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ABSTRACT
Background  Hepatocellular carcinoma (HCC) is the most 
common form of primary liver cancer and is the third-
leading cause of cancer-related death worldwide. Most 
patients with HCC are diagnosed at an advanced stage, 
and the median survival for patients with advanced HCC 
treated with modern systemic therapy is less than 2 years. 
This leaves the advanced stage patients with limited 
treatment options. Immune checkpoint inhibitors (ICIs) 
targeting programmed cell death protein 1 (PD-1) or its 
ligand, are widely used in the treatment of HCC and are 
associated with durable responses in a subset of patients. 
ICIs targeting cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4) also have clinical activity in HCC. Combination 
therapy of nivolumab (anti-PD-1) and ipilimumab (anti-
CTLA-4) is the first treatment option for HCC to be 
approved by Food and Drug Administration that targets 
more than one immune checkpoints.
Methods  In this study, we used the framework of 
quantitative systems pharmacology (QSP) to perform 
a virtual clinical trial for nivolumab and ipilimumab in 
HCC patients. Our model incorporates detailed biological 
mechanisms of interactions of immune cells and cancer 
cells leading to antitumor response. To conduct virtual 
clinical trial, we generate virtual patient from a cohort of 
5,000 proposed patients by extending recent algorithms 
from literature. The model was calibrated using the data of 
the clinical trial CheckMate 040 (​ClinicalTrials.​gov number, 
NCT01658878).
Results  Retrospective analyses were performed for 
different immune checkpoint therapies as performed in 
CheckMate 040. Using machine learning approach, we 
predict the importance of potential biomarkers for immune 
blockade therapies.
Conclusions  This is the first QSP model for HCC with 
ICIs and the predictions are consistent with clinically 
observed outcomes. This study demonstrates that 
using a mechanistic understanding of the underlying 
pathophysiology, QSP models can facilitate patient 
selection and design clinical trials with improved 
success.

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most 
common type of liver cancer, accounting for 
approximately 80% of primary liver malig-
nancies.1 HCC is caused by chronic infec-
tion of hepatitis B or C virus, excess alcohol 
consumption, diabetes, obesity, and inges-
tion of aflatoxin-contaminated food.2 It is the 
third-leading cause of cancer-related death 
worldwide3 and despite efforts to screen at-risk 
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poor prognosis with very limited treatment options. 
However, immune checkpoint inhibitors (ICIs) have 
shown remarkable advancement in cancer research 
and the combination of ICIs anti-PD-1 nivolumab 
and anti-CTLA-4 ipilimumab was approved for HCC. 
Despite great strides being made in the treatment 
of HCC, more than 50% of patients do not respond 
to treatment. Quantitative systems pharmacology 
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academic research and the pharmaceutical indus-
try to develop a mechanistic understanding of the 
disease-drug interactions and ultimately improve 
patient outcomes to treatment.
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individuals, approximately 80% of patients are diagnosed 
at late stages when curative intervention (ie, surgical resec-
tion or transplantation) is no longer possible.4 Since 2020, 
the preferred first-line treatment for patients with advanced 
HCC (aHCC) with preserved liver function is the combina-
tion of atezolizumab (anti-PD-L1) and bevacizumab (anti-
vascular endothelial growth factor). This combination is 
associated with improved overall survival, progression-free 
survival, and quality of life than the historical standard 
of care, sorafenib.5 6 However, the prognosis for patients 
treated with modern systemic therapy continues to lag 
many other tumor types, with a median progression-free 
survival of 6.8 months and a medial overall survival of 19 
months.4 Multiple second line therapies were developed 
for patients receiving first line sorafenib therapy (including 
regorafenib, cabozantinib, and ramucirumab),7–9 but the 
optimal management of patients progressing on first line 
bevacizumab and atezolizumab remains unclear.

There has been an increased interest in immuno-
therapy due to the success of a programmed cell death 
protein 1 (PD-1) blockade trial for the treatment of 
advanced melanoma.10 This led to many successful immu-
notherapy trials for the treatment of various solid tumors, 
with the main targets for immune checkpoint blockade 
being PD-1, programmed cell death ligand 1 (PD-L1) 
and cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4).11 12 This promotes antitumor response in T cells and 
prevents T cell exhaustion.13 For HCC, the US Food 
and Drug Administration (FDA) has recently granted 
accelerated approval of immune checkpoint inhibitors 
pembrolizumab (anti-PD-1), nivolumab (anti-PD-1) and 
the combination of nivolumab and ipilimumab (anti-
CTLA-4) as second line treatment based on the results of 
KEYNOTE-22414 and CheckMate 04015 16

Nivolumab treatment for aHCC was first evaluated 
in CheckMate 040, a phase I/II study that included 48 
patients in the dose-escalation phase and 214 patients in 
the dose-expansion phase; this study showed an objec-
tive response rate (ORR) of 20%.15 The median overall 
survival times were 28.6 months for first-line therapy and 
15 months for patients who were previously treated with 
sorafenib,17 which led to the FDA approval for nivolumab 
as a second-line therapy for aHCC following the failure 
of sorafenib treatment. Nivolumab is currently being 
evaluated for first-line therapy in two phase III trials 
(CheckMate 459, NCT02576509 and CheckMate 9DX, 
NCT03383458). The combination of nivolumab and ipili-
mumab is currently being evaluated in HCC as second-
line therapy (CheckMate 040, NCT01658878) and 
has been granted accelerated approval by the FDA for 
patients previously treated with sorafenib. This combina-
tion has shown promising results in other cancers starting 
with its success in melanoma.18 Despite the success of this 
treatment, response rate is moderate; 33% at a median 
follow-up time of 28 months in the ongoing CheckMate 
040 trial (NCT01658878).19

There is clearly a need for biomarker identification 
to increase the success rate of the treatment of aHCC. 

Additionally, the complex biological mechanisms 
explaining the success of different combinations of drugs 
remain unknown.20 Having a qualitative understanding 
of the interplay between the immune cells and cancer 
cells is not sufficient to fully optimize the treatment. 
This is where quantitative mechanistic mathematical and 
computational models can become useful.

Mathematical and computational modeling has been 
an essential tool in drug development for decades. In 
conventional pharmacokinetic/pharmacodynamic (PK/
PD) modeling, the uptake, distribution and target inter-
actions are modeled to create a link between the phar-
macology and clinical outcomes. These models, however, 
do not take full advantage of existing mechanistic 
knowledge. Quantitative systems pharmacology (QSP) 
modeling integrates mechanistic knowledge of molecular 
and cellular interactions and PK/PD modeling to mech-
anistically link drug pharmacology to clinical outcomes. 
QSP is becoming an increasingly popular tool in both 
academia and industry for studying disease response to 
drugs. Pharmaceutical companies use QSP models to 
make decisions at all stages in the development cycle, 
and they may become standard practice and used in the 
approval by regulatory agencies. QSP models have shown 
to be useful in both prospective and retrospective anal-
yses of immunotherapies in multiple cancer types.21–28 
Rule-based QSP model was developed by Abrams et al, 
to predict dose-response relationship for trispecific 
antibodies.29 For a detailed review of QSP modeling in 
immuno-oncology (IO), see the recent review article by 
Chelliah et al.30 While there are multiple computational 
models that exists for hepatic diseases31–34 there is only 
one QSP model for liver, non-alcoholic fatty liver disease 
(NAFLDsym),35 36 derived from DILIsym37 that incor-
porates key components of steatosis and lipotoxicity in 
NAFLD patients. There is an unmet need for a detailed 
large-scale QSP model for HCC to search for novel thera-
pies and design of clinical trials.

In this study, we develop a QSP model for aHCC using 
our platform, QSP-IO,38 to simulate therapy with immune 
checkpoint inhibitors nivolumab and ipilimumab using 
virtual patients generated from the CheckMate 040 trial 
results of nivolumab monotherapy in aHCC.15 We then 
use the model in a detailed analysis of the CheckMate 040 
clinical trial for different dose regimens of the combina-
tion therapy with the objective of determining predictive 
biomarkers that could facilitate patient selection and ulti-
mately improve the success of this treatment.

METHODS
Computational model overview
The proposed QSP model was developed using QSP-
IO, our modular MATLAB (MathWorks, Natick, MA) 
SimBiology-based platform for developing QSP models 
in IO.38 The resulting model structure is similar to that 
of models introduced in our previous studies.21–26 39 The 
model is a four-compartment model describing relevant 
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immune interactions in tumor, tumor-draining lymph 
node (LN), central (blood), and peripheral (all other 
organs) compartments, thus representing the entire 
patient.

Our model considers logistic tumor growth dynamics 
with a tumor cell death-dependent release of antigens 
which are taken up by antigen-presenting cells (APCs), 
for example, dendritic cells. Antigens within dendritic 
cell endosomes are broken down and can bind major 
histocompatibility complex molecules, which translo-
cate to the surface to be presented to naïve T cells. Naïve 
T cells are modeled by a zeroth order source term in 
the central compartment and can migrate to the other 
compartments. Naïve T cells in the LN compartment 
can interact with APCs to become activated where they 
undergo proliferation and become mature cytotoxic T 
cells that can migrate between compartments; the model 
also considers regulatory T cell (Treg) dynamics that is 
similar to that of the cytotoxic T cells. The model also 
incorporates immune checkpoints PD-1, PD-L1, PD-L2 
and CTLA-4. Figure 1 summarizes the interactions consid-
ered in the model. For completeness and reproducibility, 

all equations and parameter values are included in online 
supplemental information, and the code used to produce 
the results can be found at www.github.com/popellab/​
qspio/.

The base model for HCC consists of 69 ordinary differ-
ential equations, and 116 parameters plus 12 parameters 
related to each of the immune checkpoint inhibitor for 
a total of 140 parameters. Physiologically realistic param-
eter ranges were estimated from the literature; the details 
for each parameter are given in online supplemental 
table S6.

Parameter selection and virtual patient generation
We generated virtual patients following the methods by 
Allen et al40 with minor modifications to their original 
approach described below. In their method, Allen et al 
randomly generated a parameter set such that the values 
of all parameters were physiologically realistic. Next, they 
used simulated annealing (SA), a Markov Chain Monte 
Carlo optimization algorithm, to ensure that the simula-
tion outputs from the parameter set were also within phys-
iologically realistic range. This was accomplished using an 

Figure 1  Diagram of the immuno-oncology QSP model interactions. APC, antigen presenting cells; mAPC, mature antigen 
presenting cells; MHC, major histocompatibility complex; N, naïve T cells; P, proliferating T cells; QSP, quantitative systems 
pharmacology.

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
www.github.com/popellab/qspio/
www.github.com/popellab/qspio/
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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objective function that evaluated the squared Euclidean 
distance from the physiological output range; such that 
the contribution of the simulation outputs would be zero 
to the objective function if the outcome is within the 
physiological range. This reduces the computational cost 
of minimization since the optimization is not to specific 
points but within the plausible range. This process was 
repeated to get a large number of plausible patients; the 
final virtual patient population was then chosen such that 
the distribution of selected outputs matched that of the 
data. Selection was done using a Bayesian-based rejection 
sampling procedure40 where the probability of inclusion 
of a plausible patient as virtual patient is given by
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density of plausible patients (as number of patients per 
unit volume) at the output value, r, using V5(r) which is 
the volume of a hypersphere whose radius is the distance 
to the 5th nearest neighbor. The proportionality factor, 
β, was fit using SA with the Kolmogorov-Smirnov (KS) 
statistic from a two-sample univariate KS test as the objec-
tive function.

In contrast, we used Latin Hypercube Sampling (LHS) 
to sample the parameter space using different estimated 
distributions for each of the parameter with descriptive 
statistics adjusted within the physiological ranges. The 
details of the parameters used for virtual patient gener-
ation are shown in online supplemental table S3. Out 
of 140 parameters, 89 parameters were selected to be 
sampled based on their relevance to HCC and to account 
for the biological mechanism of interaction of the drugs 
nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) in 
the tumor. The detailed description of model parame-
ters and their relevance has been highlighted in online 
supplemental tables S3 and S6. There are a total of 17 
parameters that are cancer-specific out of which 16 were 
included in the sampling for virtual patient population 
to capture variability across HCC patients. Simulations 
that did not reach the initial tumor diameter during the 
initialization procedure (7%), failed to converge due to 
numerical instabilities (3%), or whose T cells densities 
were outside of a normal range for patients with HCC 
(18%) were rejected from the plausible patient popu-
lation. To estimate the plausible patient cohort from 
proposed patient, we accept or reject the plausible patient 
as virtual patient based on physiological T cell densities 
in aHCC. Activated CD8+T cell density in the tumor was 
in the range of 0–63,000 cell/µL41 and CD4+FoxP3+ T 
cell density in the blood was 0–50 cell/µL.42 For our anal-
ysis we assumed two-fold CD4+ cell density in the blood 
rather than the range reported in the literature.42 This is 
due to the small sample size of the patients analyzed and 
to account for patient variability. In the study by Kalathil 
et al,42 blood samples of only 19 patients with aHCC were 
analyzed. T cell density in the tumor was calculated from 

area densities in immunohistochemistry images following 
the procedure in the study by Mi et al..43

To determine the virtual patient population, we 
employed the tumor size data of target lesion at indi-
vidual patient level from the waterfall plot of CheckMate 
040 in Yau et al.16 The best percent change in tumor diam-
eter of the plausible patient population was compared 
with data obtained from the CheckMate 040 clinical trial 
for patients with aHCC treated with nivolumab and ipili-
mumab.16 Rejection sampling was used to determine the 
final virtual patient population using equation 1 with 
given a priori distribution of plausible population to 
select from, as done by Allen et al. Since any given value of 
β can result in different virtual populations, the objective 
function was the mean KS statistic out of five virtual popu-
lations generated from β. A graphical representation of 
the algorithm is presented in figure 2.

Virtual clinical trial
The virtual clinical trial consisted of six treatment groups: 
no drugs, 3 mg/kg of nivolumab given every 2 weeks 
starting at t=0,15 1 mg/kg of ipilimumab given every 3 
weeks starting at t=0 and three groups for the combi-
nation regimes of nivolumab and ipilimumab corre-
sponding to the three arms (A, B, C) in the clinical trial, 
CheckMate 040. In arm A, 1 mg/kg of nivolumab and 3 
mg/kg of ipilimumab were administered every 3 weeks 
(for 4 doses), followed by 240 mg of nivolumab every 2 
weeks (flat dose). In arm B, 3 mg/kg of nivolumab and 
1 mg/kg of ipilimumab were administered every 3 weeks 
(for four doses), followed by 240 mg of nivolumab every 
2 weeks (flat dose). In arm C, 3 mg/kg of nivolumab was 
administered every 2 weeks with 1 mg/kg of ipilimumab 
administered every 6 weeks.16

Response Evaluation Criteria in Solid Tumors (RECIST)
The analyses in this study were based on the RECIST 
V.1.1 classification,44 presented here for convenience. 
RECIST provides a means for classifying solid tumors 
based on their response to treatment; the classification 
is determined by the percent change in tumor diameter 
compared with baseline/smallest diameter recorded. 
Tumor diameter is defined as the sum of the longest diam-
eters for each lesion of interest. In this study, we consider 
only one lesion and calculate its diameter based on the 
tumor volume assuming the tumor is spherical. The base-
line tumor diameter is above 10 mm for the lesions to be 
measurable.

To perform the virtual patient evaluation by RECIST 
V.1.1 criteria, we assessed tumor diameter every 6 weeks 
with the first measurement at week 6 and baseline at time 
0. The frequency of tumor measurement (ie, 6 weeks) 
corresponds patient evaluation in the CheckMate 040 
trial. We assume tumor diameter less than or equal to 2 
mm as complete disappearance of tumor. The criteria are 
summarized as follows. Complete response (CR) is char-
acterized by a complete disappearance of the tumor with 
confirmation at consecutive assessment of 6 weeks. Partial 

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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response (PR) is defined as percent change between 
−30% and −100%, with reference as the baseline tumor 
diameter, PR is confirmed at the subsequent assessment. 
Progressive disease (PD) is characterized by an increase 
of at least 20% in the tumor diameter with reference to 
the smallest measured diameter; in addition, there must 
be an absolute increase of 5 mm in the tumor diameter. 
Stable disease (SD) is characterized by neither sufficient 
decrease nor increase in the tumor diameter to be clas-
sified as PR or PD, with smallest tumor diameter as the 
reference. We assume a minimum duration of 6 weeks for 
stable disease as followed in the clinical study. The overall 
response rate is calculated as the proportions of virtual 
patients with complete and PR. In the virtual clinical trial, 
we followed the above criteria, to closely mimic the clin-
ical situation.

Random forest
In this study, we used random forest, a supervised 
machine learning technique, to assess the importance 
of biomarkers in determining whether a patient will 
respond to treatment. Briefly, random forests are an 
ensemble of decision trees generated using a subset of 
the predictors and a bootstrapped sample of the data; the 
decision of the random forest is the majority decision of 
the decision trees. The TreeBagger function in MATLAB 
was used to train the random forests. The number of trees 
was determined by using the out-of-bag (OOB) error, an 
estimate of the prediction error. OOB error converges as 
the number of trees are increased; online supplemental 
figure S6 shows the convergence of the OOB error for 
1000 trees.

Figure 2  Illustration of the virtual patient generation algorithm. Input parameter values are represented as red points in 
a two-dimensional parameter space which would correspond to a hyperspace for our model analysis. The blue histogram 
represents the model outputs that correspond to the clinical patient data available. The physiological range of output values is 
outlined by black dashed lines and the empirical distribution of the clinical population data is shown as a red line. Step 1: the 
proposed patient population is generated by mapping a Latin Hypercube Sampling (LHS) on the interval (0–1) to parameter 
space assuming a physiological parameter range for each parameter. Step 2: the plausible patient population is the subset of 
the proposed patient population whose simulation outputs are physiologically realistic. Step 3: the virtual patient population is a 
subset of the plausible patient population such that the distribution of virtual patient outputs reflects that of the clinical patient 
population.

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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The random forest was trained using the simulation 
results from the QSP model of HCC for all the virtual 
patients treated with the combination of nivolumab 
and ipilimumab. The accuracy of the random forest was 
assessed using the simulation results from 50 additional 
randomly generated virtual patients; only the results of 
successful simulations were considered. The importance 
of the predictors was estimated by randomly permuting 
all the observations of the predictor and calculating the 
influence of the predictor on the model’s ability to predict 
patient response. This is performed by finding the change 
in OOB error which would be affected on permutating 
the values of the predictor. Predictors with the largest 
changes in OOB error were considered to be important 
predictors, that is, biomarker in our application.

RESULTS
Five thousand parameterizations of the model were gener-
ated by varying 89 of the 140 parameters by using a LHS 
that was mapped to a physiological range. Details of the 
parameterizations are given in online supplemental table 
S1. Each model parameterization was simulated six times: 
once without treatment, once with nivolumab treatment, 
once with ipilimumab treatment and three times with 
the combination of nivolumab and ipilimumab for the 
three arms with different dose regimen (see methods) 
in CheckMate 040 clinical trial. All our simulations were 
performed in MATLAB SimBiology Toolbox using the 
ode15s solver.

Unlike actual clinical trials, in virtual clinical trials the 
same patient can be treated with different treatments. To 
predict the outcome of all the treatments, we generate a 
cohort of virtual population from the initial 5000 proposed 
patients using the clinical information of the patients 
with HCC and data from the CheckMate 040 trial, for 
the combination therapy of nivolumab and ipilimumab. 
Of the 5000 parameter sets, 3622 sets were successful in 
all six treatment groups, giving us a large set to perform 
virtual trials. The remaining proposed patients either did 
not reach the initial tumor size or failed to converge or 
their T cell count was outside the normal range of that in 
patients with HCC. These parameter set are the common 
proposed patients that are used as input for determina-
tion of the plausible patients based on the physiologically 
reasonable range of T cell counts in HCC patients. Out of 
these proposed patients, 1747 were identified as plausible 
patients common to all the treatment groups. The final 
virtual cohort was generated using the information of the 
best percent change in tumor diameter for the combina-
tion treatments of all the three arms of CheckMate 040.16 
We compare the distribution of the best percent change 
in tumor diameter from the simulations of the combi-
nation treatment arm A to combination treatments of 
CheckMate 040. We chose arm A since among the three 
arms in CheckMate 040 with different dose regimens, 
only arm A was approved by the FDA.45 The distribution 
of the plausible patient population which were used as 

initial virtual population was significantly different from 
that of CheckMate 040 (p<0.05; KS=0.28). After fitting, 
the distribution of final virtual patient population was 
the same as that of CheckMate 040 as assessed by the KS 
goodness-of-fit test (p<0.05; KS=0.004) with beta=1080.5.

For each treatment group, we calculated the response 
rate and classified the plausible and virtual patients into 
four categories according to RECIST V.1.1: CR, PR, stable 
disease (SD), and PD. The overall response rate for mono-
therapy of nivolumab, ipilimumab and combination 
therapy of nivolumab plus ipilimumab with dose regimen 
of arm A for plausible patient cohort was 16.05% (95% 
CI 11% to 22%), 3.29% (95% CI 1% to 6%), and 19.62% 
(95% CI 10% to 32%), respectively. The corresponding 
response rate for virtual patient cohort was 19.41% (95% 
CI 14% to 26%), 2.64% (95% CI 1% to 6%), and 23.08% 
(95% CI 12% to 36%), respectively. The overall response 
rate reported in CheckMate 04015 for monotherapy of 
nivolumab (dose expansion phase, 3 mg/kg) and combi-
nation of nivolumab and ipilimumab with arm A regimen 
was 20% (95 % CI 15% to 26%) and 32% (95% CI 20% to 
47%), respectively. This shows an agreement between the 
model prediction and the clinical results of CheckMate 
040 trial. The response of virtual cohort is improved as 
compared with that of the plausible cohort implying that 
the virtual cohort is a close representation of the patients 
in the clinical trial. The comparison of the response rate 
predicted by the model with the clinical results of all the 
treatment groups is shown in figure  3. Notably, there 
has not been a clinical trial for monotherapy of ipilim-
umab in HCC. Here, the 95% CIs were calculated using 
bootstrap sampling of the virtual patients. The bootstrap 
sampling size was set to the number of patients enrolled 
in the respective clinical study with the assumption of 200 
patients in both no treatment and monotherapy of ipili-
mumab. The corresponding two-sided CIs were estimated 
using the Clopper-Pearson method in the clinical trial.

In the above analysis, we followed the RECIST V.1.1 
criteria of confirming the complete and partial responders 

Figure 3  Overall objective response rate (ORR) comparison 
between model prediction and clinical trial CheckMate 040 
results for all the treatment groups.

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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at subsequent tumor measurement To compare we also 
assessed the response status without confirmation of 
complete and partial responder at subsequent tumor 
measurement. We found that the overall response for 
virtual cohort for monotherapy of nivolumab and combi-
nation treatment (arm A) was 23.1 and 27.8% (online 
supplemental table S2) which is higher than the above-
mentioned results. We suspect this is because some 
patients may relapse after initial response to the treatment 
and so at subsequent assessment they are not considered 
as responders.

The simulation outcomes of all the virtual patients were 
classified into different response status based on RECIST 
V.1.1. Our model can predict both partial and complete 
responders. The virtual patient cohort is common in 
all the treatment groups while the number of plausible 
patients varied. There were 1915 plausible patients in no 
treatment group out of which 1,365 were determined as 
virtual patients (620 PD; 738 SD; 7 PR; 0 CR); 2,143 plau-
sible patients with nivolumab treatment with 1,365 virtual 
patients (482 PD; 618 SD; 242 PR; 23 CR); 1,916 plau-
sible with ipilimumab treatment with 1365 virtual patients 
(485 PD; 844 SD; 36 PR; 0 CR); 2,171 plausible with arm 
A combination treatment with 1365 virtual patients (377 
PD; 673 SD; 299 PR; 16 CR); 2,185 plausible patients for 
arm B combination treatment with 1,365 virtual patients 
(373 PD; 666 PD; 309 PR; 17 CR); and 2,193 with arm 
C combination treatment with 1,365 virtual patients 
(362 PD; 671 PD; 315 PR; 17 CR). Table  1 shows the 
comparison of this classification for the simulation results 
of nivolumab monotherapy and the combination of 
nivolumab and ipilimumab (arm A) with that of the clin-
ical trial of CheckMate 040.16 Online supplemental table 
S2 shows the results of virtual patients for the remaining 
four treatment groups.

The predictions from the simulations for the per cent 
changes in tumor diameters for the course of the treat-
ment in each class (CR, PR, SD, and PD) are shown in 
figure 4. The solid line is the mean for individual class 
and the shaded region is the 95% prediction interval. 
Figure 5 shows the waterfall and spider plots for patients 
from the CheckMate 040 clinical trial, the virtual clinical 

trial of nivolumab only, the virtual clinical trial of ipili-
mumab only, and the virtual clinical trial of nivolumab 
in combination with ipilimumab for the three arms of 
CheckMate 040. Outcomes of the virtual patients from 
the simulations are consistent with those reported in the 
clinical trial.

To determine potential biomarkers that can predict if a 
patient will respond to treatment, we performed subgroup 
analysis using 11 measurable pretreatment biomarkers. 
Virtual patients were divided into subgroups based on 
the median value for each biomarker, and the ORR was 
calculated for each subgroup (figure  6). Based on the 
analysis of the combination therapy, the biomarkers 
responsible for the largest changes in ORR were T cell 
density, Treg density and antigen binding affinity. The 
analyses for nivolumab and ipilimumab as monotherapy 
and as combination therapy for dose regimen of arm B 
and C are given in the online supplemental information 
and figures S1–S4, respectively.

A random forest consisting of 1,000 trees using the 11 
biomarkers as predictors was trained using the simula-
tion results from the combination therapy arm A (1,365 
virtual patients). The prediction error was 22.9%, esti-
mated by the OOB error (online supplemental figure 
S6). To get a more accurate assessment of the prediction 
error, a test set of 50 new virtual patients was generated. 
The random forest was able to correctly classify 95.7% of 
the patients (4.3% false positive rate and 0% false nega-
tive rate) resulting in a prediction error of 4.3%. The 
importance of each biomarker was assessed by calculating 
the mean increase in OOB error caused by the random 
permutation of all the observation of each predictor; the 
results are shown in figure  7. A similar assessment was 
performed for all the treatment groups to identify the 
important biomarkers (online supplemental figure S5).

A second random forest (1,000 trees; OOB error 22.7%) 
was created using the six most important biomarkers in 
all the treatment groups: cytotoxic T cell density, Treg 
density, T cell to Treg ratio, number of tumor-specific 
T cell clones, PD-L1 expression, and exhausted T cell 
density. This forest was able to predict the classification 
of 91.3% of the patients (6.5% false positive rate and 

Table 1  Summary of the endpoint results of the virtual patients in the simulations and CheckMate 040 for monotherapy of 
nivolumab (dose expansion phase, 3 mg/kg) and combination treatment of nivolumab and ipilimumab (arm A)

CheckMate 040 Simulations CheckMate 040 Simulations

Nivolumab Combination: arm A

No of patients 214 1365 50 1365

Complete response, no (%) 3 (1) 23 (1.7) 4 (8) 16 (1.2)

Partial response, no (%) 39 (18) 242 (17.7) 12 (24) 299 (21.9)

Stable disease, no (%) 96 (45) 618 (45.3) 9 (18) 673 (49.3)

Progressive disease, no (%) 68 (32) 482 (35.3) 20 (40) 377 (27.6)

ORR % (95% CI) 20 (15 to 26) 19.4 (14.0 to 25.7) 30.6 (21.8 to 48.9) 23.1 (12 to 36)

ORR, objective response rate.

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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2.2% false negative rate) resulting in a prediction error 
of 8.7%. The convergence of OOB error with the number 
of trees used to generate the random forest for all the 
treatment groups is shown in online supplemental figure 
S6. The pretreatment and post-treatment distribution 
of the top six predictive biomarkers estimated by the 
random forest for combination therapy of nivolumab and 
ipilimumab (arm A) is shown in figure 8. This shows that 
virtual patients with high T cell count and high T cell to 
Treg ratio respond better to the treatment. These can 
potentially be important predictive biomarkers in aHCC 
patients for anti-PD1 and anti-CTLA4 immunotherapy.

DISCUSSION
In this study, we presented an analysis of the treatment of 
aHCC using PD-1 and CTLA-4 immune checkpoint inhib-
itors, nivolumab and ipilimumab, using a QSP model of 
aHCC. To our knowledge this is the first QSP model of 
HCC. We also presented our procedure for virtual patient 
generation which extends from the work of Allen et al.40 
We then applied our virtual patient generation proce-
dure to retrospectively predict the clinical trial results of 
the combination of nivolumab and ipilimumab for the 
treatment of aHCC. Additionally, we used a machine 
learning approach to quantify the importance of poten-
tial biomarkers.

The FDA has approved nivolumab and ipilimumab 
combination therapy for the treatment of several cancers 
including metastatic melanoma, advanced renal cell 

carcinoma (RCC), colorectal cancer (CRC), HCC, non-
small cell lung cancer (NSCLC) and, most recently, 
malignant pleural mesothelioma. This combination 
immunotherapy had ORR of 50% in melanoma (Check-
Mate 06746) 42% in RCC (CheckMate 21447), 49% in 
CRC (CheckMate 14248), 32% in HCC (CheckMate 040); 
and 36% in NSCLC (CheckMate 22749). Simulating the 
treatment with our mechanistic QSP model of HCC, we 
predicted that the combination therapy would have an 
ORR of 27.8% (arm A) which falls within the confidence 
interval (21.8%–48.9%) of the results of the CheckMate 
040 clinical trial16 for HCC providing partial validation 
that modeling approach is predictive and cancer-specific. 
To further test the predictability of our model, we also 
conducted a preliminary analysis for monotherapy of 
pembrolizumab on 1,000 proposed patients in accordance 
with the clinical trial, Keynote-224.14 The simulated per 
cent change in tumor diameter over the course of treat-
ment in each class of patients (based on RECIST V.1.1) 
is shown in online supplemental figure S7. Our predic-
tion for overall response rate was 16.6% which is close 
to the response rate of 17% as observed in Keynote-224 
(online supplemental table S3). This shows that such 
detailed mechanistic models can be used to design new 
combination therapies for HCC and the optimum dose 
by predicting the efficacy of different dosing strategies.

Virtual patient generation has become an active area of 
research as QSP becomes a more prominent tool in the 
pharmaceutical industry. Despite the mechanistic detail 

Figure 4  Mean per cent change in tumor diameter as a function of the time after the beginning of treatment for virtual patients. 
Simulations were grouped according to RECIST criteria; progressive disease (PD; x>20%; red), stable disease (SD; −30%≤x 
≤ 20%; yellow), partial response (PR; x < −30%; cyan), and complete response (CR; x = −100%; green). Shaded regions 
correspond to the 95% CI of the simulations in the corresponding RECIST category. RECIST, Response Evaluation Criteria in 
Solid Tumors.

https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
https://dx.doi.org/10.1136/jitc-2022-005414
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included in the models, the population level statistics 
are highly sensitive to virtual patient generation. There 
are various approaches for virtual patient generation. A 
comprehensive study of methodological considerations 
for virtual population in QSP model was done by Cheng 
et al.50 A simple approach is to select input parameters 
from a known distribution.21 23–26 51 This approach has the 
benefit of both being simple to implement, and compu-
tationally inexpensive. The drawback being that the 
distribution of outputs may not reflect the clinical popu-
lation. Another approach is to assign weight to virtual 
patients such that the distribution reflects the clinical 
population.52–54 These methods tend to be more compu-
tationally expensive, but have the benefit of accurately 
representing the population level statistics. One poten-
tial drawback is that this approach limits the diversity of 
the virtual patient population.55 A third approach is to 
generate physiologically plausible patients and use rejec-
tion sampling to fit the population level statistics.40 55 This 
approach has the benefit of both being computationally 
efficient and reduces the likelihood that unlikely patients 
get overrepresented in the virtual population.40 55

The approach presented in this work follows that of 
Allen et al40 with some modifications. The main differ-
ences are in the way our plausible patients are generated. 
In their study, Allen et al randomly chose a physiologically 
realistic point in parameter space, and then optimized 
that point so that the outputs are also physiologically 
realistic. In our approach, we randomly choose a physi-
ologically realistic point in parameter space, then either 
accept or reject it based on the outputs of the solution. 
Although, we end up rejecting just over 35% of our simu-
lations, we found that, for application of QSP models, our 
approach is computationally more efficient than using an 
optimization to generate plausible patients.

Rieger et al55 expanded on the work by Allen et al40 by 
exploring three other means of generating the plausible 
patient population by using either nested SA (NSA), a 
modified genetic algorithm (GA) for optimization or a 
modified Metropolis-Hastings (MH) algorithm to replace 
the original SA optimization step from Allen et al. In their 
study, the authors compared the algorithms on the basis 
of the efficiency of going from the plausible population 
to the virtual patient population (ie, number of proposed 
patients needed to reach a specified goodness-of-fit), the 
computational cost, the convergence of the virtual popu-
lation to the clinical population and the diversity of the 
virtual patient population. They concluded that their 
NSA approach is the most efficient, but also the most 
computationally costly and the MH approach was compu-
tationally fastest, however, the final virtual population was 
less diverse than the other approaches.

Although we did not make direct comparisons to their 
approaches, our approach converged to the clinical 
population and had low computational cost. We also 
expect our approach to be less efficient since we used 
a rejection-based approach rather than an optimization 
routine to generate the plausible patient population from 
the proposed population.

One of the biggest challenges is the availability of 
clinical data that can be used to obtain our final virtual 
patient population. In this study, we used the best per 
cent change in tumor diameter, which is often provided 
in the form of a waterfall plot. Despite its availability, using 
tumor diameter poses a problem for predicting novel 
therapies. However, other population-level information 
could be extremely valuable, such as distribution of the 
densities of different T cell populations in the tumor, T 
cell densities in the blood, or the densities of other cell 
types in the tumor immune microenvironment.56 57 Using 
pretreatment distributions could potentially be an effec-
tive way to create virtual patients for predictive studies.

Using subgroup analysis and machine learning on our 
simulation results, we identified six important biomarkers 
for the prediction of immunotherapy response in 
HCC. Based on our analyses, patients with high tumor 
infiltrating lymphocyte (cytotoxic T cells, Tregs and 
exhausted T cells) densities and high T cell to Treg ratio 
are more likely to respond to this treatment. Increased 
CD8+T cell infiltration has been associated with response 

Figure 5  Waterfall (left) and spider plots (right) are shown 
for clinical trial CheckMate 040 and as predicted by 
the proposed QSP model for HCC. (A) CheckMate 040, 
(B) monotherapy of nivolumab, (C) ipilimumab monotherapy, 
combination treatments for (D) arm A (E) arm B (F) arm C. 
The waterfall plots show the best percent change in tumor 
diameter from baseline for each patient in the trial. The 
spider plots show the per cent change in tumor diameter 
at each measurement time point (every 6 weeks) for 100 
randomly selected virtual patient. CR, complete response; 
HCC, hepatocellular carcinoma; PD, progressive disease; PR, 
partial response; QSP, quantitative systems pharmacology; 
SD, stable disease.
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to immune checkpoint inhibitor treatment in HCC58–60 
and in other cancers.61 62 Infiltration of CD8+T cells 
and CD4+T cells has been reported in HCC in a recent 
study of communication landscape in tumor microen-
vironment.57 PD-L1 expression may affect response to 
this therapy and their expression can be controlled by 

epigenetic modifications, genomic alterations, regulation 
at transcription, post-transcription and post-translation 
levels for better response rates.63 Our subgroup analysis 
also shows that patients with high antigen binding affinity 
are more likely to respond to this treatment. Although 
no single biomarker has been confirmed for immune 

Figure 6  Subgroup analysis of the combination therapy. Virtual patients (N=1365) are divided into 22 subgroups based on the 
pretreatment values of selected biomarkers. Objective response rates (ORR) for each group are given along with the 95% CI 
estimated by the Agresti-Coull interval. The red dashed line indicated the ORR for the total population. APC, antigen-presenting 
cell.
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checkpoint inhibitors in HCC,64 65 several studies report 
positive correlation with response to immune checkpoint 
inhibitors in melanoma and lung cancer.61 66–68

There have been many efforts recently to incorporate 
machine learning into mechanistic modeling.69–72 For 
example, Ribba et al used reinforcement learning with a 
mechanistic model of tumor inhibition in glioma response 
to chemotherapy and radiotherapy in application to 
precision dosing69 Despite the lack of clinical data avail-
ability, QSP model simulations produce a large amount 
of data that can be difficult to analyze by using traditional 
techniques. In this study, we have demonstrated one way 
to incorporate machine learning to quantify the impor-
tance of potential biomarkers in the prediction of patient 
response. The approach presented here is only one possi-
bility, however, with the availability of complex data anal-
ysis tools, there is huge potential for machine learning 
to adequately understand the complex state space and 
parameter space of these large mechanistic models.

QSP models are powerful, but their limitation is that 
they do not take into account spatial information, such 
that is provided by digital pathology or spatial transcrip-
tomics.57 Spatial heterogeneity is regarded a hallmark of 
cancer, and taking it into account would further enhance 

Figure 7  Predictor importance estimated by random forest 
using the mean increase in out-of-bag error caused by 
permuting the observations of each predictor. This shows the 
important predictive biomarkers for the combination therapy 
(arm A). APC, antigen-presenting cells.

Figure 8  Distribution of potential biomarkers at pretreatment and post-treatment in responders and non-responders for the 
treatment of combination of nivolumab and ipilimumab (arm A) in HCC patients. Statistical significance is calculated using 
Wilcoxon test. HCC, hepatocellular carcinoma; ns, not significant; ***, p<=0.001; ****, p<=0.0001.
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model capabilities, including biomarker identification. 
Stochastic discrete agent-based models and deterministic 
continuum partial differential equations-based models 
are the most common framework used to understand the 
heterogeneity in tumors.73–76 We have developed a spatial 
platform, spQSP, that merges whole-patient QSP models 
with agent-based models of tumor with stochastic cell-
level representation of the tumor microenvironment that 
is capable of incorporating results of digital pathology 
and spatial transcriptomic.77–79

In summary, QSP is a quickly developing field that has 
been shown to play a crucial role in drug development 
and QSP models are increasingly becoming a standard 
part of regulatory submissions.80–82 The predictive power 
of QSP models is continually being demonstrated and 
constantly improving.21 24–26 Further, the importance 
of virtual patient generation is increasingly becoming 
evident.30 Finally, machine learning has a huge potential 
in the field of QSP, enabling detailed analyses and inter-
pretation of complex state or parameter spaces typical of 
large QSP models.
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