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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) outbreak has become a global public health emergency and has led to 
devastating results. Mounting evidence proposes that the disease causes severe pulmonary involvement and 
influences different organs, leading to a critical situation named multi-organ failure. It is yet to be fully clarified 
how the disease becomes so deadly in some patients. However, it is proven that a condition called “cytokine 
storm” is involved in the deterioration of COVID-19. Although beneficial, sustained production of cytokines and 
overabundance of inflammatory mediators causing cytokine storm can lead to collateral vital organ damages. 
Furthermore, cytokine storm can cause post-COVID-19 syndrome (PCS), an important cause of morbidity after 
the acute phase of COVID-19. Herein, we aim to explain the possible pathophysiology mechanisms involved in 
COVID-19-related cytokine storm and its association with multi-organ failure and PCS. We also discuss the latest 
advances in finding the potential therapeutic targets to control cytokine storm wishing to answer unmet clinical 
demands for treatment of COVID-19.   

1. Introduction 

The coronavirus SARS-CoV-2, the virus responsible for the deadly 
Coronavirus disease 2019 (COVID-19) disease, has caused a global 
outbreak in pandemic proportions and killed over five million people all 
around the world. Clinical manifestation of coronavirus disease can 
range from asymptomatic presentations to severe forms, such as acute 
respiratory distress syndrome (ARDS) and multi-organ failure requiring 
intensive care unit (ICU) admission [1]. 

The hallmark of COVID-19 disease since its advent has been pul
monary manifestation. However, as the disease propagated all around 
the world, more studies have been published about its extrapulmonary 
effects involving the cardiovascular, gastrointestinal, urogenital, and 
nervous systems [2]. Multi-organ failure is the leading reason for mor
tality and morbidity in ICU patients. Although the exact pathogenesis of 
multi-organ failure in COVID-19 is still under investigation, there are 
two conceivable mechanisms for it [3]: 1. SARS-CoV-2 invades the host 

cell via angiotensin-converting enzyme 2 (ACE2) receptor. Thus, all cells 
that express the ACE2 receptor are vulnerable to direct virus invasion 
and subsequent effects of ACE2 downregulation. 2. The uncontrolled 
and aberrant inflammatory response to the virus, but not the virus itself, 
can result in unintended complications and multi-organ failure. 

Accumulating evidence suggests that uncontrolled immune re
sponses resulting from a condition called “cytokine storm” or “cytokine 
release syndrome” could have a disastrous effect in patients with severe 
COVID-19 [4]. Cytokine storm is a deleterious, fast-developing systemic 
inflammatory condition involving excessive circulating cytokine levels 
and immune-cell overactivation that can be provoked by various path
ogens, autoimmune diseases, malignancies, and immunotherapies. This 
syndrome has been proposed to be associated with multi-organ failure, 
as it can give rise to a wide range of systemic presentations, including 
elevated levels of cytokines and growth factors, endothelial damage, 
vascular permeability, coagulopathy, and infiltration of immune cells 
into tissues [5]. 
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To the best of our knowledge, previous studies have reviewed the 
role of cytokine storm in multi-organ failure in COVID-19, but they have 
not discussed the mechanisms of this role in details and in each organ 
separately. To fill this gap, here we provide a comprehensive and 
thorough review of cytokine storm pathophysiology mechanisms and 
discusses how it can lead to dysfunction and failure in each organ 
separately during COVID-19 and post-COVID-19 periods. We will also 
summarize the current data about potential therapeutic targets and 
exciting interventions to control cytokine storm and prevent severe 
complications in COVID-19 disease. 

1.1. Pathophysiology of cytokine storm and SARS-CoV-2 related cytokine 
storm 

The immune system is expected to maintain hemostasis after 
recognizing foreign invaders and responding properly to them. This 
hemostatic balance depends on sufficient cytokine secretion to combat 
pathogens and prevention of hyper-inflammation since the over- 
production of cytokines leads to severe systemic damage [6]. Indeed, 
cytokines play a crucial role in defense against pathogens and regulation 
of immune responses [7]. 

Although the dysregulated and excessive secretion of cytokines may 
cause collateral damage to vital organs, well-coordinated production of 
cytokines is necessary to control systemic infections [8]. 

Lacking a unifying, widely accepted definition for cytokine storm, 
Fajgenbaum and colleagues, in a recent article, proposed the following 
three criteria for identifying cytokine storm: high levels of circulating 
cytokines, uncontrolled systemic inflammatory reaction, and systemic 
organ damages that are merely caused by immune responses [6]. 

As we know, SARS-CoV-2 enters the host cell via ACE2 receptor, 
which is highly expressed in the lower respiratory tract, lung, heart, 
ileum, esophagus, kidney, and bladder. The cellular serine protease 
transmembrane serine protease 2 (TMPRSS2) is necessary for S protein 
priming and is also expressed in many tissues, such as lungs and type II 
alveolar cells, the kidney, liver, and the GI tract [9–11]. After viral entry, 
ACE2 internalization, together with the virus, results in decreased cell 
surface levels of the ACE2 receptor. ACE2 regulates the balance of Ang 
II/Ang-(1–7) levels. So, downregulation of ACE2, in turn, increases Ang- 
II levels and reduces Ang 1–7 levels. This condition makes a shift in the 
renin angiotensin system (RAS) system toward the harmful ACE/Ang II/ 
angiotensin II receptor type 1 (AT1R) axis due to Ang II accumulation. 
Ang-II acts as a pro-inflammatory cytokine and induces deleterious 
consequences in many organs via AT1R. Hyper-activation of the Ang-II/ 
AT1R axis mediates inflammatory responses, which leads to uncon
trolled pro-inflammatory cytokine production. Ang-II/AT1R axis acti
vates Janus kinase/signal transducer and activator of transcription 
(JAK-STAT) and nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) pathways, the main signaling pathways implicated in the 
production of inflammatory cytokines. Over-production of pro- 
inflammatory cytokines causes cytokine storm, and consequently, 
further activation of the NF-κB pathway occurs [12,13]. So, the entrance 
of the virus activates many inflammatory pathways, leading to disrup
tive consequences. (Fig. 1). 

1.2. Immune system and inflammatory pathways in COVID-19 

SARS-CoV-2-induced immune responses have two major phases. The 
first phase is based on protection against the virus via producing anti- 
viral components and inhibiting disease progression, mainly through 
activation of the dendritic cells, macrophages, and pulmonary epithelial 
cells. The second phase is an inflammatory state which may lead to 
cytokine storm and induce damage to the host [14]. It has been shown 
that in the early stages of COVID-19 disease, the immune responses are 
suppressed, which leads to more viral replication. In later stages of the 
disease, activation of immune responses leads to hyper-inflammatory 
state and cytokine storm, which cause organ damage [15]. Therefore, 

boosting the immune responses in the early stages and suppressing them 
in later stages should be considered as a potential option for the man
agement of cytokine storm. 

As mentioned, in the first phase, inflammation is crucial to make an 
appropriate immune response to clear the virus and inhibit the viral 
replication. Many important inflammatory signalings are involved in 
providing protective immunity against the virus. Both innate and 
adaptive immune responses contribute to viral elimination and protec
tion of patients from negative consequences of the disease [14]. Here we 
discuss immune components and pathways contributing to immune re
sponses against the virus. 

1.2.1. Innate and adaptive immune system in COVID-19 
There are complex and not fully understood interactions between 

various cell types, signaling pathways, and cytokines involved in cyto
kine storm. As the first line of defense, the innate immune system can 
recognize pathogens leading to the production of several cytokines 
[6,16]. Activated macrophages, are implicated in various forms of the 
cytokine storm via producing tumor necrosis factor (TNF), interleukin-1 
(IL-1), IL-6, IL-8, and IL-12. Although beneficial, the excessive produc
tion of cytokines contributes to generalized inflammation leading to 
multi-organ damage. Natural killer (NK) cells also provide a potent 
cytolytic function to diminish the viral load. Studies showed that in 
some types of inflammation and cytokine storm, NK cell activity is 
diminished, which is associated with expansion of monocytes pop
ulations which can lead to pro-inflammatory cytokine secretion and 
promotion of local and systemic inflammation in severe cases [17]. This 
condition makes it difficult to combat the pathogens and resolve the 
inflammation [18]. 

The innate immune cells express pathogen-recognition receptors 
(PRRs) to recognize pathogen-associated molecular patterns (PAMPs) 
structures on pathogens and damage-associated molecular patterns 
(DAMPs) released by damaged tissues. Following the binding of PRRs to 
PAMPs/DAMPs, PRRs activate intracellular signaling cascades to pro
duce cytokines that activate the adaptive immune response and inhibit 
pathogen spreading [19]. 

Activation of innate immune system receptors, including the NOD- 
like receptors (NLRs) and the absent in Melanoma 2 (AIM)-like re
ceptors (ALRs), leads to the inflammasome complex assembly and 
recruitment of pro-caspase-1. The clustering of inactive pro-caspase-1 
proteins results in their self-cleavage and formation of active caspase- 
1. Active caspase-1 cleaves gasdermin D (GSDMD), precursor cyto
kines pro-IL-1β and pro-IL-18, leading to the formation of membrane 
pores, induction of pyroptosis, and release of biologically active IL-1β 
and IL-18 through these membrane pores [20,21]. In COVID-19 patients, 
caspase-1 activity and higher plasma levels of IL-18 correlate with dis
ease severity [22]. The SARS-CoV-2 virus can trigger priming and as
sembly of the inflammasome complex through various pathways. SARS- 
CoV-2 encoded N protein [23], ORF3a [24], NSP6 [25], E protein [26], 
and S protein [27,28] are capable of promoting activation of inflam
masomes such as NLRP3 inflammasome. Oxidization of mitochondrial 
DNA (mtDNA) due to mitochondrial dysfunction and subsequent ROS 
formation, can activate NLRP3 and AIM2 inflammasomes during SARS- 
CoV-2 infection [29]. Furthermore, activation of NLRP3 and AIM2 
inflammasomes promotes pyroptosis of infected monocytes/macro
phages and triggers systemic inflammation [30]. Activation of AIM2 in 
alveolar type II cells and alveolar macrophages also participates in the 
lung injury and increases mortality in influenza infection [31]. Thus, it 
may also induce inflammatory pathways in pneumocytes in COVID 
infection. 

Upon recognition of SARS-CoV-2 by toll-like receptors (TLRs), one of 
the main PRRs, activation of NF-κB, interferon regulatory factor 3 and 7 
(IRF3 and IRF7) transcription factors occur. Translocation of these 
transcription factors into the nucleus leads to priming of inflammasomes 
and increased expression of pro-inflammatory cytokines, chemokines, 
and type I interferon (IFN), which can trigger the activation of innate 
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Fig. 1. The key intracellular signaling pathways involved in COVID-19-related cytokine storm. SARS-CoV-2 enters the host cell via the ACE2 receptor resulting in 
downregulation of this receptor and a shift in the RAS system, which leads to elevated Ang-II levels and reduction of Ang 1–7 levels. Several pro-inflammatory 
cytokines produced by immune cells and Ang-II/AT1R axis utilize JAK/STAT and NF-κB intracellular signaling pathways to apply their effects. Attachment of 
pro-inflammatory cytokines to their cognate receptors leads to the JAKs phosphorylation, subsequent transphosphorylation and dimerization, making it possible for 
STATs to translocate into the nucleus and regulate specific genes expression. On the other hand, interferon regulatory factor (IRF) and NF-κB signaling pathways can 
be activated through RNA and DNA-sensing pathways. Mitochondrial dysfunction and reactive oxygen species (ROS) also participate in the aggravation of in
flammatory responses. As a result, aberrant pro-inflammatory cytokine release causes cytokine storm and consequent multi-organ damage. 
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immune cells through a positive feedback loop. Sustained activation of 
innate immune response can cause ARDS [32,33]. 

The adaptive immune response is carried out by B cells and T cells 
involved in defense against viral infections. T cells differentiate into 
several subtypes with different functions potentially involved in the 
cytokine storm. Virus-specific CD4+ T cells could differentiate into Th1 
cells that secrete large amounts of IFN-γ, activate macrophages, and are 
crucial for cell-mediated immunity and defense against intracellular 
pathogens [34]. Cytokine storm might be developed due to over
activation of Th1-type inflammatory response [6]. 

CD8+ T cells have cytotoxic activity against infected cells, so they 
play a crucial role in the clearance of viruses [35]. It has been shown that 
SARS-CoV-2-specific CD8+ T cells and memory CD8+ T cells express 
high levels of activation/cycling markers in acute severe COVID-19 
[36]. In most COVID-19 patients, IFN-γ+ SARS-CoV-2-specific CD8+ T 
cells and CD4+ T cells have been detected, representing a functional 
CD8+ T cell response against SARS-CoV-2 [37]. 

A sustained anti-viral response may cause T-cell functional exhaus
tion. Recent studies have reported that Tim-3 and PD-1 (exhaustion 
markers of T cells) expression levels on the surface of CD4+ and CD8+ T 
cells were significantly higher in COVID-19 patients, especially in severe 
conditions [38–40]. Total counts of helper T cells and cytotoxic T cells 
(effector T cells), and plasma cells (effector B cells which secret virus- 
specific neutralizing antibodies) are significantly decreased in COVID- 
19 [17,32,36,41]. This reduction may be due to apoptosis caused by 
hyper-activation of innate immune responses and cytokine release 
[17,32]. So, cytokine storm can cause a reduction in T cell counts. 
Therefore, hyper-activation or impaired function of innate and adaptive 
immune responses are involved in the immunopathology of COVID-19 
severe stages. 

1.2.2. Inflammatory cytokines and pathways in COVID-19 
Inflammatory pathways, including JAK/STAT signaling pathway 

[42], IFN cell signaling pathway [43], NF-κB pathway [44], TLR 
pathway, etc. are activated in COVID-19-associated cytokine storm. 
Moreover, levels of IL-1, IL-6, TNF, IFN-γ, and IFN-γ-induced protein 10 
(IP-10) are elevated in patients with COVID-19 and are thought to have 
leading roles in developing hyper-inflammatory state [45,46]. Here, in 
the following sections, we provide an overview of substantial inflam
matory cytokines and pathways implicated in the pathogenesis of 
COVID-19-associated cytokine storm. 

IL-6 
IL-6 is primarily released by immune cells and has a crucial role in 

mediating acute inflammatory responses and cytokine storm patho
physiology. Elevated levels of IL-6 may lead to multi-organ dysfunction 
in patients with severe inflammatory disease. IL-6 is implicated in innate 
and adaptive immune responses and promotes defense against patho
gens, and also has a tissue repair effect. IL-6 has a particular receptor 
system for transmitting its signals. It can signal through the membrane- 
bound interleukin-6R that interacts with CD130. But the excessive and 
sustained release of IL-6, mainly due to exacerbated host immune 
response, can cause disease progression and systemic inflammation 
[47,48]. 

IL-6 is one of the central NF-κB-driven cytokines, which can induce 
hyper-activation of NF-κB via activation of the JAK-STAT3 pathway in 
vascular inflammation. Viral induction of TLRs causes NF-κB-mediated 
induction of pro-inflammatory cytokines, including IL-6, TNFα, and IL- 
1β. TNFα or IL-1β also induces transcription of IL-6 mRNA. The binding 
of IL-6 to its membrane receptor IL-6R causes phosphorylation of gp130 
and activates intracellular signaling via inducing activation of the JAK- 
STAT pathway [47,49]. 

Serum IL-6 levels are significantly elevated in COVID-19 patients 
with complicated diseases especially among those who progressed to 
ARDS. There is also a relation between IL and 6 levels and mortality. 
Patients who died from the COVID-19 had significantly higher serum IL- 
6 levels [50]. Serum IL-6 levels can be used as a prognostic biomarker to 

detect patients with higher susceptibility to developing cytokine storm 
and predict the outcome of the disease [51–53]. In a study in 2020, an 
association between IL and 6 Levels and RNAemia in patients with se
vere COVID-19 was demonstrated. IL-6 level in patients with RNAemia 
was over 100 pg/mL, representing a higher risk of developing multiple 
organ damage and mortality in these patients. Excessive amounts of IL-6 
expanded the vascular permeability leading to organ dysfunction and 
consequent increased serum SARS-CoV-2 viral RNA [54]. 

IL-1 
Cytokines of the IL-1 family significantly promote the activity of 

innate immune cells and the differentiation of polarized T cells [55]. It 
has been shown that over-production of IL-1 β contributes to some forms 
of cytokine storm, presumably through activation of the NF-κB intra
cellular pathway. Moreover, aberrant production of IL-1β is thought to 
be implicated in COVID-19-related cytokine storm. SARS-COV2 virus 
binds to TLRs, leading to the formation of pro-IL-1β, activation of the 
inflammasome, and subsequently the production of IL-1 β, which me
diates fever, lung fibrosis, and systemic inflammation [56,57]. 

TNF 
TNF is one of the potent pro-inflammatory cytokines that have a 

prominent role in acute viral disease and their related cytokine storm. 
TNF-α is produced by different immune cells, and its primary cognate 
receptor, TNFR1, seems to be expressed within nearly all cells of the 
body, which is likely responsible for TNF’s multiple functions [58]. In
flammatory processes induced by TNF-α could be beneficial on a 
controlled level; however, on a systemic level, it can provoke fever, 
increased vascular permeability, coagulopathy, and even shock [59–61]. 
TNF-α is a prominent activator of NF-κB, the critical transcription factor 
in regulating a broad spectrum of biological processes, including cell 
proliferation, differentiation, and apoptosis [62]. 

In severe cases of COVID-19 disease, the levels of TNF-α and other 
pro-inflammatory cytokines were significantly increased [63]. In a 
recent study, Karki and colleagues showed that synergism of TNF-α and 
IFN-γ could exacerbate the COVID-19-related cytokine storm and lead to 
multi-organ failure as a consequence of inflammatory cell death and 
tissue damage [64]. 

JAK/STAT pathway 
JAK/STAT pathway is one of the main intracellular pathways 

involved in cytokine storm and COVID-19 severity [42]. This pathway is 
initiated upon attachment of pro-inflammatory cytokines to their 
cognate receptors leading to the JAKs phosphorylation and then STATs 
transphosphorylation. The dimerization of STATs enables them to 
translocate into the nucleus and attach to distinct DNA sequences, 
consequently affecting the transcription of the immune regulatory, 
apoptotic, cell cycle, and differentiation-related genes [65]. 

Several pro-inflammatory cytokines, including IL-2, IL-4, IL-6, IL-7, 
IL-10, TNF-α, and IFNγ, utilize JAK/STAT pathway to apply their effects 
[42]. For instance, IL-6, which has been proven highly expressed in 
COVID-19 patients, induces JAK/STAT pathway activation and down
stream inflammation-related gene expression and subsequently regu
lates different immune responses involved in cytokine storm [66]. 

Moreover, Ang II signaling can be mediated by the JAK-STAT 
pathway. For this purpose, AT1-R employs and phosphorylates JAK2, 
which in turn phosphorylates one of the STATs (based on target cells) to 
mediate the transcription of target genes. Considering the crucial role of 
the JAK/STAT pathway not only in cytokine signaling but also in Ang II 
signaling, targeting this pathway presents an attractive therapeutic 
strategy for cytokine storm [67]. 

NF-κB pathway 
As mentioned, DAMPs and PAMPs recognized by PRRs and activated 

downstream signalings are implicated in anti-viral response. The NF-κB 
pathway is the main signaling initiated via the activation of PRRs [68]. 
NF-κB is a transcription factor that enhances pro-inflammatory gene 
expression, associated with innate and adaptive immune responses. 
Following activation of IKKα and IKKβ by a viral infection or pro- 
inflammatory cytokines, phosphorylation of IκBs occur, which leads to 
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nuclear translocation of NF-κB. The binding of NF-κB to κB-sites in the 
nucleus induces transcription of pro-inflammatory genes [69,70]. NF- 
κB-driven pro-inflammatory cytokines such as IL-1, IL-6, IL-8, and TNF-α 
can also induce activation of NF-κB through a positive feedback mech
anism [71]. NF-κB is involved in promoting the polarization of macro
phages into pro-inflammatory M1 phenotype due to activation of the 
TAK1/IKK pathway [68]. Activation of the NF-κB pathway is also 
involved in regulating CD4+ T-cell differentiation following TCR acti
vation and also via regulating the cytokine production in innate immune 
response [72]. It has been proved that the expression of NF-κB-depen
dent pro-inflammatory pathways is increased in critically ill patients 
with COVID-19 [44]. It has also been shown that SARS-CoV-2 proteins, 
including M, N, and ORF7a proteins, are correlated with the severity of 
ARDS in COVID-19 patients via activating NF-κB function and increasing 
expression of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and 
TNF-α [73]. 

So over-activation of NF-κB-dependent pro-inflammatory pathways, 
which can pathologically activate neutrophils and monocytes/macro
phages, is responsible for excessive cytokine release and causes mortal 
inflammation in COVID-19 patients, leading to cytokine storm 
syndrome. 

IFN cell signaling pathway 
One of the major components in innate immune response is the IFN 

signaling pathway which is involved in anti-viral response through 
inducing transcription of IFN-stimulated genes (ISGs) [74,75]. PRRs 
such as the TLRs and RIG-I-like receptors (RLRs) are involved in the 
production of IFNs. 

TLRs are one of the main innate immune recognition receptors that 
recognize pathogens on the cell membrane as well as in the cytoplasm. 
There are 11 types of TLRs already recognized in human beings [76]; 
among those, specific TLRs (TLR3, TLR4, TLR7, TLR8, and TLR9) could 
recognize SARS-CoV-2, which leads to the activation of transcription 
factors such as NF-κB, AP-1, and IRF to enhance viral elimination [49]. 
TLR4 is a membrane receptor of alveolar and bronchial epithelial cells 
that recognize PAMP as well as DAMP and has an important role in 
COVID-19 progression. It has been found that the accumulation of 
oxidized phospholipid (OxPL) could augment the levels of cytokines and 
promote acute lung injury (ALI) via TLR4 [49]. TLR4 is a membrane 
receptor of alveolar and bronchial epithelial cells that recognize PAMP 
as well as DAMP and has an important role in COVID-19 progression. It 
has been found that the accumulation of OxPL could augment the levels 
of cytokines and promote ALI via TLR4 [49,77]. Since the expression of 
TLR4 has been reported on endothelial cells, renal tubular cells, and 
cardiomyocytes, it may be involved in causing ARDS and kidney and 
cardiac injury. Activation of endosomal TLR7 and TLR8 receptors induce 
pro-inflammatory cytokine production by activating MyD88/MAPK/NF- 
κB signaling pathways [78]. mtDNA enhances inflammatory responses 
via TLR9 activation. Costa et al. demonstrated that the activation of 
TLR9 signaling is involved in endothelial dysfunction and cardiovascu
lar consequences in SARS-CoV-2 infection [79]. 

Hence, specific targeting of TLRs not completely blocking all TLRs 
may be beneficial in mediating the cytokine surge in COVID-19 disease 
and preventing ALI in those patients. 

RLRs are intracellular PRRs that can sense non-self RNA (such as 
SARS-CoV-2 RNA) [80,81]. RLRs such as MDA5 and RIG-I get activated 
in the presence of SARS-CoV-2 RNA and interact with MAVS, leading to 
recruitment of specific kinases and subsequent phosphorylation of in
hibitor of nuclear factor kappa B (IκB), and transcription factors such as 
IRF3 and IRF7. Once activated, these transcription factors translocate to 
the nucleus and induce the transcription of genes encoding inflamma
tory cytokines and IFNs [33,82,83]. In addition to immune mechanisms 
that can detect viral RNA, another pathway capable of sensing cyto
plasmic DNA called cyclic GMP-AMP synthase (cGAS)–stimulator of IFN 
genes (STING) signaling pathway, can play a critical role in immunity 
against the viral infection. Recent studies reported that the cGAS-STING 
signaling pathway could be activated by either DNA viral infections or 

infection by RNA viruses such as SARS-CoV-2 [84]. The cGAS-STING 
pathway can sense pathogenic or misallocated host DNA and subse
quently activate TBK-1 and IKK, resulting in phosphorylation of IRF3 
and IκBα [85]. Recent studies reported activation of the cGAS-STING 
pathway in SARS-CoV-2 infection upon cell-to-cell fusion and subse
quent chromatin DNA leakage promoted by SARS-CoV-2 spike protein 
[86,87], or upon sensing DNA of damaged mitochondria in the cytosol 
[88,89]. Also, a recent study reported NF-κB-dependent production of 
inflammatory cytokines mediated by activation of the cGAS-STING 
pathway without induction of IFN signaling in epithelial cell lines 
infected by the SARS-CoV-2, suggesting that epithelial cells infected by 
the virus play a role in exacerbating the cytokine storm [90]. 

Once secreted, IFN binds to its receptors (IFNAR and IFNLR) and 
mediates its anti-viral effects via activation of the JAK-STAT pathway 
[75,91]. Type I IFN production is necessary to activate the anti-viral 
innate immune responses during early SARS immunopathogenesis, 
and impaired type I IFN production leads to lower viral clearance [92]. 
However, overexpression of IFNs in severe COVID-19 patients has been 
demonstrated [43]. Delayed but high levels of type I IFN in severe 
COVID-19 cases with higher viral load may lead to some consequences, 
including 1. Accumulation of pathogenic inflammatory monocyte- 
macrophages (IMMs), 2. Regulating the pulmonary infiltration of 
monocyte-derived macrophages, 3. Induction of NFκB signaling 
pathway 4. Prevention of T cell proliferation 5. Secretion of inflamma
tory cytokines/chemokines which cause lung tissue damage [93,94]. 
Therefore, it is worth mentioning that despite the role of IFNs in pro
tecting against viral infection, they may be involved in disrupting the 
lung epithelial barrier [95]. Accumulating pathogenic IMMs results in 
pro-inflammatory cytokine expression such as IL-6 and IL-1β, which may 
sensitize T cells to promote apoptosis [93,96]. So, dysregulated type I 
IFN is responsible for immunopathology of severe COVID-19. 

In conclusion, dysregulation of immune response and subsequent 
uncontrolled hyper-production of pro-inflammatory cytokines can cause 
a fatal inflammatory state. So, it is necessary to attenuate inflammatory 
pathways involved in the creation of cytokine storm. 

1.3. Association of cytokine storm and oxidative stress 

There is an exacerbating feedback loop consisting of oxidative stress, 
cytokine storm, and ER stress [97]. This vicious loop between oxidative 
stress and cytokine storm is responsible for many lethal consequences in 
COVID-19 infection. SARS-CoV promotes ROS production via activation 
of the NF-κB pathway leading to cell apoptosis [98]. SARS-CoV-2- 
induced oxidative stress is mainly due to mitochondrial dysfunction 
[99]. Mitochondria is one of the SARS-CoV-2 targets, enhancing virus 
replication [100]. The localization of SARS-CoV-2 dsRNA in the host 
mitochondrial matrix has been proven [101]. The virus disrupts mito
chondrial homeostasis through loss of mitochondrial membrane poten
tial (ΔΨm), mitochondrial permeability transition pore (MPTP) 
opening, and increased ROS release, which may promote SARS-CoV-2 
replication [102]. Mitochondrial ROS (mtROS) and mitochondrial 
DAMPs stimulate the production of additional pro-inflammatory cyto
kines such as IL-1β and IL-6 [103]. TNF-α, IL-6, and IFN-γ, which are the 
main inflammatory cytokines participating in cytokine storm creation, 
prevent mitochondrial oxidative phosphorylation and consequently 
lessen ATP production resulting in more mtROS levels [104]. Excessive 
production of mtROS and impaired mitophagy in platelets promote 
platelet dysfunction and apoptosis, resulting in activation of the coag
ulation cascade and promotion of thrombus formation [99]. 

SARS-CoV-2-induced ROS production might also be due to increased 
AngII levels in COVID-19 in an NADPH oxidase-dependent manner 
[105]. A positive feedback loop between mitochondrial and NADPH 
oxidase-derived ROS promotes cell and tissue degeneration as a conse
quence of ROS accumulation [105–107]. 
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1.4. Cytokine storm related organ dysfunction in COVID-19 

The pathophysiology of the different organ failures in COVID-19 
remains to be fully elucidated. As mentioned, high levels of pro- 
inflammatory cytokines and chemokines play a pivotal role in local 
and systemic inflammation. In local inflammation, activation of in
flammatory cells, endothelial damage, and parenchymal and epithelial 
injury occur, which leads to the extravasation of cytokines into the 
systemic circulation. Therefore, the systemic release of cytokines in
duces exaggerated inflammation that can affect remote organs and cause 
multi-organ failure, invading the vascular system and causing injury 
[108–110]. Inflammation caused by cytokine storm can disrupt ho
meostasis of many organs. Elevated levels of pro-inflammatory cyto
kines including IL-1, TNF-α, IFN-γ and IL-6 results in recruitment of 
various immune cells and subsequent tissue damage in COVID-19 pa
tients [111]. Moreover, persistent and higher levels of pro-inflammatory 
cytokines have relationship with higher mortality rate in patients 
[112–114]. 

Over-production of IL-6 is correlated with MODS, severity of disease, 
and mortality. As it has been shown that IL-6 is an indicator for pre
dicting development of organ dysfunction and mortality and is also 
predictor of disease severity in patients with systemic inflammation 
[115,116]. IL-1β is involved in promoting inflammation in bron
choalveolar lavage fluid of patients with ARDS [117]. Pro-inflammatory 

cytokines, such as IL-1β, IL-8, CXCL2, and IL-6, promote and exacerbate 
ALI/ARDS [96,118,119]. Hyper-activation of NF-κB also promotes in
flammatory injury to the lungs and other organs [119]. Therefore, multi- 
organ failure is highly associated with a pro-inflammatory state in the 
cytokine storm. (Fig. 2). 

Hence, in addition to anti-viral therapies, anti-cytokine and immu
nomodulatory therapies may be effective in improving COVID-19- 
associated organ failure. 

Here we discuss the potential mechanisms involved in cytokine 
storm-related organ dysfunction in COVID-19. 

Respiratory system 
SARS-CoV-2 mainly involves the respiratory system since the virus 

enters the body mainly through the pneumocytes, which highly express 
ACE2 receptors [120]. The most prevalent symptoms of COVID-19 pa
tients are respiratory manifestations, including fever, dry or productive 
cough, dyspnea, hypoxia, respiratory failure, and ARDS [120,121]. 
ARDS is a notable feature in COVID-19 and is considered the leading 
cause of mortality [122]. SARS-CoV-2, being a pathogen, induces the 
release of pro-inflammatory cytokines from local polymorpho nuclear 
cells (PMNs) and leukocytes, including IL-1β, IL-6, IL-8, and TNF-α 
[123]. These cytokines have local effects and induce endothelial cell 
expression of adhesion molecules, including intercellular adhesion 
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VACM-1) 
[124]. Subsequently, other immune cells, including T-cells and PMNs, 

Fig. 2. The association of SARS-CoV-2-induced cytokine storm and multi-organ failure. SARS-CoV-2 enters the body through the respiratory system and causes local 
inflammation and cytokine production, leading to alveolar vascular endothelial dysfunction, which subsequently leads to leakage of inflammatory cytokines to the 
bloodstream and the development of cytokine storm. Cytokine storm, induces endothelial dysfunction in various organs. Furthermore, ROS production and coa
gulopathy occur, causing thrombus formation and leading to organ damage. As for the brain, the intracranial cytokine storm arises due to a systemic cytokine storm, 
leading to alteration of blood–brain barrier integrity and subsequent increased permeability and development of neuroinflammation. This neuroinflammation, 
alongside thrombus formation, causes neurological complications such as stroke, encephalopathy, psychiatric diseases, and neurodegenerative diseases. Acute 
coronary syndrome, myocardial injury, heart failure and disseminated intravascular coagulopathy in the cardiovascular system, mucosal degradation and necrosis, 
ischemic ulcers and intestinal dilation and stenosis in the GI system and tubular fibrosis, acute kidney injury and end-stage renal disease in kidneys, are the most 
common complication of other organs due to systemic cytokine storm. 
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and monocytes attach to these adhesion molecules [125]. PMNs start 
producing ROS and more cytokines, leukotrienes, prostaglandins, and 
other proteases, which, together with T-cells, promote endothelial 
dysfunction [126]. This dysfunction is caused by cell membrane lysis, 
excessive permeability, cellular edema and apoptosis, and necrosis 
[127]. Afterward, this over-production of inflammatory mediators and 
immune cell infiltration producing ROS causes parenchymal and inter
stitial damage [108]. Subsequently, pneumocytes are injured with more 
infiltration, causing tissue fluid imbalance, pulmonary edema, and 
eventually ARDS [128,129]. Consequently, inflammatory cytokines and 
activated immune cells enter the circulatory system and reach other 
organs, promoting multi-organ damage [6,130]. 

Cardiovascular system 
Myocardial injury, arrhythmia, heart failure, and acute coronary 

syndrome are complications following COVID-19 [131]. Acute cardiac 
injury and heart failure are more likely to happen in patients with car
diovascular comorbidities. Regardless of pre-existing cardiovascular 
disease, these cardiac complications in COVID-19 patients increase m 
ortality risk [132]. A multicenter study on COVID-19 patients in Italy 
suggested CRP levels were associated with troponin levels and cardiac 
injury. Patients with cardiac injury had more elevated levels of CRP, 
serum ferritin, IL-6, d-dimer, and NT-proBNP levels. This suggests that 
systemic inflammation plays an imperative role in the development of 
heart injury [133]. 

Heart failure was found to be associated with increased levels of 
several inflammatory cytokines, such as IL-6, IL-1β, and TNF-α. 
Increased levels of these cytokines are associated with the severity of 
heart failure. Studies have reported a strong link between pro- 
inflammatory cytokines (including IL-1 and IL-6) and the development 
of heart failure [134]. IL-1 exerts adverse inotropic effects on car
diomyocytes by impairing Ca2+ homeostasis. Cardiomyocytes produce 
IL-1 during chronic hypoxia [135]. IL-1β and TNF-α can cause an NF-κB- 
mediated upregulation of AT1R on cardiac fibroblasts after MI, causing 
fibrosis and subsequent cardiac dysfunction [136]. IL-6 cytokine has 
been shown to impair myocardial function and exert adverse inotropic 
effects mediated through the JAK-STAT3 pathway [137]. Studies have 
suggested IL-6 as an independent predictor of severity and mortality of 
heart failure [138,139]. 

A central circulatory dysfunction in cytokine storm and multi-organ 
failure is dysregulated coagulation. Through excessive inflammatory 
cytokines in the bloodstream, tissue factor, which is an essential 
component in the activation of coagulation, is expressed on the surface 
of endothelial cells. This leads to subsequent coagulation cascade and 
thrombus formation in arteries and veins [140]. Moreover, there has 
been indirect (indicating endothelial cell dysfunction such as P-selectin) 
and direct evidence proving endothelial injury and endothelitis caused 
by COVID-19. Increased levels of IL-1β can impair lung endothelial 
integrity ARDS by reducing cAMP response element-binding (CREB)- 
mediated transcription of VE-cadherin in lung endothelial cells [141]. 
This endothelial cell injury leads to the release of von willebrand factor 
(vWF), expression of adhesion molecules, impairment of endothelial 
nitric oxide synthase (eNOS), and subsequent decline in NO production, 
which cause platelet aggregation and thrombus formation [142]. There 
are also considerable evidence demonstrating the occurrence of 
disseminated intravascular coagulopathy (DIC) in COVID-19 patients, 
especially in severe and critical cases [142–144]. This implies that in 
COVID-19-induced cytokine storm, DIC occurs through the consumption 
of coagulation factors due to endothelial cell injury. 

Urinary system 
Acute kidney injury (AKI) is prevalent in COVID-19 patients. About 

28 % of hospitalized COVID-19 patients are diagnosed with AKI, and 9 % 
require kidney replacement therapy (KRT) [145]. COVID-19 infection 
causes AKI, which is considered an independent risk factor for illness 
progression and mortality severity. There was a higher mortality risk in 
COVID-19 patients with AKI compared to COVID-19 patients without 
AKI [146–148]. Association between respiratory failure and AKI has also 

been reported [149]. ARDS patients with AKI have higher IL-6 and TNF- 
α than those without AKI [150–153]. There is also a correlation between 
urinary cytokines and kidney tissue injury leading to AKI [154]. 

An observational cohort study enrolling 223 COVID-19 patients in 
which 31 % of patients developed severe AKI (KDIGO stage 3) reported 
inflammatory markers including serum procalcitonin and white cell 
count were independent time-varying risk factors of severe AKI [155]. In 
other COVID-19 cohort studies, IL-2R, IL-6, TNF-α, CRP, and PCT were 
higher in the AKI group compared to the non-AKI group [156,157]. 

COVID-19 induces AKI possibly via promoting tubular and endo
thelial dysfunction mainly caused by systemic and local inflammation, 
RAAS system hyper-activation, and coagulation cascade activation 
[158]. The lung-kidney axis is mainly impaired by the cytokine storm in 
COVID-19 [159]. 

Circulatory DAMPs and PAMPs are also involved in local inflam
mation in the kidney and subsequent thrombus formation and endo
thelial injury [158,160,161]. Inflammation of the vascular system 
causes thrombosis, microangiopathy, endothelial activation, and 
increased permeability in vessels [159,162,163].Infiltration of immune 
cells into tubular interstitium induces apoptosis, fibrosis, micro-vascular 
injury and consequent tissue damage mainly via inflammatory cytokines 
production [164–166]. 

Hyper-coagulation is another cause of AKI which can be induced by 
different means, including COVID-19-mediated macrophage activation, 
cytokine storm promotion, DAMP and PAMP activation, coagulation 
factors activation, and neutrophil extracellular traps (NETs) formation 
[160,167]. Thrombosis can also be mediated by COVID-19-induced 
hypoxia. It has been shown that SARS-CoV-2 can activate platelet- 
mediated thrombosis via binding to platelets ACE2 [168]. 

Reproductive system 
A few studies evaluated the presence of SARS-CoV-2 in the male and 

female reproductive system, representing the possible direct invasion of 
the virus into these organs [148,169,170]. However, several other 
studies did not detect the virus in reproductive organs by sequencing 
tests [171–174]. This implies that reproductive organ dysfunction may 
result from inflammation rather than a direct invasion of SARS-CoV-2. 
Moreover, studies have reported decreased levels of testosterone hor
mone, which is vital for male reproductive function, and increased 
amount of inflammatory cytokines, which further suggests the impact of 
cytokine storm on reproductive organs [10]. The effect of inflammation 
and inflammatory cytokines on testis and spermatogenesis was reported 
[175]. In a study enrolling 43 men, the levels of IL-1β and TNF-α 
inversely correlated with sperm concentration [176]. The results of 
sperm analysis of male patients with COVID-19 showed decreased sperm 
count and motility compared to the results before viral infection 
[177,178]. Also, the impact of oxidative stress on male and female 
reproductive function was evaluated and reported to play an important 
role in infertility in the context of COVID-19 [179,180]. 

Other complications such as ischemic priapism and erectile 
dysfunction (ED) were also reported in male patients with COVID-19. 
The histologic findings reported endothelial dysfunction and blood 
coagulation in penile vasculature [181–183]. Furthermore, in several 
survey studies, some patients mentioned ED after recovery from COVID- 
19 [184,185]. There were also reports of orchitis in histological findings 
of COVID-19 patients and impaired spermatogenesis due to increased 
inflammation and inflammatory cytokines [186]. An autopsy study by 
Wichmann et al. reported microthrombi in the prostate of male patients 
[38]. In female COVID-19 patients, there were also reports of primary 
ovarian failure (POF) and ovarian vein thrombosis (OVT) [187–191]. 
One study reported POF due to long COVID-19 [192], and another 
presented a case of OVT in a pregnant woman [193]. Since COVID-19- 
induced cytokine storm causes hyper-inflammation, endothelial 
dysfunction, coagulopathy and thrombus formation, considering the 
above evidences, it can be implied that cytokine storm also results in 
reproductive organs dysfunction both in men and women, which might 
potentially result in infertility. 
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Gastrointestinal and hepatobiliary system 
Gastrointestinal cells, from the esophagus to the large intestine, ex

press a considerable amount of ACE2 and TMPRSS2, which are essential 
for the invasion of the coronavirus to the cells. However, data has shown 
that esophagus mucosa expresses a small number of ACE2 receptors, so 
SARS-CoV2 infection of esophageal cells is less than in other GI organs 
[194]. Moreover, Tissue staining demonstrated lymphocyte infiltration 
in esophageal epithelium and infiltration of plasma cells, monocytes, 
and lymphocytes in lamina propria of other GI organs alongside edema 
of interstitium [194,195]. Also, Laboratory studies on intestinal orga
noids have shown that SARS-CoV2 can infect intestinal cells [196]. The 
histopathological changes in the GI system due to SARS-CoV2 infection 
include mucosal degradation and necrosis in the GI system. Also, the 
submucosa’s dilation and congestion of blood vessels are seen, espe
cially in the stomach [195]. 

Additionally, floral dysregulation of the gut (gut dysbiosis) has been 
seen during COVID-19. The role of gut dysbiosis in the severity of 
COVID-19 and induction of cytokine storm via dysregulation of the gut- 
lung axis is strongly suggested in studies [197,198]. The gut-lung axis is 
a bidirectional cross-talk between the lungs and GI system’s microbiota, 
which in physiologic states maintains and regulates the immune system 
[199,200]. The disrupted GI microbial flora causes epithelial leakage 
and further induction of cytokine storm through different mechanisms 
[198,201]. Therefore, gut dysbiosis alongside other mechanisms can 
cause cytokine storm and its following organ dysfunction, including the 
GI system. 

Histological findings in GI tissue biopsies have shown evidence of 
vascular thrombosis in main vessels, including inferior vena cava and 
superior mesenteric artery, resulting in ischemia and tissue necrosis due 
to COVID-19 [202–204]. Additionally, in COVID-19 patients, tissue bi
opsies and autopsies demonstrated several digestive tract injuries, 
including mucosal damage and ulcers in favor of ischemia and small 
intestinal dilation and stenosis. Although not certain, cytokine storm is 
presented as a possible cause of these tissue damages [205–207]. 

Cytokine storm might contribute to liver and pancreas injuries as 
well. There have been reports of microthrombus formation in the liver in 
patients with critical COVID-19 undergoing cytokine storm, which 
subsequently leads to organ damage and liver failure [208]. Moreover, 
as the microthrombi form in other parts of the circulatory system, they 
can be displaced, resulting in emboli and ischemia in other organs such 
as the liver. Also, histological findings illustrated further tissue injury in 
the liver resulting in liver function test changes due to COVID-19- 
induced cytokine storm [209]. There are also reports of acute pancrea
titis in severe cases of COVID-19 patients and increased cytokine levels 
in both severe COVID-19 and acute pancreatitis patients, implying the 
existence of a link between pancreatitis and cytokine storm due to 
COVID-19 [210]. 

Nervous system 
Studies suggested that SARS-CoV-2 can invade the central nervous 

system (CNS) and peripheral nervous system (PNS) via possible mech
anisms. Neuronal anterograde/retrograde viral spreading via trans- 
synaptic transferring is one of the possible mechanisms of SARS-CoV-2 
neuroinvasion. The virus can be transferred to CNS using afferent 
vagus nerve and olfactory nerve leading to neuronal dysfunction and 
degeneration [211–213]. Another potential route for SARS-CoV-2 neu
roinvasion is the hematogenous pathway via transcytosis across capil
lary endothelial cells, which express ACE2, and via dissemination of 
infected leukocytes across the blood brain barrier (BBB) and choroid 
plexus [213,214]. Studies demonstrated that SARS-COV-2 alters BBB 
integrity and increases BBB permeability leading to neuroinflammation 
and neuropathology [215–218]. SARS-CoV-2 S Protein induces pro- 
inflammatory responses in brain endothelial cells and promotes the 
activation of endothelial cells resulting in the upregulation of inflam
matory cytokines and MMPs [217]. 

Direct infection of the BBB endothelial cells and cytokine/immune- 
mediated endothelial injuries increase the BBB permeability. 

Disrupted BBB and subsequent inflammatory cytokines and immune cell 
infiltration promote neuronal injury [219,220]. 

Cytokine storm may play a vital role in the pathogenesis of COVID- 
19-induced neurological complications. Previous studies have reported 
elevated levels of cytokines such as IL-6, IL-8, IL-1, TNFα, TGF-β1, and 
MCP-1 in patients with different neurological complications and anti- 
cytokine-based therapeutics may be effective in preventing COVID-19 
induced neurological complications [221–223]. 

1.5. Cytokine storm and post-COVID-19 syndrome 

As the COVID-19 pandemia progressed, various conditions were re
ported, including post-COVID-19 syndrome (PCS). PCS refers to pro
longed manifestations of more than three weeks after the acute phase of 
COVID-19 [224,225]. Although the pathogenesis of PCS is not yet well 
understood, there have been reports of a sustained hyper-inflammatory 
state alongside microvascular thrombosis and immune dysregulation 
and following organ dysfunction in patients with PCS [225–228]. 
Persistent inflammation is implicated in the deterioration of multi-organ 
failure recovery in the long term [229,230]. Moreover, prolonged 
COVID-19 has been reported to be associated with disease severity 
[231]. 

Studies have reported the impairment of at least one major organ 
after recovery from the acute phase of the disease [232]. Marked in
crease of serum pro-inflammatory cytokine levels can cause CNS com
plications and impair neuronal function via penetration of the BBB. 
Studies have demonstrated the association between elevated IL-6 levels 
and post-COVID neurological consequences, pulmonary fibrosis, and 
other co-morbidities [233–235]. Ortelli et al. recently evaluated 12 post- 
COVID patients. C-reactive protein (CRP) and IL-6 serum levels were 
remarkably elevated in all 12 patients, representing a hyper- 
inflammatory state. 8 of 12 cases presented clinical neuropathological 
sequels [236]. 

A case study in 2020 has reported kawasaki disease and toxic shock 
syndrome among pediatrics with COVID-19 post-infection. All four 
children had increased pro-inflammatory cytokine levels (IL-6, IL-8, and 
TNF-α), representing cytokine storm. This inflammatory state could 
result in multi-organ failure due to impaired vascular permeability in 
major organs [237]. Multisystem inflammatory syndrome in children 
(MIS-C) is another consequence of post-COVID which can lead to in
flammatory vasculopathy and myocarditis [238]. 

Hyper-inflammation-associated vascular impairment and coagula
tion abnormalities can cause post-COVID complications such as cardiac 
and cerebral thrombosis, pulmonary embolism, deep vein thrombosis, 
and also thrombosis in other organs leading to multi-organ failure [239]. 
A case report study reported inflammation in the main arteries of the 
brain and systemic circulation in a 69-year-old man Six weeks after the 
infection onset. Cerebral and systemic vasculitis can induce progressive 
brain damage and multi-organ dysfunction [240]. 

Post-acute-COVID-19 cardiovascular sequelae related to inflamma
tion have been mentioned in recent studies [241–244]. Persistent 
myocardial inflammation has been reported in 60 % of COVID-19 pa
tients who recovered from the infection at 71 days post-infection [245]. 
Inflammation and cardiac biomarkers can be considered a moderate 
predictive value for 30-day mortality and also PCS [243]. 

There is a positive feedback loop between NETosis/NET formation 
and cytokine storm in COVID-19, which may contribute to PCS pathol
ogy. The NET formation may induce post-COVID-19 pulmonary fibrosis, 
long-term neurological consequences, and cancer progression and 
metastasis in long-term [246]. 

Furthermore, gut dysbiosis, which has a role in cytokine storm in
duction in COVID-19, may also contribute to long-COVID development 
[247]. Microbiome dysbiosis is associated with the development of 
persistent symptoms [248]. Some bacterial species are pathogenic, 
involved in the regulation of inflammation and positively correlate with 
several PCS symptoms [248–250]. In a recent study, Liu Q et al. reported 
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that gut microbiota composition is altered in patients with COVID-19 
and persisted for six months in patients with PCS [248]. 

In conclusion, hindering the progression of cytokine storm would be 
beneficial for preventing post-COVID-19 detrimental consequences. 

1.6. Cytokine storm activation by different variants of SARS-CoV-2 

Mutations in the spike gene of SARS-CoV-2 have led to the emer
gence of different variants that can evade natural or vaccine-induced 
immunity and jeopardize the vaccination efficacy. With the former 
variants of SARS-CoV-2, a prolonged hyper-inflammatory state was seen 
along with severe lung infection and more mortality [251,252]. Lower 
disease severity caused by the Omicron variant and lower pro- 
inflammatory cytokine levels compared to the Delta variant suggest its 
lower cytokine storm induction capability. In most cases, infection with 
the Omicron variant provokes an acute inflammatory response which 
eventually solves resulting in less production of pro-inflammatory cy
tokines and presumably high levels of Tregs [253]. As recently reported, 
the Omicron infection induced significantly lower virus replication in 
the respiratory tracts and lungs of infected mice and also produced fewer 

infectious particles in human airway organoid and alveolar cells than in 
previous variants infections [254–256]. Moreover, the brain tissue of 
infected mice with the omicron variant showed a more limited amount 
of virus replication. Infection with the Delta variant is associated with 
the induction of markers of severe COVID, such as CXCL10 and CCL2. 
However, in the infection with the Omicron variant, the level of these 
markers remarkably diminishes early after infection. It has also been 
shown that T cells activation/exhaustion markers such as programmed 
cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 
(CTLA4) were significantly fewer on pulmonary T cells of mice infected 
with the Omicron variant compared to other variants [256]. In conclu
sion, lower virus replication in the brain and lung tissues with the 
Omicron variant leads to a less severe disease with controlled produc
tion of pro-inflammatory cytokines and decreased amount of activated T 
cells in the respiratory system. 

1.7. Therapeutic approaches 

In addition to mechanisms discussed above, an optimal therapeutic 
strategy targeting inflammatory mechanisms is crucial. So here we 

Fig. 3. Overview of molecular and cellular mechanisms involved in SARS-CoV-2-induced cytokine storm and potential treatments. Three main causes of cytokine 
storm are: 1) Activation of innate and adaptive immune responses 2) increased production of pro-inflammatory cytokines 3) prolonged activation of signaling 
pathways. Inhibiting any of these causes can be effective in preventing the cytokine storm. 

Y. Nazerian et al.                                                                                                                                                                                                                               



International Immunopharmacology 113 (2022) 109428

10

discuss the potential treatments for this condition and focus on therapies 
suggested for cytokine storm in COVID-19. (Fig. 3). 

Anti-interleukin 6 
Tocilizumab inhibits IL-6 action through binding to its receptors, 

which are both circulatory and membranous. Therefore this monoclonal 
antibody inhibits the downstream signaling pathways via the prevention 
of IL-6 binding to IL-6R [257]. On August 30, 2017, tocilizumab was 
approved by FDA (Food and Drug Administration) for the treatment of 
CAR T cell-induced cytokine release syndrome in patients ≥ two years of 
age. In the case of CRS in COVID-19, several types of research demon
strated the efficacy of tocilizumab in treating Cytokine storm in COVID- 
19 [8,258–260]. Boregowda et al. compared the mortality rate between 
receiving tocilizumab and routine care in 3,641 critical COVID-19 cases. 
The author concluded that tocilizumab significantly reduces mortality 
compared to standard care [261]. By reviewing all these studies, toci
lizumab is thought to be one of the main possible treatments for CRS 
caused by COVID-19. 

Siltuximab is an antibody with binding affinity to IL-6 molecules 
rather than their receptors, reducing free IL-6 levels [262]. Numerous 
trials have assessed the effectiveness of siltuximab in CRS management, 
especially induced by COVID-19. The administration of this drug 
improved the symptoms and reduced the need for mechanical ventila
tion [262,263]. However, the evidence for siltuximab’s safety and effi
ciency in managing COVID-19-induced CRS is unsatisfactory. Therefore, 
as long as tocilizumab is available, siltuximab should be reserved for 
substitution. 

Corticosteroids 
Glucocorticoids are a possible treatment for COVID-19-induced CRS 

through their immunosuppressive and anti-inflammatory effects [264]. 
However, the timing and dosage of administration are essential because 
early administration of high-dose corticosteroids might elevate the load 
of SARS-CoV-2 in serum and aggravate the disease. Nevertheless, using 
corticosteroids in the early phases of CRS during COVID-19 reduces 
ARDS and inflammation [265,266]. In a controlled open-label trial the 
mortality rate in the dexamethasone group was lower in patients 
receiving either invasive mechanical ventilation with critical conditions 
or non-invasive oxygenation. However, in cases with no respiratory 
support, dexamethasone did not significantly reduce mortality [267]. 
Several other studies also reported similar results for glucocorticoids in 
COVID-19-induced CRS [268,269]. Nevertheless, some studies evalu
ated the effect of corticosteroids on CRS induced by SARS-CoV, MERS- 
CoV, and influenza, which showed their use results in higher mortality 
rates and more hospitalization periods [266,270]. Moreover, most of the 
studies mentioned above suggest that corticosteroids act like a double- 
edged blade and should be approached with caution. 

Mesenchymal stem cells 
Mesenchymal stem cells (MCSs) or multi-potent MCSs are stromal 

cells with a self-renewal capability and the potential to be differentiated 
into mesodermal tissues under controlled in-vitro conditions and special 
media [271]. These stem cells produce anti-inflammatory products 
through their paracrine activity. The secretome of MSCs contains cyto
kines, chemokines, and other anti-inflammatory products such as Pros
taglandin E2, indolamine 2,3-dioxygenase (IDO), TNF, Nitric oxide, IL- 
1Rα, HLA-G and IL-10 [272]. This paracrine secretion, alongside MSCs’ 
direct cellular contact by their surface molecules, signals immune cells 
to promote anti-inflammatory cells, such as T-Regs, which causes im
mune modulation and, therefore, reduces inflammation [273]. Studies 
have shown that intravascular administration of MSCs will result in lung 
entrapment of the cells (for approximately 70 % of the total cellular 
population) [274]. This is considered one of the limitations of the 
administration of MSCs intravenously. However, it may be our best 
choice in the case of COVID-19-induced lung injury because stem cells 
will be present mainly in the lungs. In CRS situations, it could modulate 
the pulmonary immune system and reduce inflammatory cytokines 
which hampers CRS. Furthermore, it has been demonstrated that MSCs 
have anti-thrombotic and anti-platelet aggregation and adhesion 

capability [275]. Lastly, it has been demonstrated that MSCs are resis
tant to SARS-CoV-2 due to their diminished expression of membranous 
ACE2 and TMPRSS2, even in an inflammatory state. They also sustain 
indoleamine 2,3-dioxygenase production in contact with the virus, 
which implies that the immunomodulation capability of MSCs is main
tained in confrontation with SARS-CoV-2 [276]. Several in vitro studies 
evaluated the immune-modulatory effect of MSCs on immune cells 
retrieved from the blood sample of COVID-19 patients. These studies 
have shown that MSCs diminish a broad spectrum of cytokines released 
by mononuclear cells, verifying that MSCs can modulate the immune 
system and dampen COVID-19-induced CRS [277]. There have been 
many clinical trials that utilized MSCs of different origins to manage 
COVID-19 and subsequent CRS [278]. Moreover, a pilot trial study of 
intravenously administered MSCs in china demonstrated the safeness 
and effectiveness of MSCs in managing COVID-19, especially in critically 
ill patients [279]. 

In conclusion, with these characteristics, MCSs might be a rather 
theoretical but powerful treatment suggestion for dampening CRS and 
repairing following organ dysfunction, especially in COVID-19. More
over, not only MSCs are potential therapeutic options for CRS, but also 
exosomes derived from these stem cells are appropriate choices in this 
matter [280]. 

Anti-interkeukin 1 
Anakinra is an IL-1α and IL-1β receptor antagonist [281], with FDA 

approval to treat moderate to severe rheumatoid arthritis. Several 
studies have assessed the efficacy of anakinra on haemophagocytic 
lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS), 
syndromes of hyper-activation of the immune system, and subsequent 
inflammation and multiple organ damage [282–284]. The results are 
promising and imply that anakinra may dampen cytokine storm. 
Moreover, several clinical trials are assessing the effect of anakinra on 
COVID-19-induced cytokine storm and critical COVID-19 patients. Some 
studies evaluated anakinra in COVID-19 critical patients. Results were 
both in favor of the efficacy of anakinra [285–287], and against its 
effectiveness [288]. These shreds of evidence suggest that anakinra can 
be used effectively in CRS treatment. However, more evaluations should 
be considered to evaluate the effectiveness and safety of this medication. 

Canakinumab is a selective IL-1β antagonist that binds to IL-1β and 
inhibits the molecule from attaching to its receptor, which blocks further 
signaling. Although experiments have reported the effectiveness of 
canakinumab in decreasing the necessity of mechanical ventilation in 
severe COVID-19 cases [289,290], in other studies on, canakinumab did 
not significantly decrease the mortality rate [291]. The number of par
ticipants limits the studies in favor of canakinumab efficacy, and more 
clinical evidence is imperative for decision making. 

JAK inhibitors 
Tofacitinib is a non-selective JAK inhibitor, and Baricitinib is an anti- 

JAK1 and JAK2. Ruxolitinib is also an FDA-approved anti-JAK1 and 
JAK2 for myelofibrosis, RA, and psoriasis [292]. Upadacitinib and fil
gotinib are selective for JAK1 [293]. It was demonstrated that low-dose 
ruxolitinib and barticitinib are effective in risk reduction of mortality 
with no considerable adverse effect [294–296]. Also, a meta-analysis 
study concluded that other JAK inhibitors have benefits in the man
agement of COVID-19 patients, including tofacitinib and nezulcitinib 
[297]. However, JAK inhibitors can also decrease the production of IFN- 
α, which is crucial for protection against virus infections, including the 
coronavirus [298]. Overall, the evidence for the efficacy of JAK in
hibitors in COVID-19 and subsequent cytokine storm is still unsatisfying, 
and more complete and promising clinical trials are needed. 

NF-κB inhibition 
Variable medications contribute to inhibiting this protein, its stimuli, 

and its downstream pathways. Glucocorticoids, especially dexametha
sone, are demonstrated to have an inhibitory effect on NF-κB through 
various mechanisms, including upregulation of I-κBα [299–301]. Also, 
aspirin and sodium salicylate are thought to have an anti-NF-κB activity 
which occurs through binding to the ATP-binding site of I-κB kinase β 
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(IKKβ), the enzyme that causes degradation of I-κB, by competing with 
ATP [302–304]. Other non-steroidal anti-inflammatory drugs (NSAIDs) 
can also inhibit NF-κB via different mechanisms [302]. Ibuprofen, 
sulindac, and tepoxalin are NSAIDs that have an inhibitory effect on NF- 
κB [302,305,306]. Although these medications have a diverse anti- 
inflammatory mechanism of action and not just inhibition of NF-κB, 
the mechanism through which the clinical effects of these drugs occur 
cannot be distinguished. 

Furthermore, ROS are another stimulus of the NF-κB pathway and a 
significant sign of inflammation; therefore, anti-oxidants might down
regulate this pathway by decreasing oxidative stress [307–309]. N- 
acetylcysteine, dithiocarbamates, glutathione peroxidase, and vitamin E 
are anti-oxidants used in this manner [310–313]. In conclusion, block
ing the NF-Κb signaling pathway is a promising potential therapeutic 
option that may help decrease inflammation and cytokine storm. How
ever, the clinical evidence on this matter is still inadequate. 

Traditional medicine 
Since there is still no definite treatment for COVID-19 and particu

larly COVID-19-induced cytokine storm, researchers were encouraged to 
assess the effects of natural products and traditional medicines, espe
cially traditional Chinese medicine (TCM) and traditional Indian medi
cine. Various products of TCM have been investigated for viral infections 
and COVID-19, like Qingfei Xiaoyan Wan (QFXYW), Lianhua Qingwen, 
etc. that have immune modulatory anti-viral effects. They proved to 
have suppressive effects on inflammatory cytokines, especially IL-6 and 
TNF-α [314,315]. Moreover, the efficacy of traditional Chinese medicine 
decoctions was evaluated in critically ill COVID-19 patients, which 
decreased mortality [316]. Moreover, various natural products derived 
from different plants might also have anti-inflammatory effects [317]. 
Curcumin and Panax ginseng are examples of these natural products 
which have immune-regulatory effects via increasing anti-inflammatory 
and decreasing pro-inflammatory cytokines [318–320]. 

We also have Ayurveda, the traditional Indian medicine that focuses 
on the maintenance of the healthiness of the body, improving the ill
nesses, and also enhancing the immune system [321]. The herbs in 
Ayurveda and Ayurvedic medicine have been proposed to have anti- 
viral and anti-inflammatory effects, even in the case of COVID-19, and 
reduce pro-inflammatory cytokines [322,323]. These herbs also inhibit 
viral entry and replication and therefore are suggested for COVID-19 
prophylaxis [321,324]. Also, they are implicated to have effects on 
post-COVID-19 syndrome [325]. 

These medications and herbs of the traditional medicines have po
tential immune regulatory and anti-inflammatory effects, therefore, 
they could be used solely or in combination with other drugs to diminish 
cytokine storm [229,326,327]. Nevertheless, due to a lack of clinical 
assessments of the safety and efficacy of these herbs, they should be 
evaluated more accurately and carefully. 

Probiotics 
As mentioned earlier in the text, gut dysbiosis can induce cytokine 

storm in COVID-19. Therefore, probiotics which are live bacteria that 
maintain bacterial flora of the GI system may help regulate the immune 
system and diminish cytokine storm [328]. Several studies have assessed 
their efficacy and immune-regulatory effects in COVID-19 patients and 
also healthy individuals. They elucidated that probiotics can reduce 
inflammatory cytokines [329,330]. Although the evidence is still 
insufficient, probiotics can possibly be used in the treatment approach of 
COVID-19 patients. 

Therapeutic options for post-COVID-19 complications 
As mentioned earlier, one major post-COVID-19 complication of the 

lungs is pulmonary fibrosis and subsequent pulmonary dysfunction. 
Corticosteroids have been shown to improve patients’ symptoms and 
increase their pulmonary function [331]. Also, anti-fibrotics have been 
utilized effectively for pulmonary fibrosis. Moreover, with the suggested 
role of IFN-β and IFN-γ in pulmonary vasculopathy, the application of 
the antagonists of these proteins might be effective in treating pulmo
nary fibrosis [332]. Lastly, lung transplantation is reserved for patients 

with end-stage conditions [333]. 
Other complications include venous thromboembolism (VTE) and 

cardiovascular complications (palpitation, chest discomfort, and 
myocarditis), which can be treated with anti-coagulants and renin- 
angiotensin-aldosterone system antagonists and β-blockers, respec
tively. Additionally, a thromboprophylaxis plan has been proposed to 
prevent thrombus formation in veins [334,335]. Neurological compli
cations like headaches and sleeping problems as well as psychiatric 
conditions (depression) may also occur. These conditions are not often 
critical and can be managed through routine care of these conditions in 
situations other than COVID-19 [336]. 

Side effects 
It is encouraging that there are potential treatments for this critical 

condition in COVID-19; however, we should not neglect their adverse 
effects because it could change our decision-making regarding the op
timum treatment approach. There have been reports of various adverse 
effects of tocilizumab over the past years. The most frequent ones were 
infections, immediate and delayed hypersensitivity reactions, liver ab
normalities, cardiac disorders, and bleeding [337,338]. Neutropenia 
was also commonly seen in treated patients [339], which could increase 
the risk of secondary infections [340]. It also induced thrombocytopenia 
in COVID-19 patients treated with tocilizumab [341]. Other adverse 
effects include interstitial lung disease [342], hepatic disorders [343], 
and immunogenicity to the drug [344]. Common adverse events of sil
tuximab are pruritus, hypertension, nausea, vomiting, fatigue, and 
neutropenia [345,346]. Hyperlipidemia, cellulitis, and more severe 
events like urinary retention, polycythemia, leukopenia, lymphopenia, 
and hypersensitivity reactions were reported with the administration of 
siltuximab [345–347]. Increased risk of infections and cancer, hemato
logic effects, headache, joint pains, anaphylaxis, skin conditions, 
abdominal pains, and diarrhea are mentioned as adverse effects of 
anakinra [348,349]. As for canakinumab, the most common effects are 
GI complications, including diarrhea, nausea, and gastroenteritis [350]. 
For some of the JAK inhibitors, studies have reported an increased risk of 
serious infections, headaches, and possibly increased risk of cancer. 
However, there is insufficient evidence to say these drugs cause cancer 
[87]. There is a wide range of adverse effects of corticosteroids, espe
cially dexamethasone, which has been widely used for COVID-19. Hy
perglycemia, fatty liver, insulin resistance, increased risk of diabetes, GI 
complications, headaches, skin acne, and dysregulated menstrual pe
riods, are reported as their common effects [351,352]. Lastly, it is worth 
mentioning that despite the efficacy of herbal medicines, they also have 
adverse effects that clinicians should take into account. These effects 
may be due to self-prescribed, bad product quality, or excessive intake 
[353]. It should be kept in mind that the mentioned adverse effects are 
not reasons for abandoning their use, but the costs and benefits of each 
treatment in every situation and condition must be pondered. 

2. Discussion 

Morbidity and mortality of COVID-19 patients are highly related to 
the occurrence of the “cytokine storm” induced by SARS-CoV-2, which 
may lead to ARDS, promoting respiratory failure and eventually causing 
life-threatening multi-organ failure [169]. Different variants of SARS- 
CoV-2 have distinct potentials to develop cytokine storm. Lower dis
ease severity caused by the Omicron-B.1.1.529 Variant and lower pro- 
inflammatory cytokine levels compared to Delta variant suggest its 
lower cytokine storm induction capability [253,354,355]. As discussed 
earlier, the cytokine storm is a hyper-inflammatory state causing multi- 
organ dysfunction. Therefore, there may be a potential connection be
tween cytokine storm and post COVID-19 complications. Additionally, 
evidence of organ dysfunction in prolonged COVID-19 is copious, 
especially cardiac and neuropsychiatric dysfunctions [333,356–358]. 
Vascular dysfunction and hyper-coagulation may also implicate in post- 
COVID-19 multi-organ failure in response to hyper-inflammation [239]. 
These evidences support the possibility of cytokine storm connection 
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with post COVID-19 complications. 
There are several chronic underlying conditions that make those 

infected with SARS-CoV-2 more susceptible to developing severe forms 
of the disease. Type 2 diabetes mellitus, cardiovascular disease, hyper
tension, chronic kidney disease, and chronic obstructive pulmonary 
disease are the leading chronic conditions culprit for severe COVID-19 
[132]. Furthermore, mounting evidence has been shown the signifi
cant role of metabolic syndrome in inducing inflammation leading to 
COVID-19 disease deterioration and its subsequent comorbidities [359]. 
Moreover, genetic and environmental factors may be decisive in deter
mining the fate of the COVID-19 disease; for instance, polymorphism in 
genes related to inflammatory modulators makes individuals more or 
less vulnerable to developing cytokine storm and experiencing its 
collateral damages [360]. There is also a relationship between gender 
and COVID-19 complications. Males tend to develop more severe dis
eases and have higher mortality rates in comparison to females 
[361–364], while females tend to develop prolonged COVID-19 [365]. 
Also, female patients tend to have lower levels of IL-6 and higher CD4+ T 
cells with better function [366], while male patients had higher levels of 
ferritin and CRP [367,368]. Although a comprehensive review of the 
pathways underlying sex differences in COVID-19 is beyond the scope of 
this article, it is worth mentioning that the gender differences in COVID- 
19 might be due to sex-related hormones, different immune systems, and 
inflammatory responses, gender-related behaviors, and factors related 
to sex chromosomes. 

SARS-CoV-2 enters human respiratory system cells by targeting the 
ACE2 receptor in type II alveolar epithelial cells. Inflammation-induced 
pulmonary capillary endothelium and alveolar epithelium injury are the 
main consequences of SARS-CoV-2 infection in the lower respiratory 
system, resulting in air-blood barrier damage and, consequently, entry 
of the virus into the bloodstream [369]. Since ACE2 is also expressed 
widely among body tissues such as lungs, kidneys, small intestine, heart, 
and other organs, cytokine storm caused by the circulating virus can 
promote multi-organ injury due to the wide distribution of the receptor 
in the body. Following viral entry through S protein-ACE2 binding, 
reduced membrane-bound ACE-2 expression and increased Ang-II 
accumulation occurs, which can lead to detrimental consequences. 
The imbalance of the RAAS system due to hyper-activation of the pro- 
inflammatory ACE/Ang-II/AT1R axis promotes inflammatory re
sponses. This imbalance eventually enhances excessive production of 
pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, TNF-α, and multi- 
organ damages [369]. 

Hyper-production of pro-inflammatory cytokines via activation of 
NF-κB and JAK/STAT pathways and generation of oxidative stress are 
the leading causes of systemic inflammation and cell damage. There is 
crosstalk between oxidative stress and cytokine storm. Increased intra
cellular ROS production mediates activation of inflammatory caspases 
and cytokines in macrophages [370]. Moreover, inflammatory cytokines 
induce additional intracellular and extracellular ROS production leading 
to mitochondrial damage and apoptosis [371]. ROS also causes endo
thelial dysfunction and diffuse microvascular thrombosis under the in
flammatory conditions caused by the cytokine storm [3,372,373]. SARS- 
CoV-2 also develops endothelial dysfunction via upregulation of in
flammatory cytokines and upstream pathways that regulate thrombosis- 
associated markers. This causes recruitment of immune cells, platelet 
activation and aggregation, and activation of coagulation cascade 
pathways, causing endothelial injury and thrombosis [374]. Systemic 
endothelium-associated or thrombotic-associated consequences can 
lead to multi-organ [3,373]. Disturbed endothelial junctions from ROS 
and inflammatory cytokines production promote vascular leakage and 
transendothelial migration of immune cells [370]. Excessive recruit
ment of immune cells at the inflammation site is involved in tissue 
damage caused by the COVID-19 cytokine storm in vital organs [375] 
and also amplifies coagulation pathways’ activation [376]. So, air-blood 
barrier damage caused by SARS-CoV-2-induced inflammation leads to 
systemic cytokine storm and consequent endothelial dysfunction, 

coagulopathy, and oxidative stress, which are leading causes of the 
multi-organ failure in COVID-19. 

3. Conclusion 

In addition to the harmful respiratory complications of COVID-19 
disease, other organs could be affected by the SARS-CoV-2, resulting 
in a deadly situation called multi-organ failure. Although still under 
investigation, this situation could result from aberrant immune re
sponses and the virus’s direct effect on the cells expressing the ACE2 
receptor. While, role of individual cytokines and immune cells in 
developing multi-organ failure is yet to be completely understood, it is 
evident that multi-organ failure is closely related to cytokine storm in 
COVID-19. Inflammation caused by cytokine storm can disrupt the ho
meostasis of organs. Thus, increasing our knowledge about the patho
physiology of COVID-19-related cytokine storm and how it can be 
involved in multi-organ failure may have promising results in finding 
potential therapeutic targets to control this situation and overcome the 
disastrous COVID-19 disease. 
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