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Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of 
organic–inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite 
scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol–gel method was used to 
prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based 
on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the 
scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentia-
tion. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of 
bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature 
(Tg) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM 
examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt 
bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, 
OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, 
whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and Tg continuously. 
Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentia-
tion biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet 
extracts can be a good strategy for bone repair.
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Introduction

Bone is the primary tissue in the skeletal organ, whose 
essential functions include mobility, protection of other 
organs, and ion storage. Due to its fragile nature, it is 
highly vulnerable to damage, and it has a spontaneous 
repair just in minor defects. However, in defects with more 
than the critical size common in traumas and accidents, 
this repair does not happen spontaneously and has cre-
ated many challenges for patients and orthopedic surgeons 
[1–4]. The incidence of osteoporosis has also increased 
the need for bone regeneration [5]. Tissue engineering as 
a new method based on the use of growth factors, stem 
cells, and biomaterials as scaffolding has created new hori-
zons for improving bone defects [6]. Stem cells with the 
ability to self-renewal, as well as high proliferation and 
differentiation, play the role of cell source to create target 
tissues such as bone. However, it should be noted that in 
some cases, stem cells are also involved as the primary 
source of cancer, and some other pathological cases, such 
as endometriosis, may lead to infertility [7–10]. Mean-
while, mesenchymal stem cells, especially endometrial 
stem cells, have a high ability to proliferate, differentiate, 
and angiogenesis. Also, their harvesting method, unlike 
bone marrow stem cells, is not difficult or painful [11]. So, 
regarding the benefits mentioned above, endometrial stem 
cells attract significant attention in bone regeneration [12].

Moreover, another vital component of tissue engineering 
is growth factors. Growth factors are small molecules that 
play an essential role in cell proliferation and differentiation 
into target tissue [13, 14]. One of the most important sources 
is growth factors secreted by platelets. Hence, platelet con-
centrates such as platelet-rich plasma (PRP), platelet-rich 
fibrin (PRF), and plasma rich in growth factors (PRGF) have 
been widely used in tissue engineering, especially bone heal-
ing [15–18]. PRGF is a very small section of centrifuged 
blood containing Platelet-derived growth factors A and B 
(PDGF-A, PDGF-B), vascular endothelial growth factor 
(VEGF), BMP-2, transforming growth factor-beta (TGF-
β), and insulin growth factor (IGF). These growth factors 
play a critical role in bone regeneration [19–21]. So, the 
application of PRGF in bone regeneration is increasing [22].

Furthermore, similarly to the natural tissues, stem cells 
need supportive materials for homing and delivering nutri-
ents and growth factors. These materials should be biocom-
patible and have suitable interaction and affinity with cells, 
so they are called biomaterials [23]. Basically, biomaterials 
can be assumed as a temporary extracellular matrix for stem 
cells and play an essential role in proliferating, differentiat-
ing, and forming new tissue [24].Due to the predominantly 
mineral nature of bone tissue, ceramic biomaterials and 
especially bioactive glasses have been widely used in this 
field [25–29]. However, considering the organic phase of 
bone extracellular matrix (ECM), the application of biopol-
ymers in bone regeneration is increasing [30, 31]. Hence, 
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organic–inorganic composites showed promising results 
in bone tissue engineering [32]. Amongst, gelatin has a 
great application in bone tissue engineering scaffolds due 
to its significant biocompatibility, cell adherence, low cost, 
and structural similarity to collagen as an organic phase of 
bone’s ECM. So, gelatin-bioactive glasses are promising 
scaffolds in bone regeneration [33].

Also, one of the most important aspects of research 
is doping ions with better bone formation ability to their 
structure. According to the existing reports on the effects 
of lithium in improving cell proliferation, osteogenesis, and 
angiogenesis, doping this ion in bioactive glass seems to be 
an excellent strategy to improve its efficiency [34–38]. Many 
bone defects are also associated with traumas such as car 
accidents. It is common for high-energy traumas to result in 
open fractures that are challenging injuries and are associ-
ated with an increased risk of complications, like an infec-
tion [39]. There can be permanent functional loss or ampu-
tation from fracture-related infections (FRIs). Additionally, 
open flaps can cause sepsis as a serious life-threatening 
consequence in severe cases [40, 41]. Also, infections can 
deteriorate the bone healing process and delay it. Therefore, 
it is essential for scaffolds used for bone regeneration to be 
antibacterial [42]. Moreover, with the emerging COVID-
19 pandemic and its significant effects on human life, the 
importance of antibacterial and antiviral materials has 
increased, and due to the antiviral and antibacterial proper-
ties of lithium, its addition to the biomaterial structure can 
improve its application [43–53].

So, it seems that scaffolds based on gelatin/PRGF/lith-
ium-doped bioactive glasses seeded by endometrial cells can 
be considered a suitable approach for bone tissue engineer-
ing. In this study, first, 45s5 bioactive glass nanoparticles 
containing lithium with amounts of 1, 3, and 5% wt were 
prepared by the sol–gel method. Then, its optimal amount 
was determined based on its cell cytotoxicity and antibac-
terial properties. Then gelatin scaffolds Containing bioac-
tive glass with the optimal amount of lithium and PRGF 
were prepared, and their ability to induce bone differentia-
tion in endometrial stem cells was investigated. In addition, 
the effect of adding bioactive glass as well as PRGF on the 
mechanical properties of scaffolds was investigated.

Materials and Methods

Preparation of Li‑Doped Bioactive Glass 
Nanoparticles

The sol–gel method has been used to synthesize bioactive 
glass particles [54, 55]. Briefly, based on 10 g bioactive glass 
0.5 ml of nitric acid (HNO3 65% MERK) was first added 
to 19.5 ml of distilled water (H2O) and stirred for 10 min. 

Then 16.7 ml of tetraethyl orthosilicate (TEOS, Si (OC2H5)4, 
Merck) was added to the acidic solution and stirred for acid 
hydrolysis for one hour. Following 1.5 mL of three ethyl 
phosphate (TEP, (C2H5)3PO4 Merck) is added to the material 
and left to stir for 25 min. Afterward, with a time interval 
of 20 min for each component, 10.5 g calcium nitrate (Ca 
(NO3)2, MERK), (6.72 g, 6.45 g, 5.9 g, 5.35 g) of sodium 
nitrate (NaNO3, MERK), and (0 g, 0.46 g, 1.38 g, 2.31 g) 
of lithium nitrate (LiNO3, MERK) are added, respectively. 
Lithium nitrate, used with 0, 1, 3, and 5 wt%, substitutes the 
sodium nitrates. Then whole material was stirred for one 
hour and stored at room temperature for 96 h. After 96 h, the 
obtained gel was first placed in the oven for 24 h at 70 °C 
and then kept at 120 °C for 48 h. The obtained precursor was 
ground by a hand mill. Subsequently, it is heated by the ratio 
of 10 °C/min and sintered at 750 °C to degrade alkoxides 
and remove nitrates. Bioactive glasses prepared with weight 
percentages of 0, 1, 3, and 5% Li2O in their structures are 
named B0, B1, B3, and B5, respectively (Table 1).

Preparation of Hybrid Scaffolding

In this study, scaffolds were prepared by the freeze-drying 
method [56]. In preparing hybrid scaffolds, human-based 
PRGF was purchased from Noavaran Andish Pajoh. Briefly, 
they reported that collected blood from healthy volunteers 
poured into sterile test tubes having anticoagulants including 
0.4 mL of 3.8% sodium citrate (Na3C6H5O7, MERK). Then 
tubes were centrifuged at 1400 rpm for 8 min. tubes now 
consist of three distinguished regions; red blood cells were 
precipitated at the bottom of the tube. A thin layer of leu-
cocytes is located above red blood cells. The plasma region 
is above the leucocytes’ layer. However, plasma region is 
divided into two regions. The first 0.5 ml upper of the leuco-
cytes’ layer is collected as PRGF; the rest was nominated as 
plasma poor in growth factors (PPGF). Subsequently, to acti-
vate PRGF, 50 µl of 10% calcium chloride (CaCl2 MERK) 
was poured into PRGF, and after 15 min, the final product 
was achieved [57–61].

In order to find the optimal amount of gelatin, first solu-
tions containing 5, 7.5, and 10% wt of gelatin were prepared 
and freeze-dried, then based on the obtained morphology, 
5% was selected as the optimal amount for constructing 

Table 1   Compositions of synthesized bioactive glass nanoparticles

Sample code Components (%wt)

SiO2 CaO Na2O Li2O P2O5

B0 45 24.5 24.5 0 6.0
B1 45 24.5 23.5 1 6.0
B3 45 24.5 21.5 3 6.0
B5 45 24.5 19.5 5 6.0
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hybrid scaffolds. So, an aqueous gelatin (Merck, microbiol-
ogy grade, catalog number 104,070) solution was prepared 
at 25 °C. PRGF with the ratios (1: 1 and 3: 1 Gelatin: PRGF 
ratio wt/wt) and added to the gelatin solution and stirred for 
10 min. Then the B3 (0, 5, 10, and 20% w/w) is added to the 
gelatin solution and stirred for 1.5 h. Following the mixture 
was molded and kept at 2 °C overnight to gel. Afterward, 
the molded materials were frozen at − 20 °C and − 80 °C 
for 48 h and 24 h, respectively. Subsequently, nanocompos-
ites were lyophilized for 48 h at − 50 °C in a freezer dryer 
to obtain porous nanocomposites. The samples were then 
immersed in a solution of 0.5% glutaraldehyde in ethanol 
(%volume/volume) for 24 h to cross-link [62]. The samples 
were then washed with pure ethanol and immersed in dis-
tilled water to remove excess glutaraldehyde. Table 2 shows 
the sample code and their combinations.

Physical, Chemical, and Structural Properties 
of Scaffolds

By scanning electron microscopy (SEM, TESCAN-Vega3), 
we explored the morphology of bioactive glasses and 
scaffolds. Also measured the crystals with X-ray diffrac-
tion using a copper anode and a deflector at 40 kV and 2θ 
between 0° and 120°. Bioactivity was measured by immers-
ing 10 mg of each bioactive glass in simulated body fluid 
(SBF) for seven days at 37 °C. Apatite on the samples was 
determined by X-ray diffraction after they had been washed 
with deionized water. We calculated the scaffold's porosity 
using Archimedes' law:

M1 refers to the weight of the container filled with alco-
hol, M2 refers to the container filled with alcohol after the 
scaffold is suspended, and M3 refers to the weight of the con-
tainer filled with alcohol after the scaffold is removed. The 

Percentage of porosity = (M2 −M3 −Md)∕(M1 −M3) × 100.

scaffold's weight in the air is Md. The scaffolds' mechanical 
properties were evaluated on the Santam machine with a rate 
of 1 mm/min and a load cell of N 100. Each test examined 
5 cylindrical specimens measuring 9 mm in diameter and 
20 mm in height. Modulus is calculated based on the slope 
from the linear region of the stress–strain curve, and the 
strength equivalent to the maximum stress carried by each 
scaffold. Using a Dynamic Mechanical Thermal Analysis 
(DMTA) device (DMTA-PL, Model: Polymer Laboratory), 
we tested scaffolds at 1 Hz in the compressive mood and a 
temperature range of 0–150 °C, to measure their Tg. Also, 
Using an Inductively Coupled Plasma Optical Emission 
Spectrometry device (Varian-ES-730), we investigated the 
chemical composition of bioactive glass. Using the acid 
digestion approach, samples were processed by dissolving 
100 mg of each bioactive glass in a digestion media made 
of 6 ml of HCl (ACS 37%, MERCK), 2 ml of HNO3 (65%, 
MERCK), and 0.5 mL of HF (38–40%, MERCK). Then, 
5 ml of 99.5% MERCK H3BO3 was added to the acid mix-
ture. Since silica cannot be quantified because it generates 
volatile compounds (such as H2SiF6) in the presence of HF, 
its content could not be measured and was calculated by 
adding 100% to the measured value [63–66].

Biological Characterization

Antibacterial Properties

The sink method was used to evaluate the antibacterial 
properties of bioactive glass. Briefly, one gram of bioac-
tive glass was first mixed with 1 ml of distilled water. The 
resulting extract was then diluted twice with distilled water 
to reach the concentration of 100 mg/ml. Then EMB culture 
medium was prepared for Gram-negative bacteria (ATCC 
9637 Escherichia coli) and a Blood Agar culture medium 
for Gram-positive bacteria (Staphylococcus aureus ATCC 
23235) was prepared. Using sterile swabs, the bacteria were 
removed from the suspensions prepared and cultured on the 
culture medium. The number of concentrations prepared 
from the extract plus one was created as a negative control 
well using a sterile pipette. 200 μl of each concentration 
was added to each well, and the only solvent was added to 
the negative control well. The media were then incubated in 
the incubator for 48 h. Finally, the zone of inhibitions was 
measured and reported.

Cell Adhesion

In this study, we used human endometrial stem cells 
obtained from the National Center for Genetic Resources 
of Iran (IBRC C1120). The morphology of the cells cul-
tured on the scaffold was examined by SEM. In summary, 
human endometrial stem cells were cultured in 12 DMEM/F 

Table 2   Compositions of prepared scaffolds

Sample code Components weight ratio

B0 B3 Gelatin PRGF

GP0B30 0 0 1 0
GP25B30 0 0 1.5 0.5
GP50B30 0 0 1 1
GP0B35 0 0.05 0.95 0
GP0B310 0 0.10 0.90 0
GP0B010 0.10 0 0.90 0
GP0B320 0 0.20 0.80 0
GP50B35 0 0.05 0. 95 1
GP50B310 0 0.10 0.90 1
GP50B320 0 0.20 0.80 1
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(Gibco) medium supplemented with 10% FBS, 50 units/
ml penicillin, 50 units/ml streptomycin, 5% CO2, and the 
medium changed every day. Cells were then trypsinized to 
create a suspension of individual cells. The scaffolds were 
previously immersed in 70% ethanol, washed with PBS, and 
exposed to ultraviolet (UV) radiation overnight before the 
3D culture of cells. 96 h after placing the suspension on 
the scaffold, the cells were fixed. For 1 h, the samples were 
immersed in 2.5% glutaraldehyde solution (Merck). The 
dehydration process uses alcohol with percentages of 10, 
30, 70, 90, and 100%. Finally, the scaffolds were dried under 
the hood, exposed to dry air, and then covered with gold for 
vacuum SEM testing.

Cell Viability

We evaluated the cellular compatibility of synthesized 
bioactive glass and scaffolds containing them 1, 3, and 
5 days after culture using the Calorimetric Method of 3- 
(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium Bro-
mide (MTT). Bioglass extract (10 mg/ml) was added to cells, 
or scaffolds were used to culture the cells. So, 4 × 104 cells 
were placed on each scaffold and incubated at 37 °C and 5% 
CO2. Incubation was conducted for four hours with 200 μl 
of MTT solution at each interval. The crystals are then dis-
solved in the dimethyl sulfoxide (Merck) after removing 
the culture medium. Using the Expert 96 microplate reader 
(Asys Hitch, Ec Austria), we determined the amount of light 
absorption at 570 nm.

Investigation of Gene Expression

Following 14 and 21 days of induction of endometrial 
stem cells with osteogenic media on two-dimensional and 

three-dimensional tissue culture plates, qRT-PCR was 
used to measure the levels of Runx2, osteocalcin (OC), 
and osteopontin (OP) in the cultures. RNeasy Plus Mini 
Kit (Qiagen) was used for RNA extraction, and Easy 
cDNA Synthesis Kit (Cat.No.A101161) was used for 
complementary DNA synthesis. Real-time PCR analysis 
was performed to determine relative gene expression. In 
each PCR, 13 Power SYBRH Green PCR Master Mix (ABI 
PRISM, 4368702) was mixed with 12 ng cDNA and spe-
cific primers in a total volume of 20 μl. Table 3 lists the 
primer sequences designed and the temperatures for every 
gene observed during this reaction. In order to analyze the 
relative gene expression, we used the comparative method 
of Ct, 2−ΔΔCt Ct. Ct values from the target genes were nor-
malized to β-2-microglobulin (B2M) and calibrated with 
undifferentiated hEnSCs. A minimum of three independent 
experiments were conducted in each experiment, and the 
tests were repeated with the RiaGene6000 Qiagen.

Alkaline Phosphatase Activity

ALP activity was determined by converting p-nitrophenyl 
phosphate to p-nitrophenol and phosphate on days 7, 14, 
and 21 using a commercial kinetics kit (Pars Azmoun, 
Iran). A spectrophotometer measured the absorption 
change at 405 nm at 37 °C. For statistical analysis, all tests 
were repeated three times (n = 3), and SPSS software was 
used. A t-test was used to determine whether there was a 
significant difference between groups. A p-value of less 
than 0.05 was considered significant.

Table 3   Primers used in qRT-PCR

B2M NM_004048.4 Homo sapiens beta-2-microglobulin 
(B2M)

Forward primer CCA​CTG​AAA​AAG​ATG​AGT​ATG​CCT​ 126 bp 60 °C
Reverse primer CCA​ATC​CAA​ATG​CGG​CAT​CTTCA​

RUNX2 NM_001278478.2 Homo sapiens RUNX family tran-
scription factor 2 (RUNX2)

Forward primer TAG​GCG​CAT​TTC​AGG​TGC​TT 105BP 60 °C
Reverse primer TGC​ATT​CGT​GGG​TTG​GAG​A
Osteocalcin OC NM_199173.6 Homo sapiens bone gamma-carbox-

yglutamate protein (BGLAP)
Forward primer CCT​CAC​ACT​CCT​CGC​CCT​ATT​ 250 bp 60 °C
Reverse primer GGT​CAG​CCA​ACT​CGT​CAC​A

Osteopontin OP NM_000582.3 Homo sapiens secreted phosphopro-
tein 1 (SPP1)

Forward primer GCC​GAG​GTG​ATA​GTG​TGG​TT 149 bp 60 °C
Reverse primer AAC​GGG​GAT​GGC​CTT​GTA​TG
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Statistical Analysis

SPSS software was used for statistical analysis. Statistical 
differences between groups were assessed by analytical com-
parisons and analysis of variance. Statistical significance 
was considered in probability values of p < 0.05.

Results

Inductively Coupled Plasma Optical Emission 
Spectrometry (ICP‑OES)

The presence and homogeneous distribution of all expected 
elements in the structure of bioactive glass, which includes 
Si, Na, P, Ca, and Li, is given in Table 4. The resulting mass 
results are the result of ICP-OES measurements, which show 
a relatively good agreement between the compositions of all 
prepared bioactive glass and the designed bioactive glass.

X‑Ray Diffraction Analysis (XRD)

The XRD spectra before and after immersion of bioac-
tive glasses in SBF are shown in Fig. 1. The wide peaks 
in (Fig. 1a and b) indicate the amorphous structure of the 
synthesized glass prior to SBF exposure. The appearance of 
peaks at 2θ = 25.8° and 2θ = 31.89° indicates the formation 
of crystalline hydroxyapatite (HCA) on the surface of the 
bioactive glass after seven days of immersion in SBF. How-
ever, with the increasing amount of lithium in the structure 
of bioactive glass, the intensity of peaks has decreased.

Antibacterial Properties

The antibacterial activity of bioglasses with different per-
centages of Li2O against Escherichia coli (gram-negative) 
and Staphylococcus aureus (gram-positive) as a zone of inhi-
bition of bacterial growth is shown in Table 5. Examination 
of the growth inhibition zone of bacteria in both types shows 
an increase of the inhibitory zone up to 3% wt (B3) and then 
a decrease in 5% wt of Li2O (B5) in the structure of bioactive 
glass. Therefore, B3 contains in terms of optimal antibacte-
rial properties.

Morphology and Cell Attachment (SEM)

Examination of SEM images of glass synthesized before 
immersion in SBF shows that, firstly, in all four groups, 
the synthesized nanoparticles have a size below 100 nm 
(Fig. 1c–f). Secondly, by adding lithium to the structure of 
bioactive glass, first, the morphology of the grains contain-
ing nanoparticles changed from round to plate. So, in the B3 
sample, a plate structure was observed. But again in the B5 
sample, the morphology of grain returns to spherical. Also, 
microstructure images of pure gelatin scaffolds in which 
prepared by solving 5, 7.5, and 10% wt/v of gelatin in water 
showed that scaffolds prepared with 5% wt of gelatin, have 
homogeneous pore size, higher porosity, and better intercon-
nectivity (Fig. 2a–c). Moreover, the examination of the cell 
adhesion of scaffolds by SEM revealed the proper adhesion 
of the cells on the scaffold. However, in the groups contain-
ing bioactive glass, or PRGF lonely, or in combining groups, 
more pseudopods protruded emerged. So, better cell adhe-
sion can be observed (Fig. 2e–l).

Cell Viability (MTT Assay)

The effects of bioactive glass ion extracts containing dif-
ferent amounts of lithium at 24, 72, and 120 h on endo-
metrial stem cell proliferation are shown in Fig. 3a. The 
cell survival of the control group during each period was 
higher than the experimental group. However, with increas-
ing the amount of lithium in the structure of bioactive glass 
up to 3% wt (B3), cell survival is significantly increased 
but decreased in B5, which contains 5% wt. These observed 
trends are valid in all time intervals. Also, cytotoxicity has 
been reduced by increasing the time of exposure of cells to 
bioactive glass extracts. Therefore, in this study, considering 
the results of cytotoxicity and antibacterial properties, B3 
was selected as the bioactive glass with the optimal amount 
of lithium. Hence, B3 was used to prepare nanocomposite 
hybrid scaffolds.

Also, the cell viability results of gelatin/PRGF/lithium-
doped bioactive glass scaffolds at similar time intervals 
are shown in Fig. 3b. Similarly, it is observed here that the 
cell survival rate on all scaffolds and at all-time intervals is 
lower than in the control group. However, adding bioactive 
glass, or PRGF, led to a significant increase in cell viability 

Table 4   Measured compositions 
of bioactive glass nanoparticles 
in wt% determined by ICP-OES

Sample code Weight percentage of elements

Si Ca Na P Li

B0 44.2 ± 0.10 24.1 ± 0.08 24.8 ± 0.16 6.9 ± 0.23 0
B1 45.9 ± 0.15 24.6 ± 0.17 22.1 ± 0.25 6.3 ± 0.27 1.1 ± 0.09
B3 45.6 ± 0.07 23.7 ± 0.14 21.3 ± 0.31 6.2 ± 0.18 3.2 ± 0.22
B5 45.3 ± 0.2 23.1 ± 0.11 19.8 ± 0.23 7.1 ± 0.08 4.7 ± 0.10
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compared to scaffolds of neat gelatin. Furthermore, samples 
containing 10% by weight of bioactive glass B3 have higher 
cell survival than samples containing 20% by weight of B3. 
Therefore, the optimal amount of B3 in the structure is 10% 
wt. moreover, the addition of PRGF has led to an increase in 
cell viability. Also, comparing the results of scaffolds con-
taining 10% of bioactive glass B0 and B3 (GP0B010, and 
GP0B310) also indicates the positive effect of lithium on cell 
survival. Moreover, comparing the results of different groups 
shows the synergistic effect of lithium-ion and PRGF in the 
scaffold in improving the survival of endometrial stem cells 
cultured on the scaffolds (especially in GP50B310).

Alkaline Phosphatase Activity

Measured values of alkaline phosphatase activity on days 7, 
14, and 21 of endometrial stem cells cultured on scaffolds 
have been presented in Fig. 4. On all days, the volume of 
ALP production (ALP activity) in hybrid nanocomposite 
scaffolds, or scaffolds containing PRGF or bioactive glass 
lonely, significantly was higher than the control group and 
neat gelatin group. Also, alkaline phosphatase in all groups 
increased significantly from day 7 to day 14 and decreased 
significantly on day 21 compared to day 14. Moreover, an 
accurate investigation of the diagram shows that bioactive 
glass had a more effect on increasing ALP activity than 
PRGF.

Gene Expression Analysis (qRT‑PCR)

qRT-PCR was utilized on days 14 and 21 to assess the 
expression of osteoblast markers, including Runx2, osteoc-
alcin (OC), and osteopontin (OP) (Fig. 5). An evaluation of 
the acquired data reveals a considerable increase in Runx2 
on day 14, followed by a drop on day 21 in scaffolds contain-
ing Li-doped bioactive glass. In addition, a comparison of 
the effects of Li-doped bioactive glass and PRGF on Runx2 
expression reveals a statistically significant difference and a 
larger effect of bioactive glass in increasing the expression 
level of Runx2. Moreover, osteocalcin (OC) and osteopontin 
(OP) expression levels on day 21 were higher than on day 
14. Comparatively, a closer examination reveals that PRGF 
was more successful at boosting osteocalcin (OC) and osteo-
pontin (OP) levels than Li-doped bioactive.

Mechanical Properties and Tg Measurements

The results related to the measurement of compressive prop-
erties and glass transition temperature of scaffolds, as well 
as their porosity, are given in Table 6. The results show a 
significant increase in modulus with an increasing amount of 
bioactive glass. However, only increasing the amount of bio-
active glass up to 10% wt has increased the strength, but the 

sample containing 20% wt of bioactive glass has decreased. 
Also, there is no discernible trend in the strain at break. In 
addition, the glass transition temperature increased slightly 
as the amount of bioactive glass in the structure increased. 
However, the presence of PRGF did not affect the mechani-
cal properties and Tg of the samples.

Discussion

More than 200 million individuals worldwide have osteo-
porosis, a disease characterized by a reduction in bone min-
eral density. The main factors that induce bone deteriora-
tion in the world are obesity, genetic disorders, accidents, 
and aging [67]. Despite being the gold standard in treat-
ing bone lesions, autografts are not always used because of 
limitations, shortage of access, and mortality rates. Immune 
response and disease transmission are also stimulated by 
allografts [68, 69]. Hence, novel treatment approaches 
including tissue engineering, find emerging applications in 
bone repair. Tissue engineering research focuses on building 
scaffolds to support bone cells and encouraging and differ-
entiating osteoblasts to regenerate bone. From a histological 
standpoint, bone tissue is a natural combination of biocer-
amic and polymer phases, principally apatite and collagen 
[70]. Therefore, nanocomposite polymer hybrid scaffolds 
have tremendous potential for bone tissue engineering [71, 
72]. Porous 3D polymeric Nanocomposite scaffolds have 
been repeatedly reported to provide a suitable matrix for 
connecting and expanding different cell types [73]. In this 
group of scaffolds, gelatin stands out polymer because of its 
high cell adherence, low cost, and good blending abilities 
[31, 74]. Also, bioactive glasses are bioactive inorganic bio-
materials that have been widely studied. These glasses are 
highly bioactive and have the capability that bonds with hard 
and soft tissues [75]. Gelatin/bioactive glass nanocomposites 
are usually bioresorbable scaffolds. Reviewing the in vitro 
degradation data of gelatin/bioactive glasses nanocompos-
ites with different bioactive glasses showed that about 30% 
of the scaffolds' mass is resorbed at least 2 weeks after being 
put in SBF [76, 77]. Furthermore, in an in vivo study, little 
degradation was observed two weeks after implantation. The 
degradation time, however, correlated well with the regen-
eration time of new bone [78]. Releasing alkaline ions (like 
Ca2+ and Na+) from bioactive glass and letting them dissolve 
neutralizes acidic byproducts of polymer degradation and 
slows down autocatalytic degradation [79]. The degrada-
tion times of lithium-doped bioactive glass nanocomposites 
may be slightly longer due to the densification of bioactive 
glass by lithium. Lithium doping in bioactive glass stimu-
lates bone growth and inhibits its resorption, also giving it 
antibacterial properties [80].
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Also, growth factors have also been shown to be crucial 
in the healing procedure of damaged tissues. Since platelet-
derived extracts, especially plasma rich in growth factors 
(PRGF), are good sources of them. Therefore, in this work, 
PRGF has also been used in the scaffolding structure [58]. 
The main novelty of the present study is that we induced 
promising osteogenic differentiation in endometrial stem 
cells by combining PRGF's growth factors and lithium 
simultaneously. This research also compares the effective-
ness of each component on each osteogenic biomarker. Bio-
active glass has been synthesized using the sol–gel method 
in this research. Since this approach produces nanostructured 
bioactive glass [81]. The good compliance of ICP results 
with the designed formulations (Table 4) can indicate that 
the sol–gel method was a suitable method for their synthesis. 
These results may be due to the differing sizes and electrical 
charge densities of sodium and lithium ions when replaced 
in the bioactive glass structure. Li-doped bioactive glasses 
have also shown densification caused by this change [82].

The amorphous structure of bioactive glasses has been 
proved in their XRD spectra before exposure to SBF 
(Fig. 1a). Additionally, the presence of characteristic HCA 
peaks (2θ = 25.8° and 2θ = 31.89°) after seven days of 
immersion in SBF may indicate that the synthesized glass 
is bioactive, and the reduction of HCA-related peaks may 
reflect the compactness of the structure of the bioglass due 
to the presence of lithium (Fig. 1b).

Antibacterial results and cell viability evaluation of bio-
active glass B0, B1, B3, and B5 show that the presence of 
lithium-ion in the structure of bioactive glass (up to 3% wt) 
is beneficial against both Staphylococcus aureus (gram-pos-
itive) and Escherichia coli (gram-negative) bacteria as well 
as cell survival (Table 5 and Fig. 3a). As far as mentioned 
above, High-energy traumas may cause open fractures that 
may lead to fracture-related infections (FRI) [40, 41]. Also, 
it has been reported that the vast majority of the cases of 
bone infections are due to different types of Staphylococ-
cus aureus as a gram-positive bacteria [83, 84]. Moreover, 
amongst gram negatives, Escherichia coli can cause bone 
infection [85, 86]. Both of them are considered to cause 
hospital-acquired infections and can cause osteomyelitis 
[87–90]. So, B3, and its composites can be assumed as suit-
able choices for bone regeneration especially in open flaps. 
Hence, its antibacterial function against hospital-acquired 
infections can improve its potential clinical application [91, 
92].

Chemical-potential changes and pH changes lead to 
ion-channels function variations in bacteria and endome-
trial stem cells. These changes may have caused the afore-
mentioned trend [37]. Other researchers have established 
that the ideal concentration of lithium in bioactive glass for 
antibacterial activities and cell survival is in the range of 
2.5–5% wt. Therefore, there is a good agreement between 
the results of this research and their results [35, 93]. Accord-
ingly, in this study, B3 (as the optimized bioglass) was used 
to prepare hybrid scaffolds. In this study, sponge scaffolds 
were prepared by freeze-drying. The appropriate size and 
regularity of cavities, as well as their interconnectivity, are 
crucial parameters for preparing scaffolds [94]. According to 
the above criteria, 5% wt of gelatin was the optimal amount 
for making scaffolds. Comparing the size of the cavities of 
the synthesized scaffolds (near to 200 µm) with bone and 
stem cells (less than 20 µm) demonstrates the appropriate 
size of the formed scaffolds for cell homing. Additionally, 
SEM images of cell adhesion to scaffolds also demon-
strated proper adhesion. Images showed that bioactive glass 
improved cell adhesion which may be due to the interaction 
between the HCA layer created by the bioglass and cell sur-
face proteins, such as fibronectin and vitronectin. Cell adhe-
sion is also affected by calcium, silicon, and lithium ions, 
especially calcium ions [95–100]. Furthermore, increasing 
the scaffold structure's modulus due to bioactive glass's pres-
ence may improve cell adhesion [101].

Also, scaffolds containing PRGF showed better cell adhe-
sion, possibly because of playing a crucial role of growth 
factors in the structure of PRGF, especially platelet-derived 
growth factors (Fig. 2e–l) [12, 70]. Other researchers have 
confirmed these findings [102, 103]. There is much interest 
today in using PRGF for bone repair in dentistry applica-
tions [104].

MTT results confirm this trend in cell adhesion. Also, 
reduced cell survival in scaffolds relative to controls may 
be attributed to the very small amount of residual glutaral-
dehyde in scaffolds structure or high ions concentrations of 
bioglasses [105, 106].

It has also been observed that cell viability depends on 
peripheral ions, especially lithium-ion, and samples with 
20% wt of bioactive glass have a lower survival rate than 
samples with 10% wt. However, lithium increases cell sur-
vival throughout the all-time intervals, a trend that can be 
attributed to the activation of the wnt signaling pathways 
and the wnt/β-catenin signaling pathway [107]. In addition, 
the increase in cell survival rate with PRGF in the structure 
can also be attributed to the presence of TGF- β, PDGF, and 
IGF [108, 109].

The primary marker of osteoblasts, alkaline phos-
phatase, is a membrane enzyme that hydrolyzes phosphate 
ions, allowing the formation of hydroxyapatite crystals and 
stimulating mineralization. ALP plays a crucial role in bone 

Fig. 1   XRD patterns, and SEM images of bioactive glasses. XRD 
patterns of the Li-doped bioactive glasses before (a) and after (b) 
immersion in SBF for 7 days (7D). The marked crystalline peaks in 
(b) indicate HCA. SEM images of bioactive glasses before immersion 
in SBF, c B0, d B1, e B3, f B5. Changes in grains morphology by 
adding lithium to their structure can be seen obviously

◂
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regeneration and differentiation [110]. Compared to pure 
gelatin scaffold, Li-doped bioactive glass, PRGF, and a 
combination group showed a substantial increase in ALP 
activity with increasing culture time. ALP plays a role in 
ECM maturation, and the presence of bioactive components 
in scaffolds can enhance its production and activity [111]. 

Cell differentiation, bone protein expression, and ALP syn-
thesis are affected by bioactive glass nanoparticles. Further-
more, researchers describe bioactive glass nanoparticles as 
bone differentiation factors due to the high concentration 
of silicate ions in their composition [112]. However, the 
presence of lithium-ion is also very effective in improving 
bone differentiation and increasing ALP activity due to its 
proven effect in activating wnt and wnt/β-catenin signaling 
pathways [113–115]. Also, BMP-2, IGF, and TGF-β that 
are found in the PRGF in the scaffolds structure enhance 
the activity of ALP [116, 117]. Although, the results show 
that the role of bioactive glass in increasing ALP activity is 
more significant.

At 14 and 21 days, OC and OP proteins, and the tran-
scription factor Runx2, which are primary biomarkers of 
bone formation, were examined. Osteocalcin is the primary 
non-collagenous protein, which is formed 1–2% of the total 
content of matrix proteins. It promotes mineralization and is 
commonly expressed in calcified bone and cartilage, whereas 

Table 5   Antibacterial properties of synthesized bioactive glass nano-
particles

Sample code Zone of Inhibition (mm)

Escherichia coli Staphy-
lococcus 
aureus

B0 12 11
B1 14 13
B3 18 16
B5 13 12

Fig. 2   SEM images of neat gelatin scaffolds prepared by differ-
ent content of gelatin, and human endometrial stem cells (hEnSCs) 
attachment on scaffolds. SEM images of neat gelatin scaffolds con-
taining a 5% wt/v, b 7.5% wt/v and c 10% wt/v of gelatin in water. 
Regularity and interconnectivity is higher in (a). Stem cells have 

shown good attachment on scaffolds, especially those containing 
bioactive glass and PRGF or both of them. d GP0B30, e GP0B35, 
f GP0B310, g GP0B320, h GP50B30, i GP50B35, j GP50B310, k 
GP50B320, l GP25B30, m GP0B010
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Runx2 is a major transcription factor for osteoblast differen-
tiation [20, 118, 119]. Osteogenesis is committed by mul-
tiple cytokines, hormones, and signaling cascades e.g. wnt 
and β-catenin [120, 121]. In particular, Runx2 plays a critical 
role in osteoblast differentiation by expressing osteoblasto-
genic markers like ALP, OC, and OP [122]. Runx2 is also 
known to modulate the transcription of mineralizing genes 
[123]. Runx2 has been shown to have a vital role to convert 
human fibroblasts into functional osteoblasts [124]. Various 
stimuli can also affect Runx2 post-translationally through 
phosphorylation, ubiquitination, and acetylation [125]. The 
level of Runx2 rises when osteoblasts are immature and 
decrease when they mature. In osteoblast maturation, its 
down-regulation may be beneficial [126]. By expressing 
transcription factors and bone matrix proteins, Runx2 has an 
autoregulatory mechanism [127]. Indeed, Runx2 controlled 

Fig. 3   Cell viability (MTT) results of bioactive glasses and scaffolds 
in 24, 72, and 120  h. a B3 shows higher cell viability comparing 
other bioglasses in all time intervals. b Cell viability significantly is 

higher in GP50B310 than all other scaffolds (p-value = p, *p < 0.05, 
**p < 0.01, *** p < 0.001)

Fig. 4   ALP activity of results in 7, 14, and 21 Days. Li-doped bio-
glass, and PRGF both increase ALP activity. Although bioactive glass 
is more effective in increasing ALP activity (p-value = p, * p < 0.05, 
**p < 0.01, ***p < 0.001)

Fig. 5   Gen expression of results in 14, and 21 Days. Li-doped bioglass increased Runx2 drastically, but PRGF is more effective in increasing 
OC, and OP expression (p-value = p, *p < 0.05, **p < 0.01, ***p < 0.001)
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ALP promoter activity, establishing a positive feedback loop 
between ALP and Runx2 that controlled osteoblast develop-
ment [122]. Also, in this research, the similarity of trends 
in ALP-activity results and Runx2 expressions on day 14 
and day 21 was observed. Therefore, these investigations 
help explain the trends in ALP activity and Runx2 that have 
been noticed.

Also, OP affects osteoblast, and osteocyte adhesion 
and differentiation [128]. For 21 days, mRNA expression 
increased in all experimental groups. It is important to note 
that both OC and OP proteins indicate mineralization poten-
tial. However, OP protein was more expressed in this study 
than OC protein. Also, the presence of lithium-containing 
bioactive glass also increased drastically in Runx2. This 
trend may be owing to the synergistic action of lithium-ion 
and other ions (particularly Si ion) in bioactive glass, as 
well as lithium's activation and boosting of the Wnt signal-
ing pathway, which increases Runx2 expression [129–131]. 
Like ALP activity, bioactive glass nanoparticles and PRGF 
increased OC and OP protein expression. PRGF growth fac-
tors increased OP and OC expression higher than Li-doped 
bioactive glass. The autocrine effect of PRGF's growth fac-
tors may explain the observed trend [132]. OC and OP pro-
teins and Runx-2 transcription factors were more abundant 
in the hybrid sample containing both bioactive components. 
Lithium can also stimulate stem cells to secrete exosomes, 
affecting tissue repair [133]. In addition, since blood plasma 
is one of the main sources of exosome extraction, it seems 
that one of the main factors affecting the improvement 
of bone regeneration in this research is the presence of 
exosomes in PRGF [134–139].

Differentiation towards a bone category is significantly 
affected by the modulus and stiffness of the scaffold. 
According to the mechanical properties test, the presence 
of bioactive glass leads to a continuous increase in modulus 
due to its stiffness over gelatin. It is found that their strength 
only increases up to 10% wt of bioactive glass. This can be 
attributed to a lack of homogeneity and agglomeration of 
bioactive glass in the structure of the resulting nanocom-
posites, leading to stress concentration and early failure of 
the samples. The fluctuation trend of strain at the breaking 
point is also related to failure mechanics due to compression 

and separation of small parts from the specimens during 
the compression process, which lead to stress concentra-
tion and early failure [140]. Increases in glass transition 
temperature with increasing amounts of bioactive glass can 
be explained by inhibiting the mobility of gelatin polymer 
chains by bioactive glass nanoparticles. PRGF has minimal 
effect on mechanical behavior and glass transition tempera-
ture due to the small amount of growth factor small mol-
ecules it contains compared to gelatin polymer. Furthermore, 
the decreased porosity of structures prepared with increased 
bioactive glass may also be attributed to the formation of 
wholly closed cavities in bioactive glass [56].

Conclusion

In this research, new hybrid nanocomposites based on gela-
tin/PRGF/Li-doped 45s5 bioactive glass nanoparticles were 
prepared by freeze-drying method. Characterization of the 
synthesized bioactive glass showed that adding 3% wt of 
lithium to the structure of the 45s5 bioactive glass prepared 
by the sol–gel method optimizes its biocompatibility and 
antibacterial properties. Also, interestingly, it was observed 
that lithium has antibacterial properties against both gram-
positive and gram-negative bacteria. Also, the presence of 
bioactive glass and PRGF alone or in combination improves 
cell viability and cell adhesion. However, the optimal 
amount of bioactive glass in the scaffold structure is 10% wt, 
and cytotoxicity increases by 20% wt. Also, the synergistic 
effects of lithium ions and silicon ions can cause a signifi-
cant increase in ALP activity and Runx-2 expression. While 
the growth factors in PRGF mainly increase the expression 
of OP and OC genes. In addition, the presence of bioactive 
glass increases the modulus and Tg of scaffolds. While the 
presence of growth factor had little effect on the mechanical 
properties and Tg. basically, it seems that the hybrid scaffold 
used was able to create the survival of endometrial stem cells 
and their adhesion to the surface and cause their osteogenic 
differentiation. Finally, a general review of the results of this 
study suggested that the strategy used in this study includes 
combining bioactive glass as a bone-inducing mineral phase, 
gelatin as a biocompatible polymer, PRGF as a source of 

Table 6   Mechanical properties, 
Tg, and porosity of scaffolds

Sample code Mechanical properties Tg (°C) Porosity (%)

Strength (MPa) Modulus (MPa) Max. strain (%)

GP0B30 1.34 ± 0.17 5.11 ± 0.23 40.17 ± 12.31 61.8 96.4 ± 1.3
GP50B30 1.35 ± 0.22 4.97 ± 0.28 26.25 ± 3.2 60.7 96.5 ± 1.7
GP0B35 1.94 ± 0.27 11.43 ± 0.45 27.45 ± 3.37 63.4 94.1 ± 0.8
GP0B310 2.69 ± 0.4 18.17 ± 0.38 18.88 ± 4.81 67.3 92.6 ± 1.2
GP50B310 2.64 ± 0.38 18.19 ± 0.58 26.16 ± 2.23 67.5 91.9 ± 0.5
GP0B320 2.61 ± 0.61 23.58 ± 0.87 12.61 ± 2.13 70.9 90.9 ± 0.6
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growth factor, and lithium-ion as a bone-inducing agent as 
well as an antibacterial agent can be considered as a good 
approach to repair bone lesions.
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