose, which was added during the preparation process, contained less micronutrient 
 information34.

Prediction of sugar content in real milk tablet samples. Table 4 shows the predictive results of the milk tablets 
(E1–E7) using the developed PLS models. When the developed PLS models were used to estimate the sugar 
contents from the NIR spectra directly detected from the tablet samples (P to predict T), higher predictive errors 
were obtained, resulting in significantly lower  Q2 values (0.7024 and 0.7030 for sucrose and lactose, respectively) 
and higher RMSEP values (53.44 and 8.14 for sucrose and lactose). The poor predictive results correspond 
with the PCA score plot shown in Fig. 2b, where the deviations between the powder and tablet samples were 
highlighted, noting that the physical structures of the samples could significantly affect the NIR measurements.

Significant improvements in the predictive results could be obtained after the NIR spectral data were pre-
processed by PDS transformation (P to predict T/P). Figure 4 illustrates the comparison between the predictive 
results before and after the PDS transformation demonstrating the significant reduction in the relative errors 
associated with non-destructive detection. In Table 4, the  Q2 values for both sucrose and lactose prediction 
models increased to 0.7973 and 0.9411, respectively. The corresponding correlation graphs of the reference and 
the predicted sugar contents for the PLS models are shown in Fig. 3c. The DS transformation resulted in the 
improvement in the prediction of the sucrose content having a reduction of the RMSEP value to 19.27, but it 
failed to improve the results for the prediction of the lactose content where the RMSEP was increased to 23.73. 
This confirmed that the calculation based on the spectral subset in the PDS method could improve the predictive 
accuracy of the PLS calibration models.

Table 3.  Statistical values for the PLS prediction using the training and internal validation milk samples.

Model statistics Sucrose Lactose

R2 0.9749 0.9987

Q2 0.9373 0.9943

RMSEC 1.69 0.35

RMSEP 2.67 0.79

SECV 3.28 5.02

RPD 4.09 12.48
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The lactose concentrations in samples 8 and 9 were null because they were milk tablets that contained only 
artificial-milk flavor without the actual cow’s milk component. These results indicated that the laboratory-
developed model could be used to predict real milk tablet samples or the final process samples by enabling 
uncomplicated measurements and real-time analysis of a large number of samples collected during the manu-
facturing process without the need for sample preparation.

Figure 3.  Correlation graphs for the training and internal validation samples of (a) sucrose, (b) lactose 
contents, and (c) the real milk tablet samples after PDS transformation for the predictions of the sucrose and 
lactose contents.

Table 4.  Sugar determinations in real milk tablet samples. *P = powder samples, **T/P = tablet samples 
adjusted to powder samples, ***T = tablet samples.

Sample names

Sucrose amount (%w/w) Lactose amount (%w/w)

Actual P predict T*** P* predict T/P** (DS) P* predict T/P** (PDS) Actual P predict T*** P* predict T/P** (DS) P* predict T/P** (PDS)

1. E1 21.78 82.31 41.68 23.27 38.99 33.14 18.16 39.72

2. E2 39.04 84.36 58.79 43.15 0.00 − 2.351 41.41 − 7.442

3. E3 43.69 95.56 45.36 46.15 0.00 12.14 − 13.70 3.382

4. E4 28.04 76.37 39.66 29.60 28.47 43.15 16.65 32.57

5. E5 20.06 72.33 35.11 14.52 30.68 26.10 13.41 31.72

6. E6 16.72 76.17 42.41 27.41 29.32 29.77 11.46 33.92

7. E7 25.48 80.08 53.56 23.07 28.94 22.54 − 0.2068 24.66

Q2 0.7024 0.2853 0.7973 Q2 0.7030 0.0002 0.9411

RMSEP 53.44 19.27 5.04 RMSEP 8.14 23.73 4.22
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Conclusion
In the manufacturing process, it was not practical to produce modeling samples that had enough variations to 
generate robust prediction models. In addition, the spectral deviations that occurred while completing the NIR 
measurements could have affected the prediction accuracy of the developed model. This research demonstrated 
that using the calibration transfer method widened the utilization ability of the developed calibration models. 
NIR spectroscopy combined with chemometric analyses can be applied to detect the sugar contents in milk 
tablets. PDS resulted in an improved level of the predictive performance of the tablet samples. The development 
process offered non-destructive, accurate, and rapid techniques for determining sugar contents in real milk 
tablet samples.

Data availability
The NIR spectroscopic datasets analyzed during the current study are available from the corresponding author 
upon reasonable request.
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