Skip to main content
. 2022 Aug 3;40(5):111162. doi: 10.1016/j.celrep.2022.111162
REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples

Snap frozen medulloblastoma CCLG Biobank/ Biological study and collaborating centres See Table S1

Chemicals, peptides, and recombinant proteins

Trizol Thermo Fisher 15596026
1 X Low TE Buffer (10 mM Tris-HCL, ph 7.5-8.0, 0.1 mM EDTA) Thermo Fisher 120900915
100% Ethanol, molecular biology grade Sigma-Aldrich E7023
Nuclease-free Water Thermo Fisher AM9930

Critical commercial assays

RNeasy MinElute Cleanup Kit Qiagen 74204
DNeasy Blood and Tissue Kit Qiagen 69504
Agilent SureSelect XT2 Agilent G9621A
Agilent SureSelect XTHS (Low Input) Agilent G9703A
Agilent SureSelect Custom DNA Target Enrichment Probes Tier 1 (500Kb) Agilent 5190-4813
Afilent SureSelect XT Human All Exon v6 + UTR Agilent 5190-8881
AMPPure XP Kit Beckman Coulter A63880
Herculase II Fusion DNA Polymerase Agilent 600677
Dynabeads MyOne Streptavidin T1 Thermo Fisher 65601
Qubit dsDNA HS Assay Kit Thermo Fisher Q32851

Deposited data

Medulloblastoma methylation array dataset E-MTAB-10754 This paper Array Express: E-MTAB-10754
Medulloblastoma RNA-seq dataset E-MTAB-10767 This paper Array Express: E-MTAB-10767
Medulloblastoma Methylation array dataset GSE130051 Sharma et al. 2019 GEO accession: GSE130051
Medulloblastoma Methylation array dataset GSE93646 Schwalbe et al., 2017 GEO accession: GSE93646
Medulloblastoma scRNA-seq dataset GSE119926 Hovestadt et al., 2019 GEO accession: GSE119926
Human fetal cerebellum scRNA-seq dataset Human Cell Atlas (https://www.covid19cellatlas.org/aldinger20) dbGAP accession: phs001908.v2.p1

Software and algorithms

R v3.5.3 & v4.0.2 & R base packages https://www.r-project.org N/A
Bioconductor http://bioconductor.org NA
Kallisto v0.46.0 Bray, N., Pimentel, H., Melsted, P. et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527 (2016). https://doi.org/10.1038/nbt.3519 N/A
RNA-STAR v2.7.0e Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, Thomas R. Gingeras, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, Volume 29, Issue 1, January 2013, Pages 15–21, https://doi.org/10.1093/bioinformatics/bts635 NA
HTSeq v0.9.1 G Putri, S Anders, PT Pyl, JE Pimanda, F Zanini
Analysing high-throughput sequencing data in Python with HTSeq 2.0 https://doi.org/10.1093/bioinformatics/btac166 (2022)
N/A
SAMtools v1.9, Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools, Bioinformatics, Volume 25, Issue 16, 15 August 2009, Pages 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 N/A
Picard v2.2.4 https://github.com/broadinstitute/picard N/A
QEdit https://github.com/BioinfoUNIBA/QEdit N/A
Genome Analysis Toolkit (GATK) version 3.7 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20:1297-303. https://doi.org/10.1101/gr.107524.110. N/A
Ensembl Variant Effect Predictor (VEP) McLaren, W., Gil, L., Hunt, S.E. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122 (2016). https://doi.org/10.1186/s13059-016-0974-4 N/A
DESeq2_1.22.2 Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8. N/A
minfi_1.28.4 Fortin J, Triche TJ, Hansen KD (2017). “Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi.” Bioinformatics, 33(4). https://doi.org/10.1093/bioinformatics/btw691. N/A
NMF_0.23.0 Gaujoux R, Seoighe C (2010). “A flexible R package for nonnegative matrix factorization.” BMC Bioinformatics, 11(1), 367. ISSN 1471-2105, https://doi.org/10.1186/1471-2105-11-367, https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-367. N/A
limma_3.38.3 Ritchie et al, 2015, Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007. N/A
sva_3.36.0 https://bioconductor.org/packages/release/bioc/html/sva.html N/A
tximport_1.10.1 Soneson et al., 2015, Soneson C, Love MI, Robinson MD (2015). “Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences.” F1000Research, 4. https://doi.org/10.12688/f1000research.7563.1. N/A
tximportData_1.10.0 Soneson et al., 2015, Soneson C, Love MI, Robinson MD (2015). “Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences.” F1000Research, 4. https://doi.org/10.12688/f1000research.7563.1. N/A
caret_6.0–86 cran package: https://cran.r-project.org/web/packages/available_packages_by_name.html N/A
DMRcate_1.18.0 Peters et al., 2015, Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, Clark SJ, Molloy PL (2015). “De novo identification of differentially methylated regions in the human genome.” Epigenetics & Chromatin, 8, 6. http://www.epigeneticsandchromatin.com/content/8/1/6. N/A
Rtsne_0.15 cran package: https://github.com/jkrijthe/Rtsne N/A
biomaRt_2.38.0 Durinck S, Spellman P, Birney E, Huber W (2009). “Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.” Nature Protocols, 4, 1184–1191. N/A
ggplot2_3.3.2 Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York. Available at: https://ggplot2.tidyverse.org N/A
SingleCellExperiment_1.4.1 Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x. N/A
Seurat_3.2.0 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, III WMM, Hao Y, Stoeckius M, Smibert P, Satija R (2019). “Comprehensive Integration of Single-Cell Data.” Cell, 177, 1888-1902. https://doi.org/10.1016/j.cell.2019.05.031, https://doi.org/10.1016/j.cell.2019.05.031. N/A
survival_3.2–7 https://cran.r-project.org/web/packages/survival/index.html N/A
tidyverse_1.3.0 Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686. N/A
mclust_5.4.6 Scrucca et al., 2016, Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021. N/A
fgsea_1.8.0 Korotkevich G, Sukhov V, Sergushichev A (2019). “Fast gene set enrichment analysis.” bioRxiv. https://doi.org/10.1101/060012, http://biorxiv.org/content/early/2016/06/20/060012. N/A
vcdExtra_0.7–1 https://cran.r-project.org/web/packages/vcdExtra/index.html N/A
survminer_0.4.8 https://cran.r-project.org/web/packages/survminer/index.html N/A
GSVA_1.30.0 Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14, 7. https://doi.org/10.1186/1471-2105-14-7, http://www.biomedcentral.com/1471-2105/14/7. N/A
Hmisc_4.4–1 https://cran.r-project.org/web/packages/Hmisc/index.html N/A
lumi_2.34.0 Du, P., Kibbe, W.A., Lin, S.M. (2008). “lumi: a pipeline for processing Illumina microarray.” Bioinformatics N/A
e1071_1.7–3 https://cran.r-project.org/web/packages/e1071/index.html N/A
mlbench_2.1–1 https://cran.r-project.org/web/packages/mlbench/index.html N/A
randomForest_4.6–14 https://cran.r-project.org/web/packages/randomForest/index.html N/A
DoseFinding_0.9–17 https://cran.r-project.org/web/packages/DoseFinding/index.html N/A
car_3.0–10 https://cran.r-project.org/web/packages/car/index.html N/A
gplots_3.1.0 https://cran.r-project.org/web/packages/gplots/index.html N/A
RColorBrewer_1.1–2 https://cran.r-project.org/web/packages/RColorBrewer/index.html N/A
pheatmap_1.0.12 https://cran.r-project.org/web/packages/pheatmap/index.html N/A
ggridges_0.5.2 https://cran.r-project.org/web/packages/ggridges/index.html N/A
ggrepel_0.8.2 https://cran.r-project.org/web/packages/ggrepel/index.html N/A
ggnewscale_0.4.3 https://cran.r-project.org/web/packages/ggnewscale/index.html N/A
Gviz_1.26.5 Hahne F, Ivanek R (2016). “Statistical Genomics: Methods and Protocols.” In Mathé E, Davis S (eds.), chapter Visualizing Genomic Data Using Gviz and Bioconductor, 335–351. Springer New York, New York, NY. ISBN 978-1-4939-3578-9, https://doi.org/10.1007/978-1-4939-3578-9_16, https://doi.org/10.1007/978-1-4939-3578-9_16. N/A
patchwork_1.0.1 https://cran.r-project.org/web/packages/patchwork/index.html N/A
SingleCellExperiment_1.10.1 Amezquita R, Lun A, Becht E, Carey V, Carpp L, Geistlinger L, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pages H, Smith M, Huber W, Morgan M, Gottardo R, Hicks S (2020). “Orchestrating single-cell analysis with Bioconductor.” Nature Methods, 17, 137–145. https://www.nature.com/articles/s41592-019-0654-x. N/A
Seurat_4.0.1 Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015). “Spatial reconstruction of single-cell gene expression data.” Nature Biotechnology, 33, 495-502. https://doi.org/10.1038/nbt.3192, https://doi.org/10.1038/nbt.3192. N/A
bestNormalize_1.7.0 Peterson, 2021. “Finding Optimal Normalizing Transformations via bestNormalize.” The R Journal, 13(1), 310–329. https://doi.org/10.32614/RJ-2021-041. N/A
ggnewscale_0.4.5 https://cran.r-project.org/web/packages/ggnewscale/index.html N/A
scales_1.1.1 https://cran.r-project.org/web/packages/scales/index.html N/A
ggpattern_0.1.3 https://cran.r-project.org/web/packages/ggpattern/index.html N/A
ggtern_3.3.0 Hamilton NE, Ferry M (2018). “ggtern: Ternary Diagrams Using ggplot2.” Journal of Statistical Software, Code Snippets, 87(3), 1–17. https://doi.org/10.18637/jss.v087.c03. N/A
MASS_7.3–51.6 Venables and Ripley, 2002, Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0, https://www.stats.ox.ac.uk/pub/MASS4/. N/A
ggridges_0.5.3 https://cran.r-project.org/web/packages/ggridges/index.html N/A
plotly_4.9.3 Sievert C (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC. ISBN 9781138331457, https://plotly-r.com. N/A
ggplot2_3.3.3 Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org. N/A
monocle3_0.2.2 Trapnell, C., Cacchiarelli, D., Grimsby, J. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386 (2014). https://doi.org/10.1038/nbt.2859 N/A
survMisc https://cran.r-project.org/web/packages/survMisc/index.html N/A