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Abstract

An approach for integrating the wealth of heterogeneous brain data—from gene expression and 

neurotransmitter receptor density to structure and function—allows neuroscientists to easily place 

their data within the broader neuroscientific context.

Imagine we conduct a human neuroimaging experiment that shows that neural activity in 

Brodmann area 46 scales with the demands of the task the participants performed, and that 

the activity is statistically higher in older, compared to younger, adults. What do we do with 

this information? An expert might guess that this was a working memory or attention task, 

based on their familiarity with the relevant neuroimaging literature. But that expert, like 

myself, may know relatively little about neurogenetics, neurochemistry, or cortical evolution 

and, because of their (and my) own knowledge gaps, will be unable to see how those results 

fit into the broader neuroscientific context. If we are to develop anything close to resembling 

a set of theories for how the brain gives rise to behavior, cognition, and disease, we need 

a way for placing human neuroimaging data within that greater context. The open-source 

Python package, neuromaps, introduced by Markello and Hansen and colleagues in this 

issue of Nature Methods1, provides an invaluable tool for doing just that.

Given the incredible wealth of information published in neuroscience, it’s simply impossible 

for a research group—let alone a single scientist—to understand how age-related changes 

in neurogenetics, receptor densities, cell types, structural connectivity, and so on might all 

contribute to the neural activity differences observed in our above hypothetical experiment. 

Thus, our inability to integrate these many different facets of the brain is understandable 

and, hopefully, even excusable. However, this separation of data from knowledge has often 

led to neuroscience being described as data rich, but theory poor, where every research 

group is collecting more and more data, unable to fit all these different pieces together as a 

unified whole.

To accomplish this feat of contextualization, Markello and Hansen et al. solved several 

technical problems that allow for easy data integration. First, neuromaps offers functions for 

easily transforming between four standard human brain template atlases: fsaverage, fsLR, 

CIVET, and MNI-152. Armed with this ability to transform between different coordinate 
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systems, Markello and Hansen et al. then sought out numerous heterogeneous datasets, 

placing them into the same coordinate system. We can group the included datasets into four 

broad categories: Architecture, Cellular, Dynamics, and Function (Fig. 1):

• Architecture: cortical thickness; T1w/T2w ratio; functional connectivity; 

intersubject variability

• Cellular: gene expression from the Allen Human Brain Atlas; neurotransmitter 

receptor positron emission tomography tracer images

• Dynamics: canonical MEG frequency bands; intrinsic neuronal timescale; 

glucose and oxygen metabolism; cerebral blood flow and volume

• Function: evolutionary expansion; developmental expansion; Neurosynth-

derived functional maps

Placing all these different datasets in the same spatial framework then allows researchers 

to statistically compare their spatial profiles to ask novel research questions. Importantly, 

however, these spatial maps can’t be compared using simple correlations, because the 

topography of neural data is spatially autocorrelated. That is, features that are closer together 

in space are inherently likely to look more similar than features that are farther apart. 

The fact that nearly all neural data are spatially autocorrelated practically guarantees that 

correlations will be found between neural data maps, just like maps of human population 

density are strongly correlated with maps of economic activity—technically correct but 

not mechanistically insightful. To address this, Markello and Hansen et al. include several 

approaches for performing spatial permutations for significance testing in neuromaps, to 

help minimize the inflated p-values that result from spatial autocorrelations.

To test the potential for heterogeneous data integration, Markello and Hansen et al. 
then leveraged multiple open datasets to run several comparisons. For example, using 

an open dataset of cortical thinning in patients with chronic schizophrenia, they showed 

that the spatial topography of cortical thinning is greatest in regions that show the 

greatest neurodevelopmental expansion, as quantified from an entirely different set of 

independent data. Using other datasets, they also showed that the brain regions that have the 

greatest evolutionary expansion also have the greatest inter-individual variability in regional 

functional connectivity.

Markello and Hansen et al. take a pure data science approach to neuroscience with 

neuromaps, integrating multiple heterogeneous datatypes and bringing them together into 

a unified framework. These data types include categorical gene expression data, time-series 

oscillation and timescale data, functional data derived from text-mining of the neuroscience 

literature, and functional and structural connectivity graphs. A common refrain in what 

limits the development of a systems-level mechanistic understanding of behavior and 

cognition is the difficulty in bridging between scales, between genetics and structure2 or 

dynamics and function3. If we could better bridge these scales, it is argued, we could better 

reveal key neuroscientific insights. It’s exciting that neuromaps allows us to place results 

from one domain—such as the functional neuroimaging example from above—into the 

greater context of neural architecture, cellular composition, dynamics, and function.
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So, what does neuromaps portend for the future of neuroscience? Are more data and better 

data integration enough? Algorithmically churning through massive amounts of data is 

no guarantee to mechanistic understanding4, but is it possible to derive a systems-level 

mechanistic understanding without massive amounts of data5? Will more neural data be as 

“unreasonably effective” for uncovering mechanistic insights, similar to how more data has 

been shown to improve the performance of deep learning and artificial intelligence6?

Markello and Hansen et al. emphasize that the current state of neuromaps is a beginning, not 

an end. One criticism of these data-driven approaches is that the data reflect the historical 

biases of researchers and research trends, just as has been demonstrated using data-driven 

clustering of functional domains in human neuroimaging7. However, in theory, as more 

data are collected, from more data types and from more people, the fidelity of these maps 

should only improve, allowing for more fine-scaled links across domains. In addition, the 

future of neuromaps can be expanded to include even more maps, such as single-neuron 

electrophysiological properties, laminar profiles for neuron and glial cell types, dendritic 

geometry, and more, further improving our ability to place results into the broader context.

To demonstrate its future potential, let’s revisit the opening neuroimaging scenario, but 

from the neuromaps perspective. Here, we begin from a desire to understand the possible 

neurogenetic underpinnings of Alzheimer’s disease. We can take the maps for the brain 

regions associated with Alzheimer’s disease, as algorithmically extracted using text-mining 

via the Neurosynth platform8. We can then compare the spatial topography of these maps 

against maps of gene expression in the human brain to find genes that are statistically over- 

or under-expressed in these putative Alzheimer’s disease brain regions, to see if there are 

any potential genes that have been historically overlooked. Or we can look to see whether 

these putative Alzheimer’s disease brain regions have a greater density of specific neuronal 

or glial cell types compared to other brain regions not associated with Alzheimer’s disease, 

to see if there’s an overlooked cellular driver of Alzheimer’s disease.

This hypothetical scenario demonstrates the powerful potential for data-driven semi-

automated hypothesis generation9. From this perspective, neuromaps isn’t something that 

is just used to answer new questions, it can be used to form entirely new hypotheses (Fig. 

1). This approach complements experimental research, where we’re no longer living in 

a fractured, data rich and theory poor world; rather we find ourselves within a data-rich 

neuroscience ecosystem that may lead to a theory-rich neuroscientific environment10.
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Figure 1|. 
For any arbitrary region of the human brain there exists a wealth of knowledge about 

its various features: architecture, cellular composition and genetics, neural dynamics, and 

functions (top). The neuromaps package collates and aligns these features to facilitate 

comparisons across domains, opening new avenues for data mining across features, 

potentially allowing for novel forms of data-driven, semi-automated hypothesis generation 

(bottom).
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