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ABSTRACT
Objective  Lupus nephritis (LN) is a common and severe 
manifestation of SLE. The genetic risk for nephritis and 
progression to end-stage renal disease (ESRD) in patients with 
LN remains unclear. Herein, we aimed to identify novel genetic 
associations with LN, focusing on subphenotypes and ESRD.
Methods  We analysed genomic data on 958 patients with 
SLE (discovery cohort: LN=338) with targeted sequencing 
data from 1832 immunological pathway genes. We used an 
independent multiethnic cohort comprising 1226 patients with 
SLE (LN=603) as a replication dataset. Detailed functional 
annotation and functional epigenomic enrichment analyses 
were applied to predict functional effects of the candidate 
variants.
Results  A genetic variant (rs56097910) within the MERTK 
gene was associated with ESRD in both cohorts, meta-
analysis OR=5.4 (2.8 to 10.6); p=1.0×10-6. We observed 
decreased methylation levels in peripheral blood cells from 
SLE patients with ESRD, compared with patients without renal 
SLE (p=2.7×10-4), at one CpG site (cg16333401) in close 
vicinity to the transcription start site of MERTK and located in a 
DNAse hypersensitivity region in T and B cells. Rs56097910 is 
linked to altered MERTK expression in kidney tissue in public 
eQTL databases. Two loci were replicated for association 
with proliferative LN: PRDM1 (rs6924535, pmeta=1.6×10-5, 
OR=0.58) and APOA1BP (NAXE) (rs942960, pmeta=1.2×10-5, 
OR=2.64).
Conclusion  We identified a novel genetic risk locus, MERTK, 
associated with SLE-ESRD using the data from two large SLE 
cohorts. Through DNA methylation analysis and functional 
annotation, we showed that the risk could be mediated 
through regulation of gene expression. Our results suggest 
that variants in the MERTK gene are important for the risk 
of developing SLE-ESRD and suggest a role for PRDM1 and 
APOA1BP in proliferative LN.

INTRODUCTION
Lupus nephritis (LN) affects up to 50% of 
patients with SLE and is potentially the most 
damaging manifestation.1 2 Although advances 

have been made through immunological 
discoveries and genetic association studies in 
SLE, the outlook for patients with LN has not 
been improved dramatically over the years, as 
around 10% still progress to end-stage renal 
disease (ESRD).1 3 Exact pathogenic mecha-
nisms have yet to be fully elucidated. Mostly, 
immune complex-mediated inflammation 
initiates renal damage by different mecha-
nisms; aberrant tissue repair and fibrosis, as 
a result of ongoing inflammation; cellular 
stress and hypoxia, contribute to the process 
leading to ESRD.4 Diffuse proliferative LN 
exerted the highest risk of ESRD in patients 
with LN development in a meta-analysis.5

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Lupus nephritis (LN) is one of the most common 
major organ involvements in SLE that may progress 
to end-stage renal disease (ESRD) in approximately 
10% of patients with LN.

	⇒ It is still unclear who will develop LN and who will 
progress to ESRD. Identification of genetic risk fac-
tors may lead to better risk assessment.

WHAT THIS STUDY ADDS

	⇒ Using two large SLE cohorts, a novel genetic locus, 
MERTK, was identified as associated with SLE-ESRD 
and replicated across different ethnicities.

	⇒ Functional potential of this gene and the immune cell 
types that are involved in mediating genetic risk in 
SLE-ESRD are highlighted using in silico tools.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The ability to predict progression to ESRD may sub-
sequently lead to therapeutic targets to prevent it.

	⇒ The results of this study support MERTK as a prom-
ising target for preventing ESRD in patients with LN.
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The ethnic disparity in SLE and LN, with the highest 
disease burden in non-Caucasians,6 7 and familial clus-
tering of ESRD in patients of African ancestry with 
SLE supports a genetic component to LN susceptibility 
and severity. Analyses of two large African-American 
cohorts, including patients with LN-ESRD, suggested 
that increased allelic frequency of APOL1 G1/G2 alleles 
in African-Americans might be the main genetic factor 
responsible for the poor prognosis of these patients 
with LN.6 To date, only one genome-wide association 
study (GWAS) has directly focused on LN among female 
patients with SLE of European descent.7 Besides the genes 
connected to LN identified in this GWAS, other genes 
associated to SLE, such as FCGR, STAT4 and BANK1, have 
been validated in independent patient cohorts demon-
strating association with LN and LN severity.8–11 Despite 
these recent advances, genetic risk factors for LN and the 
progression to ESRD have not been fully delineated.

Herein, we explored novel genetic associations predis-
posing to LN subphenotypes and ESRD in SLE by 
targeting regulatory and coding regions of 1832 immu-
nological pathway genes in a cohort of Swedish patients 
with SLE, where SLE patients without LN were used as 
the comparator group. We identified a novel genetic 
locus associated with SLE-ESRD, and replicated findings 
in patients from different ancestral groups using a multi-
ethnic cohort. Functional annotation and epigenetic 
analyses provided insight into the regulatory potential of 
variants at this locus, suggesting its potential as a target 
for modulating genetic risk of SLE-ESRD.

METHODS
Participants
The discovery study population comprised 1167 patients 
with SLE, recruited at the Rheumatology clinics at four 
university hospitals in Sweden. Detailed characteris-
tics of Swedish patients with SLE are reported in Yavuz 
et al.12 The quality controlled discovery dataset used in 
subsequent analyses comprised 958 patients with SLE 
including 338 (35.2%) with LN.13 All subjects provided 
consent to participate in the study. The replication cohort 
included 1244 SLE patients from a University of Cali-
fornia, San Francisco (UCSF) multiethnic study,9 which 
included samples from the GENLES study.14 The multi-
ethnic replication cohort included East Asian, Hispanic, 
North European, South European and African-American 
patients from established lupus cohorts from the USA, 
Australia, Spain and Mexico. A total of 1226 patients with 
SLE including 603 with LN had complete phenotypic 
data and were available for analyses of the multiethnic 
replication cohort.

All patients in both cohorts fulfilled the 1997 American 
College of Rheumatology (ACR) classification criteria for 
SLE.15 LN was defined by the ACR renal criterion. We strat-
ified patients with LN into three subphenotypes (prolifer-
ative, pure membranous and ESRD) with the assumption 
of increasing power for specific risk loci. Proliferative 

and membranous LN definitions were based on the clas-
sification of the biopsies according to the 1982 WHO/
International Society of Nephrology/Renal Pathology 
Society (ISN/RPS 2003) classes.16 17 Proliferative LN was 
defined as WHO Class III/IV and pure membranous by 
WHO Class V. ESRD was defined as patients who required 
renal replacement therapy, dialysis or transplantation. 
The non-LN group of patients with SLE was defined as 
patients not fulfilling the ACR renal criterion.

Genetic analyses
In the discovery cohort, DNA was extracted from blood 
samples of all study participants, and target capturing 
for sequencing was performed using a NimbleGen array, 
including coding and regulatory regions of 1832 genes 
selected based on their involvement in immunological 
pathways. The design and the implementation of this 
capturing array, as well as subsequent sequencing exper-
iments and quality control (QC), have been outlined 
elsewhere.13 After stringent QC filtering, a total of 
97 376 single nucleotide variants (SNVs) with a minor 
allele frequency (MAF) >0.01 and 958 patients with SLE 
remained for the analyses of the discovery cohort. For this 
cohort, we generated principal components (PCs) for 
population stratification evaluation using EIGENSOFT 
as previously described, where the three most significant 
PCs were found to explain most of the population varia-
tion.13 18

Imputation of additional variants in the discovery cohort 
was performed employing the Sanger imputation service 
with the Haplotype reference consortium r1.1 reference 
panel described in McCarthy et al19 and the ‘pre-phase 
with EAGLE2 and impute’ pipeline20 after applying a 
0.99 SNV call rate filter. Imputed genotype calls with a 
genotype probability score below 0.9 were set to missing 
and only variants with (1) info score ≥0.8, (2) MAF >0.01, 
(3) no significant deviation from Hardy-Weinberg equi-
librium (HWE; p>0.0001) and (4) call rate >99% were 
retained. Genotypes were subsequently coded as hard 
called genotypes. After applying of these quality control 
parameters, 245 235 SNVs, with MAF >0.01 remained in 
the discovery dataset for the association analyses (97 376 
directly genotyped and 147 859 imputed SNVs). The 
multiethnic replication cohort had previously been geno-
typed using the Affymetrix LAT1 World array, as detailed 
in Lanata et al.9

Single variant association analyses, meta-analysis and power 
calculations
In the discovery cohort, single variant association analysis 
for each LN phenotype (SLE patients with LN, prolifer-
ative LN, membranous LN or SLE-ESRD vs SLE patients 
without LN) was performed using a logistic regression 
model in PLINK V.1.07,21 with three population structure 
PCs, sex and age at diagnosis as covariates. Due to the 
exploratory nature of the study, all SNVs with a sugges-
tive p value ≤1×10−4 (n=155) in the analyses comparing 
proliferative LN, membranous LN and SLE-ESRD to SLE 
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patients without LN in the discovery cohort were selected 
for analysis in the replication cohort. We also included 
variants located up to 100 kb upstream and downstream of 
the signals. This resulted in 36 candidate genomic regions 
for further evaluation. Permutation testing, to generate 
empirical logistic regression p values, was performed in 
PLINK using label swapping and the default adaptive 
permutation approach.

To increase the set of overlapping variants between 
the discovery and replication cohorts, the replica-
tion cohort genotype data were imputed and quality 
controlled using the same method as described above for 
the discovery cohort, applying the following thresholds: 
genotype probability >0.9, info score >0.8, MAF >0.01, 
HWE p>0.0001 and call rate >0.95. After imputation and 
QC, the replication dataset for the 36 candidate regions 
detected in the discovery cohort contained 45 083 SNVs. 
Single variant association analysis for each LN phenotype 
in the replication cohort was performed in PLINK using 
logistic regressions with three PCs for population strati-
fication, sex and age at diagnosis as covariates. Also for 
the replication study, permutation testing was performed 
to assess the association p values. Additionally, logistic 
regression analyses were performed separately for each 
ethnicity (Asian, black, Hispanic, European). Meta-
analysis was carried out for variants in the 36 candidate 
regions that were overlapping between the discovery 
and replication datasets. Results from each ethnicity 
were considered separately, and for the meta-analysis, 
we applied a random effect model using DerSimonian-
Laird estimators and Wald-type tests and CIs using the R 
package metaphor.22

Statistical power for genetic associations in the 
discovery and replication studies for the three LN pheno-
types was calculated using the genpwr R package23 using 
logistic regression assuming an additive model with 
alphadiscovery=0.0001, alphareplication=0.05, MAF=0.05–0.25, 
OR=1.5–5. Results indicated that genetic associations for 
common SNVs of moderate effects could be well detected 
in both the discovery and replication studies for prolifer-
ative LN, whereas large effect sizes would be required for 
detection of membranous LN and SLE-ESRD associations 
(online supplemental figure S1, S2).

Analysis of DNA methylation
Peripheral blood DNA methylation was interrogated 
using the Illumina HM450k array. Data acquisition, 
preprocessing, QC, normalisation of methylation data 
and estimation of relative blood cell type distribution 
have been described previously.24 Differential DNA 
methylation for CpG sites at the loci of interest between 
SLE-ESRD (n=20) and non-renal SLE (n=302) was 
tested using a linear regression model including age at 
sampling, sex, blood cell type distribution and HM450k 
BeadChip as covariates, with significance defined at 
p<0.0028 after Bonferroni correction for multiple testing 
(0.05/18 tests).

Functional annotation
To evaluate the potential functional impact of the identi-
fied associated variants, we performed detailed functional 
annotation by using a combination of in silico tools and 
public datasets. HaploReg v4.1 was used to perform epig-
enomic annotation.25 To explore expression quantitative 
trait loci (eQTL) across different human tissues, we used 
several public databases: Genotype-Tissue Expression 
(GTEx) project,26 Blood NESDA NTR Conditional eQTL 
Catalog,27 Blood eQTL28 and RegulomeDB.29 In addition, 
GTEx data were also queried to identify genetic variants 
regulating DNA splicing (splicing QTL, sQLT). The 
transcription factor binding predictions were analysed 
using the sTRAP online tool with default parameters.30 
Genomic overlap between differentially methylated CpG 
sites with chromatin marks and DNase hypersensitivity 
sites was analysed using the NIH Roadmap Epigenomics 
Programme/ENCODE database.31 Using the online tool 
Capture Hi-C plotter (CHiCP), chromatin interactions 
between SNVs and gene promoter regions were evalu-
ated.32

RESULTS
Clinical characteristics of the 2184 patients who fulfilled 
the 1997 ACR SLE criteria15 are summarised in table 1. 
Of the 941 patients with LN, 428 had a renal biopsy and 
were stratified into proliferative and membranous LN 
based on renal histopathology according to the WHO/
ISN/RPS classification system.16 SLE-ESRD was defined as 
patients who required renal replacement therapy, dialysis 
or transplantation.

Potentially novel associations with proliferative, membranous 
and end-stage lupus nephritis
We then performed a case-case analysis using these more 
homogeneous LN phenotypes proliferative LN, pure 
membranous LN and SLE-ESRD versus SLE without 
renal involvement (online supplemental table S1). The 
strongest associated directly genotyped variant within each 
locus was used as the index SNV of association. Thirty-
seven SNVs showed suggestive evidence of associations 
with proliferative LN in the discovery cohort (p≤1×10-

4, online supplemental table S1A). Associations were 
observed with proliferative LN and OAS2 (2′-5′-oligoad-
enylate synthetase, rs1293765, p=1.8×10-5), APOA1BP/
NAXE (apolipoprotein A-I binding protein, rs942960, 
p=2.8×10 -5), AK8 (adenylate kinase, rs192593197, 
p=3.5×10-5) and PRDM1 (PR domain 1, rs6924535, 
p=5.1×10-5). OAS2 and PRDM1 have been implicated in 
the Toll-like receptor (TLR) signalling pathway and SLE, 
respectively.33–35 Interestingly, the most significant poten-
tially novel SNVs within the PRDM1 gene, which encodes 
B-lymphocyte-induced maturation protein 1 (BLIMP-1), 
are not in linkage disequilibrium (LD) with previously 
reported SLE-associated SNVs (rs548234 and rs6568431).

Among the 39 variants that exceeded the suggestive 
level of significance for pure membranous LN in the 
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discovery cohort, the strongest association corresponded 
to an intronic variant located in LTF (lactotransferrin, 
rs6776245, p=1.6×10-6, online supplemental table S1B). 
LTF encodes a major iron-binding protein found in 
secondary granules of neutrophils. Another candidate 
gene is MMS19 (MMS19 homologue, cytosolic iron-sulfur 
assembly component, rs116933945, p=8.4×10-5).

Finally, we observed suggestive associations with SLE-
ESRD at 79 SNVs in the discovery cohort (p≤1×10-4, 
online supplemental table S1C). The strongest signals 
of association originated from several variants in 
complete LD located in the MERTK gene region (MER 
proto-oncogene, tyrosine kinase gene), which encodes 
tyrosine-protein kinase Mer (top SNV rs72825620, 
p=3.0×10-6); of which one was directly genotyped (index 
SNV: rs56097910, p=9.5×10-6) (figure  1A). We found 
that this MERTK variant, rs56097910, was significantly 
enriched among patients with SLE who developed ESRD 
(MAF=0.13) compared with patients without LN SLE 
(MAF=0.02) (online supplemental table S1C). The other 
loci with suggestive associations with SLE-ESRD have 
previously been related to type 1 diabetes-related ESRD 
(AFF3, AF4/FMR2 family member 3),36 type 2 diabetes 
(THADA, THADA armadillo repeat containing)37 and 
potassium channels (GRK5, G protein-coupled receptor 
kinase 5)38 (online supplemental table S1C).

Multiethnic replication cohort and meta-analysis
To validate our findings, all regions containing SNVs with 
an association p value of <1×10-4 for each of the three LN 
traits in the discovery cohort were selected and examined 
in a multiethnic replication cohort. Genotype imputa-
tion was performed in both cohorts to increase the set 
of overlapping variants between the discovery and repli-
cation cohorts. We first performed a logistic regression 
analysis in the full replication cohort, followed by logistic 

regression analyses in each ethnicity independently 
(online supplemental table S1). Lastly, we performed 
a meta-analysis with a random effects model using the 
results of both discovery and replication cohorts (online 
supplemental table S1). Additionally, permutation testing 
was performed in both the discovery and replication 
cohorts to asses the p values, which remained largely the 
same (online supplemental table S1).

In proliferative LN, the strongest signal within PRDM1 
(rs6924535, pmultiethnic=0.029) and two SNVs in complete 
LD (rs942960, rs942961; pmultiethnic=0.037) located in 
APOA1BP (NAXE) were nominally significant in the multi-
ethnic replication cohort (table 2, online supplemental 
table S1A). In the meta-analysis, the strongest associ-
ation for directly genotyped variants in PRDM1 came 
from three polymorphisms in high LD (r2=0.92, index 
SNV: rs6924535, pmeta=1.6×10-5, OR=0.58; table  2). The 
two aforementioned SNVs located in APOA1BP (NAXE) 
were also significant in the meta-analysis (pmeta=1.2×10-5, 
OR=2.64). For membranous LN, none of the SNVs identi-
fied in the discovery cohort replicated in the multiethnic 
cohort. However, the biopsy rate was lower in the repli-
cation cohort, hampering replication of the associations 
for proliferative and membranous LN (76% vs 28%, 
discovery and replication cohorts, respectively, table 1).

We then focused our continued analyses on the 
outcome SLE-ESRD, as uniform data for this phenotype 
were available for both cohorts. In ESRD, the top directly 
genotyped SNV rs56097910 identified within MERTK in 
the discovery cohort had been imputed in the replica-
tion cohort. This SNV was also associated with ESRD in 
the replication cohort (pmultiethnic=0.043; OR: 2.59; table 2, 
online supplemental table S1C), as were a number of 
additional variants (figure 1B, online supplemental table 
S2). In the meta-analysis, an imputed SNV (rs72825639) 

Table 1  Patients with SLE, characteristics in discovery and replication cohorts

Discovery (Sweden) Replication (multiethnic)

LN
(n=338)

SLE non-LN
(n=620) P value†

LN
(n=603)

SLE non-LN
(n=623) P value†

Females, n (%) 261 (77.2) 565 (91.1) <0.01 533 (88.4) 583 (93.6) <0.01

Age at diagnosis, year (SD)* 30.8 (15.4) 38.8 (15.7) <0.01 28.2 (11.8) 34.9 (12.9) <0.01

SLE disease duration, year (SD)* 17.1 (11.5) 16.0 (12.1) 0.19 9.6 (8.3) 7.8 (8.3) 0.18

Kidney biopsy (%) 257 (76.0) 171 (28.4)

Proliferative (%) 153 (45.3) 93 (15.4)

Pure membranous (%) 41 (12.1) 40 (6.6)

End-stage renal disease (%) 35 (10.4) 73 (12.1)

Hypertension (%) 144 (42.6) 151 (24.4) <0.01

Diabetes mellitus (%) 9 (2.7) 30 (4.8) 0.086

*Mean, SD.
†Independent samples t-test. Data are presented as mean (SD) or n (%), unless otherwise indicated. Patients fulfilled at least 4 of 11 ACR criteria for 
SLE.15 LN was defined by the ACR renal criterion or renal biopsy. Proliferative LN was defined as WHO Class III/IV, and pure membranous by WHO 
Class V. ESRD was defined as patients who required renal replacement therapy, dialysis or transplantation. The non-LN group of patients with SLE 
was defined as patients not fulfilling the ACR renal criterion.
ACR, American College of Rheumatology; ESRD, end-stage renal disease; LN, lupus nephritis.
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Figure 1  Regional association plots of the MERTK region. The regional association plots display results of the analysis of 
SLE-ESRD (n=35;73) versus SLE without nephritis (n=620;623) in (A) discovery and (B) replication datasets, respectively. 
Imputed SNVs are indicated by plus signs. (C) Meta-analysis of discovery and replication SLE-ESRD association analyses. All 
overlapping SNVs analysed in the discovery and replication cohorts are included. For the meta-analysis candidate, SNVs from 
the discovery cohort analysis are indicated in black. (D) Epigenetic analysis in SLE-ESRD (n=20) versus non-renal SLE (n=302) 
revealed a CpG site with decreased methylation in ESRD. (E) Genes and their chromosomal position in the region. ESRD, end-
stage renal disease; SNV, single nucleotide variant
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in complete LD with rs56097910 showed the strongest 
effect (pmeta=8.9×10-7, OR=5.49) followed by rs56097910 
(pmeta=1.0×10-6, OR=5.40) (figure  1C, online supple-
mental table S2). Of note, this region also harboured 
an additional SNV rs13419523 (pmeta=4.9×10-7, OR=3.90) 
which had not passed the discovery suggestive signifi-
cance threshold (figure  1C, online supplemental table 
S2).

Functional annotations and epigenetic enrichment analysis
Functional annotations of variants at the three repli-
cated loci associated with proliferative LN and ESRD are 
shown in table  3. We focused the functional follow-up 
on the locus discovered for the outcome SLE-ESRD. 
The ESRD-associated genetic variants in MERTK reside 
in a non-coding region, suggesting that they might exert 
their effect on the disease through gene regulation. We 
therefore investigated DNA methylation at the MERTK 
locus in ESRD compared with non-renal SLE, and iden-
tified a CpG site cg16333401 with decreased methylation 
in ESRD (p=0.00027) (online supplemental table S3). 
This CpG site is located in close proximity to the tran-
scription start site of MERTK (figure  1D–E). We also 
analysed genomic overlap of differential methylation 
with six different histone marks (H3K4me1, H3K4me3, 
H3K36me3, H3K9me3, H3K27ac and H3K27me3) and 
DNAse hypersensitivity sites in reference lymphocytes 
using ENCODE (online supplemental table S3). We 
observed that in both T and B lymphocytes, the differ-
entially methylated sites overlapped with histone marks 
of active enhancers (H3K4me1 and H3K4me3) and with 
a DNAse hypersensitivity region, suggesting a potentially 
functional role in transcriptional regulation.

Given that epigenetic marks may correlate with gene 
expression changes, we searched through several public 
databases of eQTLs (detailed in the Methods section) to 
explore the relationship between the top SNVs rs56097910 
and rs13419523, and MERTK expression. Besides renal 
cortex (online supplemental figure S3), we found associ-
ation with expression change of MERTK in whole blood 
(online supplemental figure S3, S4), fibroblasts (p=1.4×10-

7) and in other tissues such as lung (p=2.9×10-27), and 
subcutaneous adipose tissue (p=1.4×10-36). The role of the 
region with the ESRD-associated top variants (rs56097910, 
rs13419523) in MERTK regulation is also supported by 
their physical interactions with the MERTK promoter in 
multiple cells such as macrophages, monocytes, B and T 
cells (online supplemental figure S3, S4). Next, we deter-
mined which transcription factors (TFs) have binding 
sites that might be affected by rs56097910 or rs13419523. 
We identified differences in binding of several TFs such as 
zinc finger 423 (ZNF423/ROAZ) and SMAD4 which are 
involved in TGF-β signalling and the Th1 differentiation 
pathway (online supplemental table S4).

DISCUSSION
Herein, we report results of a large genetic associa-
tion study that aims to identify novel genetic variants Ta

b
le

 2
 

R
ep

lic
at

io
n 

co
ho

rt
 a

nd
 m

et
a-

an
al

ys
is

 r
es

ul
ts

 fo
r 

re
p

lic
at

ed
 lo

ci
 fo

r 
p

ro
lif

er
at

iv
e 

lu
p

us
 n

ep
hr

iti
s 

an
d

 e
nd

-s
ta

ge
 r

en
al

 d
is

ea
se

 in
 S

LE

D
is

co
ve

ry
 c

o
ho

rt
 (S

w
ed

en
)

R
ep

lic
at

io
n 

co
ho

rt
 (m

ul
ti

et
hn

ic
)*

*
M

et
a-

an
al

ys
is

††

Lo
cu

s
S

N
V

M
A

F
M

A
F

P
 v

al
ue

O
R

 (9
5%

 C
I)

M
A

F
M

A
F

P
 v

al
ue

O
R

 (9
5%

 C
I)

P
 v

al
ue

O
R

I2  %

P
ro

lif
er

at
iv

e 
LN

 v
s 

S
LE

-n
on

-L
N

p
LN

+
n=

15
3

LN
-

n=
62

0
p

LN
+

n=
93

LN
-

n=
62

3

A
P

O
A

1B
P

rs
94

29
60

0.
08

0.
03

2.
76

E
-0

5
3.

23
 (1

.8
7 

to
 5

.5
9)

0.
08

0.
05

0.
03

7
1.

99
 (1

.0
4 

to
 3

.8
)

1.
16

E
-0

5
2.

64
0

A
P

O
A

1B
P

rs
94

29
61

0.
08

0.
03

2.
76

E
-0

5
3.

23
 (1

.8
7 

to
 5

.5
9)

0.
08

0.
05

0.
03

7
1.

99
 (1

.0
4 

to
 3

.8
)

1.
16

E
-0

5
2.

64
0

P
R

D
M

1
rs

19
84

22
4

0.
25

0.
38

6.
14

E
-0

5
0.

54
 (0

.4
 t

o 
0.

73
)

0.
25

0.
31

0.
03

6
0.

66
 (0

.4
4 

to
 0

.9
7)

2.
50

E
-0

5
0.

58
0

P
R

D
M

1
rs

69
24

53
5

0.
26

0.
38

5.
08

E
-0

5
0.

53
 (0

.3
9 

to
 0

.7
2)

0.
25

0.
30

0.
02

9
0.

65
 (0

.4
4 

to
 0

.9
6)

1.
58

E
-0

5
0.

59
0

P
R

D
M

1
rs

53
57

80
0.

26
0.

38
7.

88
E

-0
5

0.
54

 (0
.4

 t
o 

0.
73

)
0.

30
0.

34
0.

01
9

0.
63

 (0
.4

3 
to

 0
.9

3)
3.

19
E

-0
3

0.
59

30

E
S

R
D

 v
s 

S
LE

 n
on

-L
N

E
S

R
D

+
n=

35
LN

-
n=

62
0

E
S

R
D

+
n=

73
LN

-
n=

62
3

M
E

R
TK

rs
72

82
56

39
0.

13
0.

02
7.

84
E

-0
6

7.
58

 (3
.1

2 
to

 1
8.

43
)

0.
05

0.
03

0.
04

4
2.

57
 (1

.0
2 

to
 6

.4
6)

8.
95

E
-0

7
5.

50
0

M
E

R
TK

rs
56

09
79

10
0.

13
0.

02
9.

52
E

-0
6

7.
32

 (3
.0

3 
to

 1
7.

68
)

0.
05

0.
03

0.
04

3
2.

59
 (1

.0
3 

to
 6

.5
)

1.
03

E
-0

6
5.

40
0

M
E

R
TK

rs
72

82
56

50
0.

13
0.

02
9.

49
E

-0
6

7.
33

 (3
.0

3 
to

 1
7.

68
)

0.
05

0.
03

0.
04

3
2.

59
 (1

.0
3 

to
 6

.5
)

1.
03

E
-0

6
5.

40
0

*M
ul

tie
th

ni
c 

co
ho

rt
, a

ll 
et

hn
ic

iti
es

 c
om

b
in

ed
.

†E
ac

h 
re

p
lic

at
io

n 
p

op
ul

at
io

n 
an

al
ys

ed
 s

ep
ar

at
el

y 
b

y 
lo

gi
st

ic
 r

eg
re

ss
io

n,
 t

he
n 

in
cl

ud
ed

 in
 a

 m
et

a-
an

al
ys

is
 w

ith
 t

he
 d

is
co

ve
ry

 c
oh

or
t.

E
S

R
D

, e
nd

-s
ta

ge
 r

en
al

 d
is

ea
se

; I
2 , I

2 -s
ta

tis
tic

s 
fo

r 
he

te
ro

ge
ne

ity
 o

f s
tu

d
ie

s;
 L

N
, l

up
us

 n
ep

hr
iti

s;
 M

A
F,

 m
in

or
 a

lle
le

 fr
eq

ue
nc

y;
 p

LN
, p

ro
lif

er
at

iv
e 

LN
.

https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752
https://dx.doi.org/10.1136/lupus-2022-000752


Yavuz S, et al. Lupus Science & Medicine 2022;9:e000752. doi:10.1136/lupus-2022-000752 7

Lupus nephritis

contributing to the risk of developing LN subphenotypes 
and ESRD among patients with SLE. We identified a 
novel genetic region, MERTK, associated with SLE-ESRD. 
Moreover, our results replicate and extend across ethnic-
ities. To the best of our knowledge, this is the first report 
of the association of MERTK as a susceptibility locus for 
ESRD in SLE patients with LN, in at least two different 
ancestries.

Renal damage including ESRD is one of the major 
predictors of mortality in SLE.39 40 Although molec-
ular mechanisms for different histopathologies in LN 
have not been fully elucidated, the identification of the 
genetic risk factors for the subgroup of patients with LN 
who developed ESRD may lead to a better risk assessment 
and future targeting of the relevant pathways resulting in 
improved survival. We found that a variant, rs56097910, in 
MERTK is significantly enriched among patients with SLE 
who developed ESRD compared with patients without LN 
SLE in our discovery cohort. When we sought to replicate 
this variant in an independent multiethnic SLE cohort 
from the USA, we observed an increased MAF in ESRD 
compared with non-renal SLE across populations, except 
for those with African ancestry.

In addition to rs56097910, we found several variants 
within MERTK that are associated with ESRD (figure 1), 
further strengthening a role for this region in ESRD. 
MERTK is a member of the Tyro3/Axl/Mer (TAM) 
receptor kinase family and the main apoptotic cell receptor 
on macrophages.41 42 MERTK has been implicated in the 
regulation of innate immune response through effero-
cytosis, and is linked to changes in cytokine production, 
including interleukin-10 (IL-10), transforming growth 
factor-β (TGF-β), IL-6 and IL-12.43 44 Furthermore, it 
has been shown to play an important role in inhibition 
of TLRs-mediated innate immune response by activating 
STAT1, which contributes to the inflammatory negative 
feedback signals by inducing the production of suppres-
sors of cytokine signalling SOCS1 and SOCS3.45

Our functional annotation analyses strongly suggested 
a regulatory role of rs56097910 and/or other signifi-
cant variants in MERTK. The index SNV, rs56097910, 
is an eQTL for MERTK expression in multiple tissues 
including kidney, where the minor allele is associated 
with increased gene expression. In addition, the finding 
of overlap with active chromatin epigenetic marks in 
this risk locus reflects a robust functional signature. It 
remains unclear how the increased MERTK expression 
relates to a severe SLE outcome such as ESRD. LN is 
characterised by recurring injury-repair cycles because 
of unresolved inflammation.4 One possible explanation 
might relate to the activation of STAT1, as STAT1 also 
acts as a transducer of multiple cytokines such as IFN 
(α/β/γ).42 43 Alternatively, MERTK-expressing macro-
phages may play a key role in dysregulated repair in 
kidneys. We hypothesise that MERTK suppresses inflam-
mation via increased efferocytosis that may promote 
fibrosis—partly through TGF-β—a similar mechanism 
shown in tissue repair following liver injury and idiopathic Ta
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pulmonary fibrosis in which MERTK-expressing macro-
phages aid the process.46 47 Of note, recent studies show 
that plasma soluble tyrosine-protein kinase Mer (sMer) 
levels correlate with the disease activity and severity in 
patients with LN.48–51 However, the relative contribution 
of MERTK gene variants to SLE-ESRD compared with 
other risk factors is difficult to estimate, but we noticed 
that the vast majority of patients with ESRD received treat-
ment for hypertension, unlike in the SLE non-LN group 
where a minority of patients had such treatment (80% vs 
24%, t-test p value <0.01). In contrast, there was no differ-
ence in prevalence of diabetes between these two groups. 
Therefore, further research that focuses on elucidating 
the role of this genetic association with MERTK and its 
effect on SLE-ESRD pathophysiology is warranted.

The results also revealed a new variant, rs6924535, in 
an intronic region of the PRDM1 gene and its associa-
tion with proliferative LN, which was replicated in the US 
multiethnic cohort. The PRDM1 gene encodes a protein 
(BLIMP-1) that is an essential modulator of dendritic 
cell function and a repressor of the interferon β gene.52 
Although BLIMP-1 drives B cells into antibody secreting 
cells,53 its expression in peripheral blood B cells appears 
to be low and is not affected by genetic variants.54 In 
addition, variants in the intergenic region between the 
PRDM1 and ATG5 genes are associated with risk for 
SLE.55 56 Of note, the protective allele of rs6924535 is not 
in LD with previously confirmed variants associated with 
an increased risk for SLE in this region. We also identified 
another new genetic signal within APOA1BP (NAXE) on 
chromosome 1q22, which also replicated in the US multi-
ethnic cohort. The encoded product, apolipoprotein A1 
binding protein, interacts with apolipoprotein A-1 and 
functions in cholesterol transport. The related pathway is 
involved in the protection of the cell from reactive oxygen 
species. The eQTL analysis of proliferative LN risk vari-
ants in this locus revealed higher expression of NAXE in 
blood monocytes and multiple tissues (data not shown). 
With regard to membranous LN-associated signals, none 
of the variants were replicated, likely due to the small 
sample size in each ethnicity.

The major strength of this study is the utilisation of two 
large SLE cohorts from different ancestries. It is worth 
mentioning that most patients with LN in our discovery 
cohort had a corresponding renal biopsy (76%), allowing 
for assessment of specific histopathological subtypes. 
Some limitations should also be acknowledged. We 
targeted more homogeneous LN phenotypes hypoth-
esising that this would increase power for specific loci; 
however, our approach might result in limited statistical 
power for analysis in some subphenotypes, due to low 
biopsy rates in the replication cohort. Our experiment 
covered 1832 genes, it is still limited by virtue of targeting 
some of the genes and pathways that are known to be 
involved in inflammation. Finally, our SNV analysis did 
not incorporate all known risk loci for chronic kidney 
diseases.

In summary, we identified a novel SLE-ESRD suscep-
tibility locus, containing the MERTK gene, in a large 
Swedish SLE cohort and corroborated our findings in a 
multiethnic SLE cohort. We characterised the functional 
potential of this gene using in silico tools. Our analyses 
highlighted immune cell types that are involved in medi-
ating genetic risk in ESRD associated with LN. Of note, 
MERTK does not confer an increased risk for SLE per 
se. Given that ESRD is one of the main predictors of 
mortality in lupus and the ability to predict progression to 
ESRD eventually may yield therapeutic targets to prevent 
it, our results support MERTK as a promising target for 
preventing ESRD in patients with LN.
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