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ABSTRACT
Objectives  To assess the effectiveness of Neuroaspis 
plp10 nutritional supplement when added to interferon 
(IFN)-β treatment in patients with relapsing-remitting 
multiple sclerosis (RRMS).
Design  A 30-month phase III multicentre, randomised, 
double-blind, placebo-controlled trial. Randomisation 
stratified by centre using a computer-generated procedure 
with Neuroaspis plp10 versus placebo in 1:1 ratio. The 
first 6 months were used as both the pre-entry and 
normalisation period.
Setting  3 teaching hospitals in Greece and 1 Neurology 
Institute in Cyprus.
Participants  61 patients with RRMS on IFN-β were 
randomly assigned to receive Neuroaspis plp10 (n=32) or 
placebo (n=29), 20 mL, orally, once daily, for 30 months.
Intervention  Neuroaspis plp10, a cocktail mixture, 
containing specific PUFA (12 150 mg) and γ-tocopherol 
(760 mg) versus virgin olive oil (placebo).
Main outcome measure  The primary end point was the 
annual relapse rate (ARR) whereas the secondary ones were 
the rate of sustained progression of disability, as measured by 
the Expanded Disability Status Scale (EDSS) and the brain T2 
and gadolinium-enhancing lesions, at 2 years.
Results  For the intention-to-treat analyses Neuroaspis 
plp10 significantly reduced the ARR by 80%, (RRR, 0.20; 
95% CI: 0.09 to 0.45; p=0.0001) and the risk of sustained 
progression of disability by 73% (HR, 0.27; 95% CI: 0.09 
to 0.83; p=0.022) versus placebo, at 2 years. The number 
of T1 gadolinium-enhancing lesions and the number of 
new/enlarged T2-hyperintense lesions were significantly 
reduced (p=0.01 and p<0.0001, respectively). Both T1-
enhancing and new/enlarging T2-hyperintense lesions 
were significantly reduced (p=0.05 and p<0.0001, 
respectively). No significant adverse events were reported.
Conclusions  Neuroaspis plp10 added to IFN-β was 
significantly more effective than IFN-β alone in patients 
with RRMS.
Trial registration number  ISRCTN06166891.

INTRODUCTION
Relapsing-remitting multiple sclerosis 
(RRMS) is characterised by the development 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Eicosapentaenoic acid/docosahexaenoic acid (ome-
ga-3) and linoleic acid/γ-linolenic acid (omega-6) 
specific structural essential oil molecules are known 
for many years for their properties and relation to 
the biomechanisms involved in autoimmune, in-
flammatory, neurodegenerative chronic diseases 
but without real proof of significant efficacy.

	⇒ Most patients prefer using supplementary and or 
alternative medical products because the existing 
disease-modifying therapies are associated with 
side effects and limited efficacy.

WHAT THIS STUDY ADDS
	⇒ This is the first well-studied formulation (Neuroaspis 
plp10) based on specific nutritional essential oil 
molecules and specific vitamins that have been 
tested by different clinical studies, now with a small 
randomised, double-blind phase III trial and espe-
cially through a robust well-defined protocol.

	⇒ For the first time, a nutritional formulation has been 
proved to promote significantly reduced annual re-
lapse rate and the risk of sustained disability pro-
gression, supported by MRI findings and without any 
serious side effects.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study might affect the overall practice and poli-
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of inflammatory lesions in the central nervous system 
(CNS), resulting in demyelination and axonal loss.

Many different dynamic processes are involved and 
simultaneously coordinated for MS pathogenesis. Oligo-
dendrocytes, the myelin-forming cells of the CNS, are 
target cells in the pathogenesis of MS, but the exact aeti-
ology is unknown. Pathological mechanisms that seem 
to be involved in MS include immune-mediated inflam-
mation, oxidative stress and excitotoxicity.1 These mech-
anisms can potentially contribute to oligodendrocyte 
and neuronal damage and cell death, leading to disease 
progression.

Polyunsaturated fatty acids (PUFAs), such as the 
omega-3 eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA), are the most abundant structural 
components of the neural tissue and play a fundamental 
role in the development and the proper functioning of 
the nervous system. The PUFA composition of membrane 
phospholipids are involved in a variety of cellular and 
multicellular processes, including inflammation and 
immunity, with implications to diseases such as MS. The 
fatty acid composition of phospholipids determines the 
biophysical and functional characteristics of the cellular 
membranes such as ‘fluidity’, transport, polarity and plays 
an important role in cellular integrity and intracellular 
and intercellular communication.2

PUFA and antioxidant deficiencies have been reported 
in patients with MS.3 Both antioxidants, vitamin E and 
γ-tocopherol are efficiently implicated in trapping reac-
tive oxygen and nitrogen oxide radicals,4 respectively, and 
both exert non-antioxidant properties, including modu-
lation of cell signalling, regulation of specific gene tran-
scription, modulation of immune function and induction 
of apoptosis.5 6

In vitro, in vivo and ex vivo studies have demonstrated 
that diet EPA/DHA omega-3 and omega-6 linoleic acid 
(LA)/γ-linolenic acid (GLA) may be implicated and 
modulate many of the known complex pathways in 
MS pathophysiology. Anti-inflammatory properties of 
omega-3 and omega-6 PUFAs include competitive inhibi-
tion of arachidonic acid (AA) and its metabolites that can 
be involved in promoting inflammation7; they promote 
production of anti-inflammatory prostaglandins, throm-
boxanes and can inhibit production of proinflamma-
tory cytokines8; they promote reduction of the level of 
the proinflammatory interleukin-1, interleukin-1-α and 
tumour necrosis factor.9 10 They have also been reported 
to produce lipoxins and modify the cytoskeletal compo-
nents, thereby inhibiting the ability of leucocytes for 
migration.11 12 Omega-3 PUFAs inhibit the expression 
of the nuclear transcription factor, κ-B that is involved 
in the production of inflammatory cytokines, chemok-
ines and various adhesion molecules with crucial roles 
in MS.13–15 Resolvins and protectins are derived from 
omega-3 PUFAs through lipooxygenase-mediated mecha-
nisms16 17 and promote control of inflammation in neural 
tissues by activating G-protein-coupled receptors,18 inhi-
bition of neutrophil, reduction of tumour necrosis factor 

expression, interferon (IFN)-α production and T-cell 
apoptosis.17 In vitro, T-cell proliferation in acute and 
chronic inflammation can be reduced by supplementa-
tion with either omega-6 or omega-3 PUFA.19 Further-
more, DHA prevented dendritic cell maturation and 
CD4+ T cell stimulation and differentiation, in an animal 
model of MS.20

Culture cell-line experimental studies report that cyclo-
oxigenase-2 participates in the formation of electrophilic 
fatty acid derivatives of the omega-3 fatty acids in activated 
macrophages21 which in turn are implicated in the activa-
tion of the nuclear respiratory factor 2 that induces the 
transcription of a number of protective genes. Τhe elec-
trophilic fatty acids activate the peroxisome proliferator-
activated receptor (PPAR)γ for anti-inflammatory 
response. Omega-3 PUFAs and their eicosanoid deriva-
tives are thought to possess strong PPAR-α-agonist prop-
erties on T cells in humans. This event has been shown to 
be neuroprotective in experimental animal models.22–24

Animal studies report that retinol X receptor (RXR)γ 
is a positive regulator of the endogenous oligodendro-
cyte precursor cell differentiation and remyelination.25 
EPA and DHA have neuroprotective effects, are endog-
enous ligands of RXRs and PPAR and have been found 
to increase neurogenesis in old rats.26 27 DHA may block 
depolarisation-induced increased glutamate efflux and 
the activation of glutamate receptors leading to excito-
toxicity, partly through inhibition of voltage-sensitive Na+ 
and Ca2+ channels.28 In vitro, omega-3 PUFAs have been 
shown to prevent neuronal accumulations of Ca2+, which 
can trigger a destructive cellular cascade of events that 
leads to neuronal damage and death.28 In vitro, omega-6 
PUFAs can alter the function of oligodendrocytes by 
affecting their membrane composition.29 Membrane 
depolarisation affects protein phosphorylation of myelin 
basic protein in oligodendrocytes, an important event 
in myelination.30 DHA is reported as neuroprotective 
against excitotoxicity, inflammation and oxidative stress.28 
Recent data report that dietary intake of a preformed 
DHA supplement is more effective in reaching the brain 
and achieving neuroprotection in an animal model of 
PD.31 PUFAs might also interfere with the production of 
certain matrix metalloproteinases that can be the cause of 
disruption of the brain–blood barrier,32 but they can also 
stimulate the production of molecules involved in myelin-
ogenesis.33 Thus, the action mechanisms of the omega-3 
PUFAs may most likely be considered as holistic, multi-
factorial and may be related to a number of cellular and 
molecular effects in CNS.

At present, agents used in MS seem to be partially effec-
tive and lack remyelinating and significant neuroprotec-
tive properties. Moreover, severe side effects have been 
reported to be associated with current RRMS treatments.34

The increasing incidence and prevalence of MS and 
the long-term sequelae of the disease urges the need 
for the development of new treatments to prevent 
activity and disability progression in patients with this 
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condition. Based on the above research findings, the 
afore-mentioned specific dietary antioxidants and 
specific omega-3 and omega-6 PUFA fulfil the biological 
criteria and have the potential to affect disease activity 
and progression.1 35 36 The inconsistent data available 
from clinical trials performed to date on PUFA dietary 
interventions as complementary therapies for MS are 
the result of several notable limitations including supple-
ment optimal dosing, design and selection of outcome 
measures.37 38

In 2013, we have published the results of a proof-of-
concept clinical trial39 based on a dietary cocktail formula 
preparation using the exact same ingredients, formula-
tion and dosing as now named ‘Neuroaspis plp10’ dietary 
intervention, with promising outcome and statistically 
significant; reducing the annual relapse rate (ARR) and 
the risk of sustained disability progression. With this study, 
we are reporting the results of a phase III, multicentre, 
double-blind, randomised, placebo-controlled clinical 
trial of efficacy and safety, the MINERAL Study, using the 
Neuroaspis plp10 dietary supplement.

METHODS
Patients
According to the study protocol, for a two-sided type I 
error (α) of 0.05 and 80% power with a possible 35% 
dropout, 220 patients (110 per treatment arm) would 
be needed to be enrolled. That power calculation incor-
porates a Bonferroni adjustment in order to account 
for there being two primary end points. The sample 
size is based on the efficacy of IFNs on the MRI lesions 
and assumes that plp10 will reduce a 2-year percentage 
of patients with disease progression by 60%. Finally, it 
assumes that the time to disability progression will be 
analysed via the Cox proportional hazards model.

However, during the enrolment process, changes in the 
international clinical practice guidelines made it difficult 
to enrol patients in accordance with the study protocol. 
Thus, a post-hoc power calculation was performed in order 
to readjust the study sample size based on the current 
enrolment rate and using the ARR as the model input. 
Assuming an ARR for the intervention group equal to 0.4 
and for the control group equal to 1.04, 27 patients per 
group would be required in order to achieve 80% power 
for a two-sided type I error (α) of 0.05 based on a Poisson 
model.39 40 Out of 61 eligible patients, 32 patients were 
randomly assigned to receive Neuroaspis plp10, a cocktail 
mixture of specific PUFA and γ-tocopherol and 29–205 
receive placebo from January 2016 to 31 December 2018. 
The first 6 months for each enrolled patient was used as 
the normalisation period, while the rest 24 months was 
considered as the main study duration. All patients gave 
written informed consent.

The study protocol (ISRCTN06166891) was developed 
by the investigators. Study data per patient were reported 
and filed by the assigned examining/treating physicians at 
the involved sites through the central trial data-collection 

platform designed exclusively for the trial using a specific 
confidential per site-access-code. Data from all sites were 
finally received by the independent team of statisticians 
for analyses and results.

Enrolment was limited to men and women between 
the ages of 18 and 55 years with the diagnosis of RRMS 
according to the revised 2010 McDonald criteria38; 
who had a score of 0.0–5.0 in the Expanded Disability 
Status Scale (EDSS), with higher scores indicating more 
severe disease; who had undergone MRI showing lesions 
consistent with MS; who had had at least one medically 
documented relapse within the 18 months before their 
recruitment in this study and who had been receiving 
IFN-β treatment at last for the last 6 continuous months. 
If a clinical documented relapse was reported during the 
normalisation period, the entry baseline EDSS for that 
patient was considered as the EDSS Score documented at 
least 4 weeks after the last relapse during that period. Exclu-
sion criteria were the use of prior immunosuppressant or 
monoclonal antibodies therapy, use of cytokine therapy 
in the last 3 months prior to randomisation, glatiramer 
acetate or intravenous immunoglobulins, or concomitant 
use of these treatments, pregnancy or nursing, any severe 
disease other than MS compromising organ function, 
a clinically significant infectious illness within 30 days 
prior to randomisation, history of recent drug or alcohol 
abuse, history of severe allergic or anaphylactic reactions 
or known specific nutritional hypersensitivity, consump-
tion of any additional food supplement formula (prior 
use in the 3 months preceding randomisation, of any type 
of vitamin including vitamin D, or 6 months preceding 
randomisation, of any form of PUFA, or concomitant use 
of these treatments), prior or concomitant use of statins. 
Patients with primary progressive or secondary progres-
sive disease were also excluded.

It was strongly suggested for the patients to continue 
only on the IFN-β treatment during the study duration. 
If a patient had to change disease-modifying treatment, 
then he/she was considered as a dropout, but continued 
to be medically followed.

Consumption of any additional food supplement 
formula, vitamin of any type or any form of PUFA 
supplement at any time during the trial was a reason 
for permanent discontinuation from the study. There 
were no other dietary intake restrictions. All dropouts 
continued to be medically followed and were strongly 
encouraged to remain in the study for follow-up assess-
ments even if they had discontinued the assigned inter-
vention formula. The intention-to-treat (ITT) population 
was defined as all randomised patients who had available 
data. The per-protocol population, used as a sensitivity 
analysis, was defined as all randomised patients who 
completed the follow-up without deviations from the 
protocol. All patients who transitioned from RRMS to 
secondary progressive MS, during the study period, were 
also excluded by protocol from the analysis to eliminate 
dramatic changes of increasing disability without any 
relapses.



4 Pantzaris MC, et al. BMJ Neurol Open 2022;4:e000334. doi:10.1136/bmjno-2022-000334

Open access�

Interventions
The daily oral dose of Neuroaspis plp10 dietary supple-
ment was 20 mL containing a cocktail mixture of EPA 
(about 1650 mg)/DHA (about 4650 mg)/GLA (about 
2000 mg)/LA (about 3850 mg)/total other omega-3 
(about 600 mg)/total monounsaturated fatty acids (about 
1700 mg)+total saturated fatty acids (18:0 about 160 mg, 
16:0 about 650 mg)/vitamin A (about 0.6 mg)/vitamin E 
(about 22 mg) and pure γ-tocopherol (760 mg). Subjects 
were requested to consume supplement or placebo half 
hour before dinner.

The placebo was composed of pure virgin olive oil and 
was identical in colour, smell, shape, size and package to 
the Neuroaspis plp10 and both bottled in dark bottles 
under nitrogen bed. Both interventions contained food-
grade citrus aroma (~3.5 mL) for palatability and taste 
reasons. The bottles were labelled with medication code 
numbers that were unidentifiable for patients as well as 
investigators. Both Neuroaspis plp10 and placebo were 
manufactured in Greece.

Study design, randomisation and blinding
The whole procedure followed the clinical trial guide-
lines as required by the Food and Drug Administration, 
according to the standards of the International Confer-
ence on Harmonization and the Committee for Medic-
inal Products for Human Use. The Clinical study was in 
agreement with the rules of Good Clinical Practice.

Subjects were randomly allocated into two groups per 
side to take either 20 mL dose of Neuroaspis plp10, dietary 
supplement formula or placebo for 30 months. Separate 
random scheme adopted for each centre (ie, randomisa-
tion stratified by centre). Randomisation was conducted 
by a computer-generated procedure that contained the 
two treatments in 1:1 ratio. Patients were allocated to the 
treatments according to the screening number ascending 
order.

The first 6 months were used as a normalisation period 
according to the protocol and previously published 
trial.39 This 6-month normalisation period would allow 
the interventions to exert their beneficial effect as oral 
PUFAs need 4–6 months to achieve pivotal action on 
immune and neural cells, correction of antioxidant defi-
ciencies and body PUFA redistribution, and an optimal 
normalisation of the EPA and DHA ratios.28 39 41 42 The 
study begun with patient’s enrolment on January 2016 
and it was completed on 31 December 2018. After the 
6-month ‘normalisation period’, there was a 24-month 
‘on treatment’ period, whose beginning was considered 
as the baseline.

Subjects were requested not to change their ordinary 
physical activity or dietary habits during the trial. All study 
personnel involved in the conduct of the study as well as 
the statisticians and the investigators were unaware of the 
treatment assignments throughout the study. Treating/
examining physician and patients were blinded to treat-
ment allocation.

The interventions were consumed orally every day, 30 
min before dinner by a dosage calibrated cup contin-
uously for 30 months. All participants were receiving a 
reminder at their cell phones every day at 18:00 hours. 
The adherence to the Neuroaspis plp10 treatment was 
further followed by asking patients to return the empty 
medication containers in order to be replaced on the 
appropriate preassigned date according to each patients’ 
stock (the supply was enough for 3-month consumption 
for each patient). The compliance to the IFN treatment 
was monitored and ensured internally by the patients’ 
follow-up system available in each one of the involved sites. 
Blood samples were collected from all enrolled patients 
for routine haematological and biochemical blood tests 
at enrolment, baseline, 6, 12, 18 and 24 months.

The interventions were used as supplements and adju-
vant therapies. Depending on the enrolled patient’s clin-
ical status and in accordance with common practice, they 
continued to receive their indicated regular treatment, 
with persistent evaluation for any side effects and adverse 
events.

Study procedures and end points
At each study site, one examining neurologist was desig-
nated along with one substitute for special occasions, 
when needed. Examining neurologists performed objec-
tive evaluation with the use of the EDSS. The same physi-
cian, as best as possible, maintained the role of treating 
neurologist for a given subject throughout the study and 
the same person maintained the role of examining neurol-
ogist for a given subject throughout the study. The same 
neurologists were responsible for all aspects of patient 
care, including the management of adverse events and 
the treatment of relapses. The involved neurologists were 
experienced, trained to standardise EDSS scoring proce-
dures and a common approach has been discussed and 
agreed over a teleconference meeting. The physicians 
were not in contact with patients in any other capacity.

Neurological and clinical assessments were scheduled 
at enrolment, baseline and every 6 months on treatment. 
The patients were also examined by the assigned neurol-
ogists at unscheduled visits within 48 hours after the onset 
of new or recurrent neurological symptoms (table 1).

At 2 years ‘on treatment’, primary end point was the 
ARR. A relapse was defined as new or recurrent neuro-
logical symptoms not associated with fever or infection 
that lasted for at least 24 hours and was accompanied 
by new neurological signs or worsening of pre-existing 
symptoms (that had been stable for at least 1 month). 
To constitute a confirmed relapse, the symptoms should 
be accompanied by an increase of at least half a point in 
the EDSS Score, of one point in at least two EDSS func-
tional system scores (FSS) or of two points in one EDSS 
FSS. The annualised relapse rate for each treatment 
group was calculated as the total number of confirmed 
relapses divided by the total number of the days on study, 
multiplied by 365.25. Relapses were treated with methyl-
prednisolone at a dose of 1 g intravenous per day for 3 
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days, followed by prednisone orally at a dose of 1 mg/
kg of weight per day on a tapering scheme for 3 weeks, 
according to the protocol. The key secondary end point 
was the time to confirmed disability progression, defined 
as an increase of 1.0 point on the EDSS from a baseline 
score of 1.0 or more or an increase of 1.5 or more from 
a baseline score of 0.0, confirmed after 6 months, with 
an absence of an ongoing relapse at the time of assess-
ment and with all EDSS scores measured during that time 
meeting the criteria for disability progression. The final 
EDSS Score was confirmed 6 months after the end of the 
study. Another secondary end point was the number of 
T1-enhancing lesions, and the number of new/enlarged 
hyperintense lesions on T2-weighted MRI of the brain 
scans at the end of the study in comparison to the corre-
sponding ones from the enrolment period. The neurolo-
gists were responsible for the review of any adverse or side 
effects, examined patients and made all medical deci-
sions. Patients were able to contact their corresponding 
neurologist at any time if there was any adverse event, side 
effect or allergic reaction.

MRI had been performed locally at the participating 
centres on 1.5 T scanners according to a prespecified 
protocol provided by the central reading facility (neuroim-
aging research unit, division of neuroscience, IRCCS San 
Raffaele Scientific Institute, Milan, Italy). MRI parameters 
were assessed (using central reading) at enrolment and at 
30 months (end of study). The identification of white matter 
lesions was performed by consensus of two experienced 
observers, unaware of the assigned treatment and the volume 
of the identified lesions was measured using a semiauto-
mated segmentation technique based on local thresholding 
(Jim V.7.0; Xinapse System, Colchester, UK). The following 
MRI measures were produced: number of T1-enhancing 
lesions at baseline and at end of study, T1-enhancing lesion 
volume at baseline and at end of study; cumulative number 
of new/enlarging T2-hyperintense lesions at end of study 

versus baseline; and T2-hyperintense lesion volume at base-
line and at end of study.

Serious adverse events were defined as those resulted 
in admission to hospital, cause prolonged disability or 
death, or judged as life-threatening or otherwise medically 
significant.

Statistical analysis
The p values that are reported for most baseline demo-
graphic and disease characteristics were calculated by the 
Kruskal-Wallis H test. The unadjusted relapse rate was 
calculated as the total number of relapses divided by the 
total number of patient-years followed for each treatment 
group. Poisson regression was the main statistical method 
performed for the analysis of relapses and for the anal-
yses of the T1 and T2 brain lesions. A negative binomial 
regression was also used as a sensitivity analysis. Analyses 
were adjusted for: age, sex, years of diagnosis, baseline 
EDSS and relapses during normalisation period. Log-
rank tests and Cox regression were used for the analysis 
of the proportion progressing (Kaplan-Meier) by analysis 
of the time until the onset of the progression of disability 
that was sustained over 24 weeks.

Dropouts
Dropouts at any time, including those subjects that never 
received the assigned interventions, were followed like all 
other participants.

Missing data handling
All patients who prematurely discontinued the study 
drug were encouraged to continue in the study until the 
end, regardless of the treatments received. ITT analyses 
included all randomised patients who had available infor-
mation. Imputation of missing data was based on the last 
observation carried forwards’ approach.

Table 1  Operation table scheme

Pre-entry and 
normalisation period (6 
months) On treatment period (24 months)

EDSS post-treatment 
confirmation
(6 months)

Enrolment*
(0)

Baseline*
(6)

6th month 12th month 18th month 24th month 6-month confirm†

MRI √ √

Assessment √ √ √ √ √ √ √

EDSS √ √ √ √ √ √ √

Relapses‡ Any Time

Haematological/
biochemical 
analyses

√ √ √ √ √ √

Green colour represents baseline.
*From Enrolment to Entry Baseline is the 6-month normalisation period.
†6 month EDSS confirmation period.
‡Relapses reported at any time they appear.
EDSS, Expanded Disability Status Scale.
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Patient and public involvement
Different studies with the specific intervention have been 
performed and completed, including a proof-of-concept 
trial resulting in different published papers. Results and 
data disseminated through brought media presentations, 
press releases, websites and with the patients, commu-
nity in general, and scientists be informed and aware. 
Moreover, different patients’ forums were discussing 
the present clinical trial when enrolment was initialised 
promoting participation.

RESULTS
Study population
This is a phase III, double-blind, randomised, placebo-
controlled clinical trial study that specifies definite clin-
ical end points, in an attempt to demonstrate possible 
adjuvant therapeutic effects on disease-modifying 
therapy (DMT) in MS by a specific dietary/nutrition 
formula as previously described. Among the 61 patients, 
32 patients were randomly assigned to receive the dietary 
formula and 29 to receive placebo (figure  1). There 
were no significant differences in baseline characteristics 
between the treatment groups for the ITT (table 2) or 
the PP (online supplemental table 1) populations. Six 

Figure 1  Trial profile. ITT, intention-to-treat.

Table 2  Demographic, clinical and MRI baseline characteristics for the total randomised population (intention-to-treat (ITT) 
population) by treatment arm

Placebo Neuroaspis plp10

N
Mean±SD/median (IQR)/
N (%) Min Max N

Mean±SD/median (IQR)/
N (%) Min Max P value

Age 27 37.48±6.73 26 55 28 37.71±8.28 24 55 0.946

Sex (female) 27 16 (59.3) – – 28 17 (60.7) – – 0.912

Years of diagnosis 27 10.67±7.02 2 28 28 9.71±5.68 2 26 0.826

Weight (kg) 27 70.67±17.95 48 110 28 69.75±13.26 46 100 0.893

Height (cm) 27 169.11±10.30 155 206 28 168.68±8.63 155 183 0.986

EDSS Score visit 1 
(normalisation phase)

27 2.5 (2–3.5) 1 5 28 2 (1.5–2.75) 1 4 0.111

EDSS Score visit 2 (baseline) 27 3 (2–3.5) 1 5 27 2 (1.5–3) 1 4.5 0.100

Annualised relapse 
rate (estimated from 
normalisation phase)

27 0.30±0.74 0 2.23 28 0.4±1.05 0 3.8 1.000

Relapses at normalisation 
phase

27 28

 � 0 23 (85.19) – – 24 (85.71) – –

 � 1 4 (14.81) – – 3 (10.71) – – 1.000*

 � 2 0 (0) – – 1 (3.57) – –

Total number of T1-
enhancing lesions

26 0.23±0.51 0 2 28 0.36±0.73 0 3 0.691

T1-enhancing lesion volume 
(mm3)

26 29.77±66.36 0 257 28 50.25±129.66 0 589 0.762

T2-hyperintense lesion 
volume (mm3)

27 6623.48±5692.45 185 24 763 28 5049.93±3833.54 488 14 
810

0.429

Percentages may not sum to 100 because of rounding.
*Fisher’s exact test.
EDSS, Expanded Disability Status Scale (range of scores, 0–10, with higher scores indicating more severe disease).;

https://dx.doi.org/10.1136/bmjno-2022-000334
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patients were lost to follow without ever been enrolled 
in the study and never consumed any of the interven-
tions. Three patients dropped out before baseline and 
one patient before the 6 months on treatment. A total of 
4 (6.5%) patients either withdrew consent (dropout) or 
lost in follow-up.

Efficacy
Relapse
In the ITT analyses, after 1 year of treatment, Neuroaspis 
plp10 reduced the ARR to 0.13 (95% CI: 0.44 to 0.89) 
relapse per year, as compared with 0.63 (95% CI: 0.05 to 
0.26) relapse per year in the placebo group with a corre-
sponding 80% relative reduction in the annualised rate 
of relapse produced by Neuroaspis plp10 that was main-
tained at 2 years (Relative rate reduction (RRR), 0.2; 
95% CI: 0.09 to 0.45; p<0.001) (the 2-year primary end 
point) (table 3). Analyses with adjustments for age, sex, 
years of diagnosis, baseline EDSS and relapses during 
normalisation period showed results consistent with the 
primary analysis. In the per protocol (PP) sensitivity anal-
ysis, Neuroaspis plp10 reduced the ARR to 0.00 (95% CI: 
0.00 to 0.10; relapse free) as compared with 0.68 (95% 
CI: 0.45 to 0.99) relapses per year in the placebo group 
(p<0.001) and it was maintained at 2 years (online supple-
mental table 2).

EDSS progression
A sustained progression of disability over 2 years (the 
2-year secondary end point) was significantly less likely in 
the Neuroaspis plp10 group than in the placebo group 
(figure  2). At 2 years, the cumulative probability of 
progression (on the basis of Kaplan-Meier analysis) was 
18.8% in the Neuroaspis plp10 group and 47.4% in the 
placebo group (HR, 0.27; 95% CI: 0.09 to 0.83; p=0.022), 
which represents a decrease of 28.6 percentage points or 
a relative 73% decrease in the risk of a sustained progres-
sion of disability with Neuroaspis plp10. In the (PP) sensi-
tivity analyses, at 2 years, all patients in Neuroaspis plp10 
group indicated no disability progression activity on the 
EDSS compared with the 55% cumulative probability of 
progression of the control group (online supplemental 
file 1).

MRI analysis
For ITT, Neuroaspis plp10 reduced the mean number of 
new/enlarging T2-hyperintense lesions over 30 months by 
51% (incidence rate ratio (IRR), 0.49; 95%CI: 0.38 to 0.62; 
p<0.0001) as compared with placebo (table  4). Neuro-
aspis plp10 reduced the mean number of Gd-enhancing 
lesions by 71% (IRR, 0.29; 95% CI: 0.11 to 0.76; p=0.011) 
as compared with placebo at 30 months (table 4). Similar 
results were observed for the PP sensitivity analyses for both 
new/enlarging T2-hyperintense lesions (0.29; 95% CI: 0.20 
to 0.41; p<0.0001) and Gd-enhancing lesions (0.29; 95% 
CI: 0.08 to 1.00; p=0.05) (online supplemental table 3).

Safety
Over the course of the 30-month study, no severe adverse 
events were reported.

Figure 2  Secondary end point, Expanded Disability 
Status Scale (EDSS) data analyses for the intention-to-treat 
population. Kaplan-Meier plots of the time to sustained 
progression of disability among patients receiving Neuroaspis 
plp10 as compared with placebo. Neuroaspis plp10 reduced 
the risk of sustained progression of disability by 73% over 
2 years (HR, 0.27; 95% CI: 0.09 to 0.83). The cumulative 
probability of progression was 18.8% in the Neuroaspis plp10 
and 47.4% in the placebo group.

Table 3  Primary end point as determined by clinical results for the intention-to-treat (ITT) population

N
Relapses 
in 2 years ARR (95% CI) Min Max IRR (95% CI) P value IRR (95% CI)* P value*

Placebo 27 34 0.63 (0.44 to 0.89) 0 2.50  �   �

Neuroaspis 
plp10

28 7 0.13 (0.05 to 0.26) 0 1.05  �   �

 �  Poisson 0.20 (0.09 to 0.45) 0.0001 0.22 (0.09 to 0.51) 0.0004

 �  Negative 
binomial

0.20 (0.09 to 0.46) 0.0002 0.22 (0.09 to 0.51) 0.0004

*Adjusted for: age, sex, years of diagnosis, baseline EDSS, relapses during normalisation.
ARR, annualised relapse rate; EDSS, Expanded Disability Status Scale; IRR, incidence rate ratio.

https://dx.doi.org/10.1136/bmjno-2022-000334
https://dx.doi.org/10.1136/bmjno-2022-000334
https://dx.doi.org/10.1136/bmjno-2022-000334
https://dx.doi.org/10.1136/bmjno-2022-000334
https://dx.doi.org/10.1136/bmjno-2022-000334
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DISCUSSION
MS is a chronic inflammatory multifactorial disease, 
where several different biochemical processes are simul-
taneously triggered and operating for the pathogenesis. 
Therefore, a much more dynamic and spherical approach 
has to be applied for simultaneous interference with 
all involved mechanisms and pathways that may poten-
tially result to a long and effective treatment, possibly 
through the concept of the so-called ‘nutritional systems 
biology’.39 On the other hand, in a clinical trial setting 
in particular, the outcome should consider reliable surro-
gate measure sensitive to disease evolution such that it 
provides an answer on therapeutic effect quickly and in 
small numbers of subjects. Most importantly, it should 
reflect and predict an important clinical outcome. In MS, 
this outcome is either of the following: (1) reduction in 
relapse rate and/or (2) reducing the accumulation of 
irreversible disability.43

The aim of the Magnetic Resonance Image of Nutra-
ceutical Efficacy on Relapsing-MS Autoimmune Lesions 
(MINERAL) Study was to investigate the increased effi-
cacy due to the Neuroaspis plp10 dietary formula when 
systematically administered as adjuvant therapy to IFN, 
primarily on the relapse rate and secondary on the 
progression of irreversible neurological disability associ-
ated with relapsing MS and on the change in the number 
of MS-related brain lesions. No other published data for 
such an adjuvant efficacy study for comparable parame-
ters were available. The results of the study support the 
hypothesis that Neuroaspis plp10, a cocktail mixture 
intervention of specific structural molecules, the omega-3 
DHA and EPA, the omega-6 LA and GLA and the antiox-
idant proteins specifically vitamin E (α-tocopherol) and 
pure γ-tocopherol in a specific high molecular concen-
tration can effectively contribute to the control of RRMS 
pathogenesis and progression. This can further support 
the hypothesis that all afore-mentioned molecules are 
possibly able to holistically interact on all levels of their 
side-of-action capabilities, including mostly the process of 
inflammation through promotion of the release of anti-
inflammatory cytokines and the control of the release 
of proinflammatory cytokines by inhibiting the action of 
the inflammatory initiator molecule, the AA, an omega-6 
PUFA and by quenching the overexpressed free radicals 
(hydro and nitro oxides) produced by the disease ongoing 
uncontrolled process of inflammation.39 As a result, the 
disruption of these processes and the resultant attenua-
tion of inflammation may be beneficial to patients.

In patients with RRMS, Neuroaspis plp10 significantly 
reduced the risk of progression of disability and the ARR 
over 2 years of treatment. The effect of Neuroaspis plp10 
was profound within 6 months after consumption and 
was sustained. In addition, efficacy was observed in terms 
of all secondary end points (73% reduction in EDSS for 
disease risk of disability progression and 71% reduction 
in incidence rate of lesions as detected by T2-weighted 
MRI and a 51% reduction in incidence rate of lesions as 
detected by T1-Gd-enhanced MRI) and all sensitivity anal-
yses of the primary end points, indicating the robustness 
of the result.

DMTs have become the cornerstone of treatment for 
patients with RRMS. The IFN-β products and glatiramer 
acetate have shown that these agents reduce the annual-
ised rate of relapse by about one third.44–47 In addition, 
neither IFN-β-1b nor glatiramer acetate had statistically 
significant effects on the progression of disability in 
patients with relapsing disease.45 46 All new drugs available 
for the treatment of RRMS are well studied and associ-
ated with a considerable means of effectiveness on both 
relapses, disability progression and brain lesions evolu-
tion, but are associated with considerable side effect.47–49 
But, up to now, there is no intervention classified as food 
supplement and or as nutraceutical formulation that 
could be used effectively as an adjuvant to the existing 
RRMS treatments. The results of this study suggest that 
Neuroaspis plp10 may offer greater benefit to patients 
with RRMS when used as an adjuvant to the existing 
RRMS treatments.

The Neuroaspis plp10 formulation ingredients support 
completely different mechanisms of action than any of the 
currently approved RRMS treatments. This formulation 
may constitute a totally new approach in MS management 
probably by synergistically and simultaneously interfering 
on various major mechanisms and metabolic pathways 
involved in MS-related CNS inflammation, pathogenesis 
and disease evolution.

With much degree of a welcoming surprise for a second 
time (beside the previous reported proof of concept clin-
ical trial findings), we have reached the conclusion that 
with this novel oral treatment formulation, associated with 
no significant side effects, as adjuvant to the previously 
considered ‘first-line’ drugs such as IFN-1b or similar (ie, 
glatiramer acetate) and possibly with the rest of the newer 
medications, we can introduce a safe and increased treat-
ment effect instead of the reported efficacy of the DMTs 
alone.39

Table 4  Secondary end point as determined by MRI evaluation for the intention-to-treat population*

Analysis IRR (95% CI) P value

Number of T1-enhancing lesions (month 30) 0.29 (0.11 to 0.76) 0.011
New/enlarging T2-hyperintense lesions at month 30 versus baseline 0.49 (0.38 to 0.62) <0.0001

*All analyses adjusted for: age, sex, years of diagnosis, baseline Expanded Disability Status Scale, relapses during normalisation.
IRR, Incidence rate ratio.
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Several nutritional interventions have lately been 
considered as possible methods contributing to the 
quality of life of patients experiencing chronic neurolog-
ical conditions.39 50 Similarly, Neuroaspis plp10 consists 
of a formulation with biophysical characteristics that can 
be considered as a medical nutrient concoction (nutra-
ceutical) potentially for MS prevention and adjuvant 
treatment.

To conclude, the present study supports a link between, 
dietary, nutritional, immunological and inflammatory 
aspects of MS and identifies an important new potential 
horizon in the approach of MS prevention and treatment. 
With limitation, the small number of patients in the trial, 
the length of the study, as well as the multiplicity of the 
analyses and the solid protocol can all be considered as 
positive parameters for the robustness of the final indica-
tion and conclusion.
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