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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Single-cell sequencing can reveal molecular characteristics at the cell level

- Spatial omics can reconstruct the organization of cells and their interactions

- Single-cell multi-omics will picture the cell in a comprehensive way
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In recent years, more and more single-cell technologies have been devel-
oped. A vast amount of single-cell omics data has been generated by large
projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse
RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these
single-cell big data, thousands of bioinformatics algorithms for quality con-
trol, clustering, cell-type annotation, developmental inference, cell-cell tran-
sition, cell-cell interaction, and spatial analysis are developed. With powerful
experimental single-cell technology and state-of-the-art big data analysis
methods based on artificial intelligence, the molecular landscape at the sin-
gle-cell level can be revealed. With spatial transcriptomics and single-cell
multi-omics, even the spatial dynamic multi-level regulatory mechanisms
can be deciphered. Such single-cell technologies have many successful ap-
plications in oncology, assisted reproduction, embryonic development, and
plant breeding. We not only review the experimental and bioinformatics
methods for single-cell research, but also discuss their applications in
various fields and forecast the future directions for single-cell technologies.
We believe that spatial transcriptomics and single-cell multi-omics will
become the next booming business for mechanism research and commer-
cial industry.

INTRODUCTION
The completion of theHumanGenomeProject in 2003was also a beginning to

understand the biological meaning of the three billion nucleotides in the human
genome.1 A key technological milestone was the release of several massively
parallel DNA sequencing (next-generation sequencing) platforms in 2005 and
2007, which allowed for generating sequencing reads of billions of base pairs
in a few days at a cost of less than 1,000 dollars. The single-cell omics
sequencing research started in 2009 when the single-cell RNA sequencing
(scRNA-seq) assay was described by Tang et al.2 Method development has
been surging during the subsequent years. Various types of scRNA-seq assays
based on different strategies of RNA capture and cDNA amplification were re-
ported. The highly multiplex power of scRNA-seq was realized by the Linnarsson
group in 2011 and then was tremendously enhanced by themicrofluidics droplet

and microwell technologies in 2015.3–6 The in situ combinatorial indexing strat-
egy allowed for an even higher throughput of thousands or tens of thousands
of cells.7,8

A single cell contains multiple omics including genome, epigenome, transcrip-
tome, and others. Single-cell epigenome sequencing technologies were
described in 2013, i.e., single-cell HiC and single-cell DNAmethylome sequencing
assays.9,10 The fastest-growing technique is the scATAC-seq (single-cell
sequencing assay of transposase accessible chromatin), which was developed
by the Greenleaf group for bulk sample format in 2013 and was quickly adapted
to single-cell analysis in 2015.11,12 More recently, combinatorial indexing and
droplet-based scATAC-seq assays have been established.13–16 Single-cell whole
genomeamplification (scWGA)methods, whichwere developedmany years ago,
i.e., degenerative oligonucleotide-primed PCR (DOP-PCR) and multiple displace-
ment amplification, are still applicable for single-cell genome sequencing. In
2011, Navin et al. reported the single-cell genome sequencing study on human
cancer cells using DOP-PCR.17 New scWGA techniques, including MALBAC,
LIANTI, andMETA by the Sunney Xie group, aim to increase the coverage and uni-
formitywhile reducing the allele dropout, false positive, and chimera problems, for
single-nucleotide variation and copy number variation (CNV) detection.18–21More
recently, third-generation sequencing-based single-cell genome and transcrip-
tome sequencing techniques, SMOOTH-seq andSCAN-seq, have been developed
for efficient detection of structure variations and alternative splicing in single cells,
respectively.22,23

Single-cellmulti-omics sequencing techniques simultaneouslymeasure two or
more omics in a single cell. Assays for simultaneously detecting transcriptome
and genome were reported in 2015, and those for simultaneously detecting tran-
scriptome and DNA methylome (as well as genome CNVs) were reported in
2016.24–28 More recently, several high-throughput assays were reported for
simultaneously detecting chromatin accessibility and transcriptome.29–32

Another direction is the analysis in a spatial context. Three sets of spatially
resolved transcriptomics methods have been reported. The first set, sequential
barcoding single-molecule RNA fluorescence in situ hybridization (FISH), was
described by the Cai Long group in 2014 (seqFISH), and enhanced by the Zhuang
Xiaowei group in 2015 (MERFISH).33,34 The second set, in situ sequencing, was
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described by the Nilsson group using padlock probes in 2013.35 The third set, in
situ capturing, was described by the Lundeberg group in 2016.36 Thesemethods
have been developing since their initiation, whichwill be discussed in detail later in
this review. We summarized the milestones of single-cell sequencing technolo-
gies in Figure 1.

SINGLE-CELL TECHNOLOGIES
In recent years, more and more single-cell technologies have been developed,

such as single-cell surface functionalization, intracellular electrophysiology, sin-
gle-cell isolation, and single-cell sequencing. Although single-cell sequencing is
most widely used and well known, its development cannot be done without other
single-cell technologies, such as single-cell isolation. Therefore, we introduce not
only single-cell sequencing but also other essential single-cell technologies.

Single-cell surface functionalization
Inspired by the characteristics of cells in living organisms, single-cell surface

functionalization in which single cells are coated by nanostructured materials
has been developed to enhance the stability and activity of the cells and endow
the cells with abiotic functions that are completely different from their original
specializations. Single-cell surface functionalization has features of both biologic
and abiotic components.37–39 As such, the combination could reach the “one plus
one greater than two” results. The integration of the living cells and materials
could achieve cell manipulation being more oriented, for the purpose of precise
control, on single-cell applications. The surface-functionalized single cell could
perform non-natural functions that have significance in creating new functions
for multiple applications.40–42 These advanced technological targets have
become important as a result of the increasing population of the world, which
is causing excessive energy and biomass consumption, environmental contam-
ination, and health problems.43–45

Figure 1. The milestones of single-cell sequencing
technologies

Despite having potential applications, single-
cell surface functionalization often limits cell ac-
tivity and leads to the state of “artificial
dormancy” that affects long-term cell functions.
In addition, the nanostructured shells formed on
a single-cell surface through self-assembly are
fragile, leading to a lowperformance and reduced
functions. Dynamic shell technology on a single-
cell surface cannot only enhance the cell stability
and create abiotic functions but also degrade the
shells to activate cell functions in need,46,47 which
is known as the future single-cell surface func-
tionalization. Biohybrid nanoshells, which are
consisted of gold nanoparticles and amino acid
molecules, undergo structure forming deposition
on cell surfaces through electrostatic forces.48

This unique system is the first example of a dy-
namic, self-repairing nanomaterial (Figure 2).
Upon growth and division of the entrapped single
cell, the biohybrids deposit on the surface of the
newly generated cell, forming a supplemental
nanoshell. Very recently, a dynamic reversible
cell shell technology based on click chemistry
has been reported to develop an assembly-disso-
ciation-reassembly smart control of a mesopo-
rous nanoshell on a single-yeast-cell surface by
adjusting the additional glucose level in the
culture medium (Figure 2). The click chemistry-
basedmethod should be highly versatile for intro-
ducing protective capsules and controllable as-
sembly-disassembly nano-functionality around
single cells as part of biotechnological efforts.49

Single cells in nanoshells, which have sustain-
able, clean, and green advantages, are already on

the market for biomass conversion. To further drive the development of single-
cell surface functionalization in industrial and biomedical applications, continuing
progress is needed in the design and improvement of these systems. How can
the self-repairing dynamic process of nanomaterials evolve from artificial control
into autonomic regulation based on natural cells? Materials with autocatalytic
proliferation to construct nanoshells for living cells provide a potential alternative,
such asmicellar with catalysis and autocatalytic proliferation.50 Thus, an autocat-
alytic proliferation nanoshell for cell functionalization could be obtained that can
dynamically function the cells in time.

Intracellular electrophysiology
Recording high-fidelity electrophysiological signals from electrogenic cells,

which exhibit good electrical coupling with the cell and provide accurate readout
over the entire dynamic range of voltages generated by cells without distorting
the readout over time, is critical to deepening our understanding of cellular behav-
iors at scales ranging from single cells to cellular networks. Taking the neuronal
electrophysiological recording as an example, to obtain themost information-rich
readings for detailed mapping of brain functions and/or fine control of the neural
prosthetics, the electronic electrodes or probes need to provide access to intra-
cellular signals from single to multiple neurons comprising a neuronal circuit.
Conventional methodologies utilizing microelectrode arrays residing outside
the cellular membrane suffer significantly in signal quality and are blind to sub-
threshold events.51

The patch-clamp technique is a versatile electrophysiological technique devel-
oped in the late 1970s and has been the historical gold standard for studying the
function of single or multiple ion channels in living tissue. It has a wide range of
applications, from evaluating the functional consequences of ion channel gene
mutations to how electrophysiological principles and technologies can be applied
to human health. It is particularly useful in the study of electrogenic cells, such as
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neurons, cardiomyocytes, muscle fibers, and oocytes, and can also be applied to
the study of bacterial ion channels in specially prepared giant spheroplasts. De-
pending on the research interests, different patch-clamp configurations can be
applied. For example, the cell-attached configuration can be used to study the
behavior of individual ion channels in the section of membrane attached to the
electrode, while the whole-cell patch allows the study of the electrical behavior
of the entire cell, instead of single channel currents.

The whole-cell patch-clamp technique, on the other hand, is the historical gold
standard for intracellular electrophysiological recording52 (Figure 2). A glass capil-
lary filled with an artificial intracellular solution and an AgCl-coated wire inserted
on themicro-manipulator is tightly attached to the single-cell membrane, forming
a resistance of >1 GW (so-called giga-ohm seal) between the pipette and the
membrane. Once the negative pressure is applied, a hole is generated on the
cell membrane, leading to the exchange of intrinsic and artificial intracellular so-
lutions. After that, the net dynamics of currents and voltages generated through
all ion channels can be measured by the AgCl-coated wire.

Although the patch-clamp technique has served as the primary tool for study-
ing high-fidelity analysis of the electrical properties and functional connectivity of
electrogenic cells for many years, several limitations remain: first, it is considered
an invasive approach as the whole-cell patch clamp involves destruction of the
cell membrane and solution exchange between the intracellular space and the
pipette reservoir, which can affect the functioning of the cell. In addition, whole-
cell patching requires great skill and is very difficult to use in large-scale parallel
recording.

To overcome the above challenges, several strategies have been proposed by
reconsidering the design of patch-clamp electrodes or developing new tech-
niques that mimic the nanometer-scale topographical features naturally found
in single-cell microenvironments. For example, inspired by the shape of dendritic
spines, extracellular micrometer-sized mushroom-shaped gold electrodes (Fig-
ure 2) have been developed to enable “intracellular-like” recordings of monopha-
sic action potentials and subthreshold activity, based on enhanced coupling be-
tween cells and extracellular electrodes.53 In addition, the development of
vertically aligned nanoelectrode arrays and nanowire field-effect-transistor
(FET) probes have also been instrumental in enabling high-quality intracellular re-
cordings. Their small tip with nanoscale features can penetrate cell membranes
withminimal invasiveness and gain tighter contactwith cells, thereby significantly
reducing interfacial cracks and contact resistance.

Development of intracellular electrophysiology tools with recording elements
at the nanoscale size could push the limits of spatiotemporal resolution while
reducing invasiveness, which could provide a deeper understanding of electro-
genic cells at the single-cell to the tissue level, aswell as provide novel quantitative

parameters in the study of subcellular/molecular electrophysiology. In particular,
stable recording and interrogating the same individual neurons in the neural net-
works and multiple apical dendrites in a single neuron promise to help decipher
complex neurological disorders, which develop over time, thus driving the
advanced brain-machine interface with higher resolution, and perhaps eventually
bringing “cyborgs” to reality.
The intracellular electrophysiology recordings via vertically aligned nanoelec-

trode arrays (Figure 2) could be achievable by either spontaneous single-cell
penetration or assisted single-cell penetration.54 It is worth noting that sponta-
neous penetration of a single-cell membrane occurs rarely or may only occur
immediately after plating and before activation ofmembrane repairmechanisms,
ultimately leading to probe rejection andmembrane resealing. Electroporation us-
ing one or multiple high-voltage pulses or plasmonics-enabled optoporation is
usually applied to facilitate nanoprobe penetration and enhance intracellular
recordings.55

Electrical, photothermal, and photoelectric stimulation could also be used to
regulate the electrical activity of a single cell. Through proper geometrical and cir-
cuit design, as well as the optimization of the physical cell-electrode coupling
interface, decent intracellular recordings of action potentials and subthreshold
signals can be obtained by vertically aligned nanoelectrode arrays.56 Neverthe-
less, their small tip size usually results in a high electrode impedance, leading
to signal loss in amplitude and shape.
Nanowire FET probes, on the other hand, can detect intracellular voltage inde-

pendently of electrode impedance, exhibiting higher fidelity of electrophysiolog-
ical signals of cultured primary neurons and beating cardiomyocytes57,58 (Fig-
ure 2). The high-quality recording is due to the nanoscale size of the FET,
which enables its insertion into the cytosol, resulting in a negligible access resis-
tance, and the formation of gigaohm seal resistance against the single-cell mem-
brane. The recently developed shape-controlled deterministic nanowire assembly
and compressive buckling technique could overcome the scalability issue, which
is typically associated with the nanowire FET probes.59,60 Combined with in vivo
recording platforms, these advances can enable investigations of dynamics in the
brain and drive the development of new brain-machine interfaces with unprece-
dented resolution and precision.61

High-throughput single-cell isolation
To isolate a certain cell population fromacellmixture at the single-cell level, it is

arguably crucial to develop more efficient single-cell isolation techniques. The
earliest single-cell isolation was based on manual pipetting to analyze only a
handful of cells.2,3 Later, fluorescence-activated cell sorting (FACS) was used
as an easy-to-implement alternative to isolating cells into microwell plates.62 A

Figure 2. Illustration of single-cell detection methods
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further increase in throughput to about one thousand cellswas achieved using an
integrated fluidic circuit.63 Then, the application of liquid-handling robotics
increased the number of cells that could be measured in a single run to several
thousand.64 More recently, nano-droplet and pico-well technologies emerged to
isolate tens of thousands of cells at a time, truly realizing “high-throughput cell
sorting.”5,65–67

Droplet microfluidic platforms precisely encapsulate a large number of individ-
ual cells into nanoliter reaction chambers; such platforms are ideal for high-
throughput single-cell isolation and downstream treatments.68–70 In particular,
droplet microfluidic platforms randomly encapsulate individual cells according
to the Poisson distribution.71 The high-throughput characteristics of nanoliter
dropletsminimize the required reaction reagent volume while improving reaction
efficiency within a single droplet (Figure 3). More improvements are needed to
accelerate research in the single-cell field, such as more multifunctional single-
cell manipulation capabilities and more computational tools to identify single-
cell heterogeneity. The introduction of machine learning algorithms would auto-
mate single-cell separation to develop more optimized turnkey systems for early
diagnosis of diseases, drug screening assessment, and precision medicine.

High-throughput single-cell sequencing platforms
Based on these single-cell isolation techniques, many commercialized high-

throughput single-cell sequencing platforms have been developed. SORT-seq
and new VASA-seq platforms offered by Single Cell Discoveries use FACS to
sort single cells into the wells of a 384-well cell capture plate.72 Each well in
the plate contains barcoded primers and other reagents. After isolation and bar-
coding, the amplification of the RNA with in vitro transcription is conducted, fol-
lowed by sequencing analysis. Clontech’s iCell8 single-cell system is using an in-
tegrated robotic system to dispense single cells in a 5,184-nanowell chip. It can
capture up to 1,800 single cells, and single live cells can be recognized and
selected by the automated imaging station.73 BD Rhapsody is also a well-based
system, in which individual cells are randomly deposited into an array of picoliter
wells under the effect of gravity, followed by loading barcode beads onto the mi-
crowell array to saturation. The dimensions of the beads and wells are optimized
to prevent double occupancy of beads, and it can capture up to 20,000 cells.74

In addition, commercial microfluidic-based high-throughput single-cell plat-
forms have also been developed. For instance, the Fluidigm C1 platform utilizes
the integrated microfluidic chip (IFC) as a reservoir to capture, image, and
perform cell lysis, reverse transcription, and initial PCR reactions for single cells,75

which can capture up to 800 cells per run. Chromium from 10X Genomics is a
droplet-based system. This system partitions thousands of cells into nanoliter-
scale Gel Bead-In-Emulsions generated in a microfluidic device.74 It allows
capturing an average of 50% of input cells, approximately 5,000 cells that can
be sequenced in a typical Chromium experiment. More recently, based on its
all-in-one digital PCR machine MobiGaea, MobiDrop launches the MobiNova sin-
gle-cell system associated with MobiCube kits and MobiVision software, which
combines advanced microfluidic technologies with versatile barcode beads to
achieve highly efficient single-cell analysis.76 It can partition tens of thousands
of cells with an efficiency up to 60% in a single operation within only 20 min.

All these commercial platforms are very helpful to stimulate the usages of sin-
gle-cell sequencing in life science research. For example, with the assistance of
the MobiNova system, a recent study examined the underlying mechanisms of
noise-driven single-cell heterogeneity triggered by volumetric compression, which
usually arises from tumor progression.76 In the future, the applications of high-

throughput single-cell sequencing will extend into many new fields and will
play an even more important role in biological, clinical, and pharmaceutical
research.

BIOINFORMATICS ANALYSIS OF SINGLE-CELL SEQUENCING DATA
The most mature and commercialized high-throughput single-cell data were

scRNA-seq data. Algorithm and software development in bioinformatics are crit-
ical to translate scRNA-seq data into biological and medical data and further ap-
plications. Thousands of bioinformatics tools are now available for scRNA-seq
analysis, which can be found here: https://github.com/seandavi/awesome-
single-cell. Guidance to the common practice of scRNA-seq data analysis has
been discussed in published reviews and tutorials ofmultiple scRNA-seq bioinfor-
matics tools, such as Seurat and Scanpy.77,78 However, it is worth noting that
none of the available bioinformatics tools fit all conditions because of the wide
range of scRNA-seq applications. Therefore, here we provide a brief introduction
to those concepts critical to bioinformatics tool selection in this review. We sum-
marize the current bioinformatic analyses of scRNA-seq data in Figure 4 and they
are generally composed of two steps: (1) quality control and annotation and (2)
biomedical knowledge mining.

Quality control
Because of the limited RNA content of single cells and the stochastic nature of

current scRNA-seq techniques, mRNAs within one cell cannot be fully captured
and sequenced. The supper and upper gene numbers, together with the percent-
age of mitochondrial genes, are three commonly applied indices for quality con-
trol during scRNA-seq data analysis. The aim of quality control is to control the
rates of empty cells, doublets or multiplets, and cells with bad states. It is worth
noting that such quality control metrics vary across different biological speci-
mens, and thus no consistent cutoffs exist.

Batch effect
The differences in scRNA-seq data across different experiments, operators,

laboratories, or other technical replicates are named as batch effects. In practice,
the same specimen cannot be sequencedmultiple times by different operators or
laboratories, leaving such technical biases mixed with biological signals. A
straightforward strategy is adopting batch effect removing algorithms that
have been applied in bulk RNA-seq data analysis. While this strategy canmitigate
partial batch effects in scRNA-seq, more advanced and customized algorithms
have been proposed for scRNA-seq data, including mutual nearest neighbors,79

canonical correlation analysis,80 and optimization model-based methods. It is
worth noting that batch effect removalmay introduce batch effects if not properly
used. Therefore, parameter tuning is critical to balance the performance of exist-
ing algorithms.

Clustering and cell-type annotation
Visualization of cell clusters and their mutual relationships is a critical task of

scRNA-seq data analysis. Dimension reduction algorithms in the machine
learning field are frequently adopted, with principal-component analysis, t-distrib-
uted stochastic neighbor embedding, and Uniform Manifold Approximation and
Projection as the most frequently used in practice. After clustering, the cell type
of each cluster can be predicted with artificial intelligence-based methods,81

such as SingleR,82 or with cell marker-based methods, such as CellAssign.83

Figure 3. Procedure of droplet-based scRNA-seq
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Trajectory analysis
Typical algorithms for inferring the developmental relationships among cells

include Monocle84 and RNA velocity.85 Monocle represents a large class of al-
gorithms that infer cellular developmental trajectories based on gene expres-
sion similarity.84 The assumption underlying such analysis is that cells along
a specific developmental trajectory were sampled by scRNA-seq and thus could
be reconstructed via examining the similarity of cellular expression profiles.
RNA velocity analysis employs the dynamics of the mRNA maturation process
and formulates an elegant algorithm to derive the probability and direction of
cell-to-cell transitions, which provides informative clues to derive biological con-
clusions from scRNA-seq data.85 While Monocle and RNA velocity analysis are
informative, the results are predictive and validations are needed to confirm the
predictions.

Single-cell regulatory network
To identify the critical regulators of individual cells or cell types, we need to

construct the single-cell regulatory network based on scRNA-seq data; for this
there are tools, such as SCENIC86 and NicheNet.87 SCENIC conducts regulon
analysis based on scRNA-seq data and can provide quantitative analysis of the
roles of diverse transcription factors in shaping the observed scRNA-seq
data.86 Different from SCENIC analyzing the intrinsic factors underlying cellular
expression profiles, NicheNet compiles a ligand-target database and tries to pri-
oritize those extrinsic factors critical to the observed gene expression profiles.87

Both algorithms provide insightful clues for understanding scRNA-seq data, but a
universal algorithm that could dissect the regulatory mechanisms underlying
scRNA-seq data is of pressing need, although it is also challenging.

Cell-cell communication
To interrogate the potential cell-to-cell crosstalks and even spatial relation-

ships, there are two types of algorithms: one is dependent on ligand-receptor in-
teractions and the other is not. Ligand-receptor interactions are themolecularme-
diators of cell-to-cell crosstalks and thus could be employed together with
scRNA-seq to derive cellular interactions. CellphoneDB88 and CSOmap89 are
two typical methods of the ligand-receptor interaction-dependent cell-cell
communication algorithms. CellphoneDB takes scRNA-seq data and ligand-re-

ceptor interactions as inputs and outputs the potential or most significant
ligand-receptor interactions among cells or cell types, without considering
whether the potential interacting cells were spatially close to or far from each
other.88 In comparison, the spatial relationship among cells is the primary aim
of CSOmap analysis and cellular interactions are derived from the spatial infer-
ence.89 Both CellphoneDB and CSOmap establish statistical tests but the testing
hypotheses are different. The statistical tests of CellphoneDB are applied to indi-
vidual ligand-receptor interactions across different cell pairs while CSOmap ex-
amineswhether a cell type pair tends to appear in the neighborhood of each other
defined by the inferred pseudo-space. NovoSpaRc90 represents a class of algo-
rithms that aim to derive cellular spatial relationships only based on scRNA-seq
data without ligand-receptor interactions. The assumption behind NovoSpaRc
and its variants is that cells with similar gene expression profiles should have a
high probability to share spatial niches. This assumption is well applicable to em-
bryo development where the cellular spatial positions are tightly regulated. How-
ever, it may be challenging to study the immune cell compartments where ligand-
receptor interactions play a dominant role. All three types of algorithms were
developed for scRNA-seq data analysis.

Single-cell research projects
In addition to the molecular dimension of omics data in the post-genome era,

the rapid development and application of scRNA-seq adds the cellular dimension
to omics data. Similar to the HumanGenome Project (HGP), which led the leap of
biomedical research to an omics era, the Human Cell Atlas ([HCA] https://www.
humancellatlas.org/)91 has been initiated to create cellular referencemaps for the
position, function, and characteristics of every cell type in the human body. While
HGP was an international group of researchers whose goals, programs, and or-
ganizations were inherently defined by the characteristics of the genome organi-
zation in a cell (covalent DNA molecules from limited chromosomes), the goals,
programs, and organization of HCA are heavily defined by the characteristics of
cellswithin a body (established research groups fromdiverse background around
the world). The final creation of a human reference cell map across the body will
lead to a new leap in biomedical innovation. The National Institutes of Health
Common Fund’s Cellular Senescence Network (https://sennetconsortium.org/
)92 and the National Cancer Institute-funded Human Tumor Atlas Network

Figure 4. The bioinformatics analysis for scRNA-seq data
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(https://humantumoratlas.org/)93 aremore specific single-cell projects of cellular
senescence and tumor, respectively.

Similar to the HCA, there are also several large single-cell sequencing projects
formouse, such as theMouseCell Atlas by ZhejiangUniversity (http://bis.zju.edu.
cn/MCA/),94 the Mouse RNA Atlas,8 and the Mouse ATAC Atlas13 by Seattle
Organismal Molecular Atlases (https://atlas.gs.washington.edu/). These large-
scale high-quality single-cell omics data for human, mouse, and other model or-
ganisms (fruit fly, C. elegans) are the basis of many cell-type annotation software,
such as SingleR.82 They could be the references for embryo development, tumor
genesis, and tissue-specific studies.

Beside animals, the Plant Cell Atlas (https://www.plantcellatlas.org) project
was also proposed to createa community resource that incorporates information
on nucleic acids, proteins, and metabolites to comprehensively describe the
states of various cell types at increasing higher resolutions.95–97 To illustrate
the mechanisms of plant development and stress response, plant scientists
have not stopped their steps to trace the gene expression profiles from thewhole
plant, different organs, specific cell types, and single cells. At the level of nucleic
acids, with the newly developed scATAC-seq and scCUT&Tag approaches,98–100

integrated multi-omics analysis would be the next direction for plant single-cell
studies. To map proteomics and metabolomics in single plant cells have been
tried, but how to realize it at a large scale still needs further efforts.101–104 Criteria
for making data from different labs comparable will facilitate the integrated
analysis.

APPLICATIONS OF SINGLE-CELL SEQUENCING
Although there are many single-cell technologies, the most widely used one is

single-cell sequencing. We review its applications in oncology, immunology, plant
breeding, reproductive, and developmental studies.

Single-cell sequencing in oncology and immunology
Cancer is always the top threat to human life because of its limitless replicative

potential, cell heterogeneity, tissue invasion and metastasis, avoiding immune
destruction features, etc.105 In fact, heterogeneity between different malignant

cells is one of the fundamental characteristics of almost all human cancers
and has been a major obstacle to full recovery from cancers.106,107 The mecha-
nism involves heterogeneity among cancer cells in the same patient including
stochastic genetic and epigenetic changes.108,109 With the rapid progress in
high-throughput technology, researchers have focused their attention on exhaus-
tive understanding of the molecular mechanisms that influence tumor cells and
immune cell heterogeneity during cancer progression. Recently, scRNA-seq has
provided an excellent avenue to explore the heterogeneity and characteristics of
cancer cells and immune cells (Figure 5).
Combined with in vivo lineage tracing, scRNA-seq reveals that the heterogene-

ity and dynamics of Prom1+ HCC cell have cancer stem cell-like characteristic
and contribute to therapeutic resistance and tumor recurrence.110 The heteroge-
neity of high-grade serous tubo-ovarian cancer (HGSTOC) is characterized by
extensive inter-/intratumor and results in therapeutic resistance.111 The scRNA-
seq technology provided 43 new promising therapeutic targets and identified 6
cellular phenotypes related to prognosis, which provides an excellent understand-
ing of the tumor microenvironment (TME) of HGSTOC.111 Furthermore, scRNA-
seq can be used to identify specific modes of gene expression authorizes for
the elucidation of molecular mechanisms underlying tumor migration and
invasion.112

Using scRNA-seq, Xu et al. identified 9 cancer cell subclusters from the tran-
scriptomeprofile of 96,796 single cells from15paired samples of primary tumors
and axillary lymph nodes. Importantly, the transcriptome data suggested that
NECTIN2-TIGIT-mediated interactions between metastatic cancer cells and
TME cells promoted lymph node metastasis in breast cancer patients.8 Renal
cell carcinoma is characterized by various gene mutations, and the accompa-
nying tumor cell heterogeneity plays a critical role in the promotion of therapeutic
resistance, distantmetastasis, and poor prognosis.113 Combinedwith analysis of
bulk data and scRNA-seq data, Liu et al. have identified several novel biomarkers
for predicting the prognosis and revealed potential molecular mechanisms that
participate in tumorigenesis of renal cell carcinoma cells.114

Besides exploring the mechanisms that influence therapeutic resistance,
disease relapse, migration, invasion, and gene mutation, advancements in
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Figure 5. The application of single-cell sequencing in oncology
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scRNA-seq technology have promoted the progression of gene regulatory net-
works (GRNs) investigated in several cancers.115–117 To construct GRNs based
on scRNA-seq data could conduce us to explore the intratumoral heterogeneity
and clarify the critical genes involved in the development of cancers. Wouters
et al. used single-cell transcriptomics in combination with GRNs and trajectory
inference to study 10 melanoma cultures that have mapped the gene regulatory
landscape of relapsed melanoma.116 Because of the heterogeneity and
complexity of the tumor ecosystem, in-depth analysis of a tumor at single-cell
levels using scRNA-seq is indispensable.

Anomalous infiltration of immune cells in the TME of malignant tumors have
been verified to play an important role in carcinogenesis, metastasis, and immu-
notherapy resistance, and predicted a poor clinical prognosis of cancer pa-
tients.118–120 Therefore, further investigating and identifying critical immunemod-
ifiers in tumor immunemicroenvironments is urgently needed. The heterogeneity
and complexity of T cell, B cell, macrophages, and DCs, in TME can be identified
by the high-throughput and unbiased gene expression analysis of scRNA-seq.121

Applications of scRNA-seq in dissecting tumor immune microenvironments
have made breakthrough progress in the biological function of tumor-infiltrating
immune cells, including their heterogeneity, metabolism, dynamics, and potential
roles during cancer progression and resistance to immunotherapy.122 Macro-
phageswere characterized by high plasticity and heterogeneity: theM1 typemac-
rophages act as one of the critical immune cells that executes anti-tumor effects
in the TME; however, the M2 type macrophages implement a pivotal role during
tumor progression.123 Liver metastasis is the leading cause of colorectal cancer-
relatedmortality, and themetastasis demonstrates a significantly heterogeneous
and defective immunosurveillance microenvironment. Interestingly, scRNA-seq
and spatial transcriptomics (ST) analysis indicate that the colorectal cancer-
related liver metastatic microenvironment is infiltrated with increased MRC1+

CCL18+ M2-like macrophages.118

To analyze the plasticity and phenotypes of immune cells in the TME of HBV/
HCV-related HCC, Song et al. carried out scRNA-seq on 41,698 immune cells
from HBV/HCV-related HCC tumors and non-tumor liver tissues. The results
showed 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes
with unique transcriptomic profiles in HCC. They also identified a subset of M2
macrophages with forced CCL18 expression and a new subset of activated
CD8+ T cellswith forced XCL1 expression that were correlatedwith the prognosis
in HCCpatients.124 The transcriptomesof�17,000 cells from18primary or early-
relapse HCC cases were analyzed by scRNA-seq. Sun et al. have verified that
early-relapse HCC has reduced infiltration of Tregs, and increased dendritic cells
and CD8+ T cells. Importantly, CD8+ T cells in recurrent tumor tissues with forced
CD161 expression displayed an exhausted phenotype.125

PD-1/PD-L1 antibody-based immunotherapy has revolutionized malignant tu-
mor treatment and accelerated the breakthrough in the field of tumor immu-
nology. Although several types of immunotherapies, including chimeric antigen
receptor T cells and immune checkpoint inhibitors, have improved clinical re-
sponses, the efficacies varied significantly, and only a small subset of cancer pa-
tients can benefit from them.120,126 Exploring all the biological profiles of tumor-
infiltrating immune cells in TME is critical to exhibiting tumor immunity and
ameliorating cancer immunotherapies. The applications of scRNA-seq to reveal
the phenotypic heterogeneity of tumor-infiltrating T cells, macrophages, and
DCs in the TMEshave deepened our understanding of the tumor immune evasion
regulatory networks. Overall, scRNA-seq showed its superior advantage in the tu-
mor immune microenvironment to discover promising therapeutic targets and
optimize treatment strategies of immunotherapy in the management of cancer.

Single-cell sequencing in assisted reproduction
Infertility is a disease of the reproductive system that hinders pregnancy after

regular unprotected sexual intercourse.127 Although it is known that it is a hetero-
geneous pathology with a complex of environmental and genetic factors, nearly
50% of infertility cases are primarily due to genetic defects.128 As a crucial clinical
treatment for infertility, assisted reproductive technology (ART) has been widely
accepted and revolutionized the lives of millions of families who were previously
unable to conceive all over the world.129

Currently, in vitro fertilization (IVF), which involves obtaining eggs, uniting them
with sperm in a laboratory setting, growing the embryos, and transferring them
directly into the uterus under ultrasound guidance, is the major form of ART
and has been used successfully since 1978.130 During IVF treatment, preimplan-

tation genetic screening (PGS) is also required to help identify embryos that are
free of inherited mutations, which consequently prevents establishing preg-
nancy.131 Even though the use of PGS has shown encouraging results, the actual
success rate of IVF remains relatively lowas it still has a high frequencyof implant
failure or incomplete pregnancy.132 To improve safety and prevent adverse ef-
fects on future generations, every step of the traditional ART procedure, including
superovulation, fertilization, preimplantation embryodevelopment, frozen embryo
transfer, and PGS, should be examined carefully. Since male and female repro-
ductive tissuesand embryos are heterogeneous, only single-cell sequencing tech-
niques can resolve the confounding effects of distinct cells and provide insights
into the biological processes that are obscured by bulkmeasurements. These un-
precedented findings will improve the success rate of IVF.
Several ongoing international efforts, including the HCA,91 the Human Cell

Landscape,133 and Tabula Sapiens,134 are all aimed at providing the multi-omics
data of reproductive organs, such as testis, ovary, and uterus, at the single-cell
level. In 2020, Wang et al. obtained the transcriptomic signature of human endo-
metrium at a single-cell resolution.135 In this project, they identified six major
endometrial cell types. One of them was a previously uncharacterized epithelial
ciliated cell type. Furthermore, they showed that the human window of implanta-
tion opens with abrupt and discontinuous transcriptomic activation in the
epithelia. Before the opening of the window of implantation, decidualization
was found initiated in the stromal compartment by capturing the direct interplay
between stromal fibroblasts and lymphocytes during decidualization. All these ef-
forts have a direct impact on the improvement of strategies for ex vivo cultivation
in ART (Figure 6A).
In addition to exploring reproductive tissues, reproductive cells should also be

examined. Primordial germ cells (PGCs) are progenitor cells of mature gametes,
oocytes, and sperms, whichmaintain the continuation of a species through fertil-
ization.136 In 2015, the humanPGC transcriptome and DNAmethylome along the
developmental trajectory were comprehensively analyzed at the single-cell and
single-base levels.137 Guo et al. found that human PGCs exhibit unique features
compared withmouse PGCs. This research shed light on the safety of ARTs and
the clinical assessment of germ cell abnormalities during PGS.
Among germ cells, oocytes are formed already during fetal life, while sperma-

tozoa can be generated throughout adulthood.138 Mature and developmentally
competent oocytes are provided by the ovaries, which also can produce hor-
mones to support the female phenotype and pregnancy.139 In 2020, the first sin-
gle-cell transcriptomic landscape of ovaries from young and aged nonhuman pri-
mates was presented.140 Researchers identified seven ovarian cell types with
unique gene expression signatures. Meanwhile, somatic cells from the inner
part of human ovaries were characterized by single-cell sequencing in 2019.141

In the next year,Wagner et al. reported single-cell transcriptomes and cell surface
antigen profiles of over 24,000 cells from the outer lining of the ovary (cortex),142

which confirmed that there are no germline stem cells in adult human ovaries.
Embryo development begins with a unified zygote, failures in zygotic genome

activation result in early embryo developmental arrest and implantation failure in
mammals (Figure 6B). We cannot perform scRNA-seq directly on the zygote to
check the quality and states during IVF because current genome-wide profiling
methods would destroy the cells to extract the cellular content. Live-seq143 could
be a promising single-cell transcriptome profiling approach since it can keep cells
alive after profiling (Figure 6C). Besides, exploring lineage specification during hu-
man preimplantation development paves the way to improve ARTs. In 2013, Guo
et al. provided a single-cellmethylation landscapeofmouse embryonic stemcells
and early embryos.9 In the same year, a comprehensive set of transcriptome
landscapes of human preimplantation embryos and embryonic stem cells
were explored using the scRNA-seq technique and published.144 Meanwhile,
Xue et al. utilized scRNA-seq to explore the transcriptomes from oocytes to
morulae in both human and mouse embryos.145 The methylome of human early
embryos from the zygotic stage to post-implantation was published the next
year.146 By comparing the single-cell transcriptome of human and mouse preim-
plantation embryos in early development, Blakeley et al. showed human-specific
transcriptional programs.147 In 2016, a comprehensive single-cell transcriptional
map of human embryo development from a human preimplantation embryo
cohort pool was presented.148 In 2018, Zhu et al. provided a single-cell DNAmeth-
ylome for human preimplantation embryos.149 With the development of single-
cell multi-omics sequencing technology (single-cell COOL-seq), genome-wide
maps of DNA methylation and chromatin accessibility at single-cell resolution
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in preimplantation embryos frommouse150 and human151 were both generated.
Then in 2021, Meistermann et al. combined scRNA-seq data time-lapse imaging
of annotated embryos to reconstruct early mouse and human embryo develop-
ment.152 A single-cell multi-omics map of mouse preimplantation development
was made available for analysis with the help of a single-cell multi-omics
sequencing technology (scNOMeRe-seq).153 Through scRNA-seq, Vento-Tormo
et al. analyzed decidual, placental, and maternal blood to explore the interactions
at the maternal-embryonic interface during early pregnancy (Figure 6D),154 while
Zhang et al. obtained scRNA-seq data from human fetal pituitaries to capture
developmental trajectories in human pituitary development.155 Overall, single-
cell sequencing techniques provide a deep understanding of the reproductive tis-
sues, embryos, and fetus, which holds the potential to improve the IVF outcome
and subsequent embryo and fetal development (Figure 6).

Single-cell sequencing for embryonic development
Early embryonic development, during which an orchestrated cell fate determi-

nation occurs in a spatial and temporal context, serves as a paradigm for deci-
phering themolecular program underlying the tissue architecture and cell organi-
zation. Embryonic morphogenesis is accomplished partially owing to the rapid
cell behavior changes, which are induced by cell shape change, cell migration,
cell proliferation, and programmed cell deaths.1 Over the past decades, transcrip-
tome-wide analyses of differentially expressed genes have gained prevalence,
providing overviews of gene expression patterns and more sophisticated molec-
ular changes during development.2 With the discovery of the molecular and
functional heterogeneity of cells, scRNA-seq was rapidly developed and opti-
mized with higher throughput, greater seq-depth, lower cost, and long-read
coverage.3–6 scRNA-seq not only establishesmore comprehensivemolecular at-
lases,7 but permits the identification of novel cell sub-populations and inference

of differentiation trajectories, making it the de facto most widely used technique
to screen and resolve preimplantation embryos, gastrulation, early organogen-
esis, and the development of specific organs over the past decade.2,8,156–158

The understanding of individual cell behavior and gene expression regulation
was further improved with the explosion of various single-cell multi-omics tech-
niques, covering the proteome, methylome, interactome, chromosome accessi-
bility, chromosome topography, and RNA modifications.159

Importantly, besides cataloging cell types and cell states, the understanding of
the dynamic process of mammalian cell lineage has been deepened with the
development of single-cell transcriptome technology. By connecting cell states
in different time series, the trajectory of cell lineage during development can be
reconstructed, a long-standing focus and a fundamental goal in stem cell and
developmental biology.8 Compared with the traditional study of the lineage pro-
cess of a certain type of cell through several specific marker genes, single-cell
transcriptomics provides a versatile tool for mapping differentiation dynamics
and manifolding cell states, facilitating molecular navigation of lineage progress
(Figure 7). For example, usingXenopus as amodel organism,9 researchers set up
"ancestor voting" based on time information among the cell populations obtained
by different clusters, mapped the fate of cells over time, and found that many cell
fates are determinedmuch earlier than previously thought. The cell fates of endo-
derm, mesoderm, and ectoderm start to be specialized even after the blastocyst
stage. Farrell et al. used the Drop-seqmethod to obtain a large number of embry-
onic single-cell transcriptomes with high temporal resolution (from 3.3 h after
fertilization to 12 h after fertilization) of embryonic single-cell transcriptomes,
revealing that zebrafish changes developmental trajectory during embryogen-
esis.10 They developed a diffusion-based simulation reconstruction method
URD (simulated diffusion based), which uses discrete random walks and graph
search to simulate the continuous process of diffusion. This calculation method
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Figure 6. The application of single-cell sequencing in assisted reproduction
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requires an artificial setting of the start and endpoints. Therefore, it can reflect
more biological information and is a powerful visualization method of develop-
mental trajectory. Based on single-cell transcriptome analysis technology,
Pijuan-Sala et al. used 10X Genomics to sequence and analyze mouse embryos
from 6.5 to 8.5 days after fertilization, and obtained a large number of embryonic
single-cell transcriptomes. They found that visceral endoderm cells are mainly
involved in the formation of the hindgut.11 Nowotschin et al. conducted single-
cell transcription analysis of all endoderm cells from E3.5 to E8.75 in mice and
found that the endoderm of embryonic origin and extraembryonic origin in the
neonatal intestinal endoderm has a certain spatial pattern.12 Using indexed mul-
tiple combinatorial strategies, Cao et al. analyzed 2millionmouse embryonic sin-
gle-cell transcriptomic landscapes of mammalian organogenesis at a very large
scale and combinedwithMonocle 3 to identify hundreds of cell types and cell line-
age trajectories.13

In addition to the above-mentioned developmental path reconstruction algo-
rithms and studies, there are many other trajectory-inference tools, such as
Monocle, Waterfall, Wishbone, TSCAN, Monocle2, Slingshot, and CellRouter.14

Inspired by single-cell transcriptome analysis, these methods offer an unbiased
and transcriptome-wide view of dynamic changes in developmental biology
and many other fields as well.

It is worth noting that the single-cell transcriptome is inevitably losing spatial
information during cell isolation. However, spatial context is one of the key deter-
minants of cellular identity. To resolve the spatial organization and molecular ar-
chitecture underpinning the cell lineage segregation during embryo development,
spatial transcriptome approaches must be properly implemented.15–18 With the
cutting-edge technology of spatially resolved transcriptome,molecular genealogy
of germ layers, and cell compositions in spatial resolution can be unraveled.19We
envision that combining spatial and single-cell multi-omics will address funda-
mental questions and provide new insights into many aspects of development
and disease.

Single-cell sequencing in plant breeding
Single-cellmulti-omics is revolutionizing our views from the tissue level to a sin-

gle-cell level, which allows us to access individual cell modalities, including geno-
mics, transcriptomics, epigenomics, etc.65,160,161 Due to the existence of cellwalls
out of plant cells, single-cell multi-omics in plants fell behind compared with the
explosive development in animals. Microcapillary pick or microscopic isolation
of particular cells was first applied to acquire transcript information in one
cell,63,162–164 and used to try to reconstruct a developmental program in maize
male meiosis.165 With the breakthrough of a microfluidic, especially droplet-
based high-throughput single-cell sequencing technique, the burst of plant sin-
gle-cell transcriptomes was in revealed 2019. Papers published successively re-
ported the single-cell transcriptomes of Arabidopsis root, which showed the
power of scRNA-seq and opened the door for single-cell multi-omics studies in
plants.166–170 Thereafter, single-cell transcriptomes have been applied to other

Figure 7. The application of single-cell sequencing
in developmental biology

systems, including leaf, vasculature, shoot apex,
maize meristem cells, and regeneration callus,
highlighting the heterogeneity and developmental
dynamics.171–181

Plant tissues and organs commonly have a
complex cellular architecture consisting of het-
erogeneous cell types embedded in cell walls of
different compositions. Protoplasting to gain sin-
gle cells is not generally applicable to all cell
types, and disruptive digestion of the cell walls
also introduces gene expression responses to
stimuli.166,175,182,183 Single-nucleus transcrip-
tomes were developed using isolated nuclei
rather than entire cells.98,184,185 This can elimi-
nate the protoplasting-induced transcriptional ef-
fects and also the limitation of large cells in
encapsulation, which can be used in almost all
plant species and organs. Although with a low

mRNA capture in a single nucleus than a single cell, studies discovered that
snRNA-seq can capture even more cell types than single-cell transcrip-
tomes.98,186 With single nucleus available, scATAC-seq has started its journey
in plants.98,187 A recently published paper that profiled histonemodification at sin-
gle-cell resolution means that single-cell epigenomics in plants is accessible.99

The single-cell transcriptome provides an unprecedented perspective on plant
development and breeding188; heterogeneity and new regulators have been iden-
tified.166–170,173,176 Enrichment and analysis of rare cell types, such as root
quiescent center cells, lateral root primordial cells, guard cells, and phloem
parenchyma cells, uncovered novel views for the function of these rare
cells.171–174,176,189 Comparing single-cell transcriptomes under different environ-
mental stress, studies found distinct responses among different cell clusters.175

Yang et al. identified key regulators and regulations for the differential response to
cytokinin in root and uncovered that root xylem cells act as an organizer by non-
autonomous regulation of cytokinin levels.177 Different from animals, plants
develop in post-embryonic style withmeristemic stem cells dividing and differen-
tiating during the whole lifespan.190 One can capture almost all the cell states in
one sample, like those time series studies in animals such as embryogenesis,
etc.191–196 Tracing the developmental trajectory of specific cell types and illus-
trating mechanisms of cell fate transition/determination is one of the most
outstanding highlights of single-cell studies in plants. With the single-cell tran-
scriptome available, Efroni et al. revealed a rapid identity transition of cells after
root tip cutting.197 Using algorithms in the reconstruction of cellular develop-
mental trajectories, studies on root trichoblast differentiation, cortex cell develop-
ment, and lateral organ initiation, etc., discovered dynamic transcriptional
changes and identified regulators involved in the process.166,167,174,180 A cell-
by-cell dissection of phloemdevelopment conducted byRoszak et al., which com-
bined high-resolution imaging and single-cell omics, illustrated the detailed
dynamic maturation gradient for cell specification.198 Spatiotemporal gene
expression programs, which correlatedwith specialized cellular functionwere en-
coded by cis-regulatory elements. A cis-regulatory atlas in six maize organs iden-
tified cell-type-specific elements as hotspots correlated with selection in modern
maize breeding, highlighting the biological meaning of the cis-elements.187 The
applications of single-cell omics technology in plant studies are summarized in
Figure 8.
Single-cell multi-omics applications are only beginning to unlock their full po-

tential, particularly for plants. Single-cell transcriptome profiling is still in its early
stage and has many exciting challenges to overcome. Due to the continuous
development of plant cells, how to define a group of cells as a new cell type or
subtype is still under discussion.188 The transcripts detected in one single cell ac-
count for a low proportion of the total transcripts, which limits the application of
lowly expressed cell-type-specific genes. Furthermore, how to combine informa-
tion from single cells with cellular function in a biological context is still an open
question, despite the recent studies that have started to focus on the dissection of
molecular mechanisms utilizing single-cell omics.177,178,198
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Plants embrace incredible plasticity. Positional signaling plays a pivotal role in
determining cell fate specification/transition in plants.199 The adjacent cells can
replace the function of damaged stemcells.199,200 Scientists tried to employ ami-
crocapillary manipulation to gain single cell with positional information,201,202 but
it cannot be used widely in high throughput. The appearance of spatial transcrip-
tomes paves another way to dissect gene expression patterns with positional in-
formation.203,204 Recently, a stereo-seq-based spatial transcriptome was applied
in Arabidopsis leaves, discovering the significant transcriptional differences be-

tween upper and lower epidermal cells, which started a new era for plant spatial
omics.205

PERSPECTIVES OF SINGLE-CELL TECHNOLOGIES
Single-cell spatial omics
While single-cell omics data are transformative for dissecting the complexities

of cell-type composition, they typically start with dissociated cells that lose their
physical relationships. Researchers are keen to keep this spatial information to

Figure 8. The applications of single-cell sequencing in plant biology
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infer how cells are attributed or organized in their native content, which is critical
to understanding the fundamental mechanisms underlying embryonic develop-
ment, neurological science, and tumor heterogeneity. Therefore, spatially
resolved single-cell omics technologies are eagerly needed. ST technologies
have been developing dramatically over the past years toaddress these needs.206

Current ST technologies are generally categorized as imaging based and
sequencing based, which are often complementary in features, such as spatial
resolution and throughput. Here, we briefly summarize major advances in ST
technologies and also bring some future perspectives.

The imaging-based approach is originated from FISH technology, which has
been used to image selected RNA transcripts in cells, especially with the develop-
ment of single-molecular FISH to overcomediffraction limitation.207 However, the
number of genes that can be simultaneously observed in FISH technology is
restricted to the number of distinct fluorescence colors, which presents a major
challenge for transcriptome-wide characterizing. We summarize the sequencing-
based and imaging-based ST in Figure 9.

One major drawback of imaging-based ST technologies is the throughput, as
hybridization and image capturing are all time-consuming. On the other side,
high-throughput next-generation sequencing has been applied in numerous bio-
technologies. Therefore, it is straightforward to incorporate sequencing method-
ologies for spatially resolved transcriptomics.

The general principle of sequencing-based ST technologies is to capture
and quantify the RNA transcripts in situ by preloading barcoded probes
into assigned positions on the surface of glass slides. Tissue slices are then
placed on top of the barcoded probes. RNAs in the cells are then released
and hybridized in situ with the probes. Sequencing was performed directly on
these glass slides. RNA species and the barcodes could be read out from
the sequencing reads, and the spatial locations could be decoded with the
barcodes.

One major consideration for sequencing-based ST is the resolution that is
restricted by the density of the surface probes. In the first generation of the
sequencing-based ST developed in 2016,36 the diameter of each spot on the
glass slide was around 100 mm,which coveredmultiple cells to provide averaged
transcriptomics of these cells. To push the spatial resolution into the single-cell
level, an alternative barcode deposition strategy was developed to reduce the
diameter of the probe spots by using densely packed beads. Slide-seq uses
10 mmbeads that generally cover one to three cellswith decent capture efficiency
compared with scRNA-seq.208 In the meanwhile, HDST further improves the res-

olution by using 2 mm beads and a sequential hybridization strategy, which can
provide subcellular resolution.209

ST technologies are continuously evolving in multiple directions to address a
broad range of biological questions. To fully take advantage of the spatial infor-
mation fromST technologies, specialized data analysis algorithms and computa-
tional tools should be developed since the ST datasets have unique structures
in terms of data complexities, such as imaging, sequencing, and electrophysi-
ology data. Most current ST technologies are based on 2D cross-sectional
imaging. By integrating multiple 2D data, we may get the real 3D spatial data.
Another direction is to incorporate extra modalities into current transcriptom-
ics-centered spatial technologies, such as genomics, epigenomics, proteomics,
and metabolomics. The third one is to consider the dynamics of 3D spatial
evolving. Time course 3D spatial single-cell multi-omics data will generate
more insights regarding gene regulation, developmental trajectory, and tumor
progression.

Single-cell multi-omics
The advancement of scRNA-seq technologies has profoundly altered molecu-

lar mechanism research. Proteomics awaits similar progress in protein
sequencing techniques, such as single-moleculemass spectrometry, DNA nano-
technologies for protein sequencing, and fingerprinting linearized proteins, which
will allow for the analysis of proteins at the single-cell level, even with low-abun-
dance proteins.210 With single-cell multi-omics, a comprehensive view of single
cells can be expected (Figure 10). We can validate the cell type identified from
one omics with another omics. This will significantly improve the cell-type anno-
tation accuracy and help discover new cell types or new mechanisms.211

From the technology perspective of single-cell multi-omics, Guilliams et al. did
integrative analysis of single-cell CITE-seq (cellular indexing of transcriptomes
and epitopes by sequencing), single-nuclei sequencing, ST, and spatial prote-
omics to uncover the cellular niches of hepatic macrophages in murine and hu-
man liver.212 The single-cell multi-omics and spatial multi-omics data unraveled
the cell-cell microenvironmental circuits essential for lipid-associated macro-
phages (LAMs).212 Perturb-seq has been used in mammalian cells to assist in
the screening of individual gene targets, gene signatures, and their genetic inter-
actions.213 Mimitou et al. developed ECCITE-seq (expanded CRISPR-compatible
CITE-seq), which can simultaneously detect transcriptome, proteins, clonotypes,
andCRISPRperturbations from single cells214 and, later, they developed DOGMA-
seq, an adaptation of CITE-seq for measuring gene activity across the central

Figure 9. The sequencing-based and imaging-based spatial transcriptomics
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dogma of gene regulation.215 DOGMA-seq showed great values in studying line-
age-specific T helper cells.216

From the application perspective of single-cell multi-omics, Bian et al. investi-
gated the complex multi-level dysfunctions in human colorectal cancer using
scTrio-seq2 (single-cell triple omics sequencing), which measures CNV, DNA
methylation, and transcriptome simultaneously in one cell.217 In immunology,
Stephenson et al. revealed the immune response in COVID-19 patients by
multi-omics analysis of the single-cell transcriptome, cell-surface protein, and
lymphocyte antigen receptor repertoire in peripheral blood.218 In reproductive
and developmental medicine, Yan et al. decoded the dynamic epigenetic land-
scapes in human oocytes using scChaRM-seq (single-cell chromatin accessi-
bility, RNA barcoding, and DNAmethylation sequencing), which canmeasure sin-
gle-cell ATAC, RNA, and DNA methylation.219

We believe more and more researchers will apply single-cell technologies to
their studies. It will be the era of the single cell in which new cell types and new
molecularmechanismswill be discovered, just as newspecies and their evolution
paths were discovered in the era of Darwin.
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