
New horizons in pulmonary arterial
hypertension therapies

Nazzareno Galiè1 and Ardeschir-Hossein Ghofrani2,3

Affiliations: 1Dept of Experimental, Diagnostic and Specialty Medicine - DIMES, Bologna University Hospital,
Bologna, Italy. 2University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. 3Dept of
Medicine, Imperial College London, London, UK.
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ABSTRACT Pulmonary arterial hypertension (PAH) is a fatal disease associated with vasoconstriction and

vascular remodelling. There are three well-known pathways that contribute to the pathogenesis of PAH:

endothelin, nitric oxide and prostacyclin. Treatments targeting these pathways are well established in

clinical practice, such as endothelin receptor antagonists, phosphodiesterase type-5 inhibitors and

epoprostenol. New treatments have been developed with the aim of improving efficacy and ease of

administration of therapies targeting these three established pathways, and several of these new treatments

have recently undergone phase III investigation. Ongoing pre-clinical studies are also beginning to uncover

other mechanisms that play a role in the complex pathobiology of PAH. These include genetic targets,

transcription factors and signalling pathways. The discovery of new treatment targets may change the

landscape of PAH therapy in the future. Herein, we present some of the promising future treatments and

interesting new therapeutic targets.
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PAH-specific therapies have improved outcomes, but PAH remains progressive and fatal; new drugs
are in development http://ow.ly/pPHGl

Introduction
Pulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries that is, in part, due to

vasoconstriction and remodelling of the vascular wall [1]. These processes contribute to a characteristic

progressive increase in pulmonary vascular resistance (PVR) and subsequent effects on the right ventricle

that will eventually lead to death [2].

The pathogenesis of PAH is complex and many factors have been identified or proposed as contributing to

this vasoconstriction and vascular remodelling (fig. 1). These fall into several key, but somewhat inter-

related and overlapping, categories as follows: vasoactive factors, calcium signalling molecules,

inflammatory mediators, growth factors, bone morphogenetic protein receptor 2 (BMPR2) mutations

and metabolic dysfunction.

Over the past two decades, three major pathways (the prostacyclin, endothelin and nitric oxide (NO)

pathways) have been established as being key to the development and progression of PAH [1, 3]. These

pathways have been targeted by PAH-specific therapies that fall into three drug classes: prostacyclin

analogues, endothelin receptor antagonists (ERA) and phosphodiesterase-5 inhibitors (PDE-5i). In

registration trials, drugs in these classes have been universally shown to improve exercise capacity and

haemodynamics of patients with PAH (table 1) [4–17]. In addition, some of these drugs were shown to
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improve symptoms, survival, functional class and time to clinical worsening. The use of these agents in

clinical practice has been shown to be associated with improvements in outcome for patients with PAH

compared with historical data; however, there remains room for improvement [18–20].

One strategy for improving the therapeutic options available for patients has been to develop new and

improved drugs that target the established prostacyclin, endothelin and NO pathways. There are new drugs

acting on each of these pathways that are currently, or have recently, undergone phase III development,

which are described is this review.

Continual research into the molecular mechanisms of PAH has led to the discovery of new putative

pathways and so opened up the possibility of new drug targets (fig. 2). Drugs acting on these pathways that

are already in clinical development as potential treatments for PAH are described within this review. There

are many more agents acting on these newly elucidated pathways that have the potential to become

treatments for PAH. The most promising of these compounds will be discussed later. This review also

touches on drugs developed for PAH that have been investigated in another form of pulmonary

hypertension (PH), namely chronic thromboembolic pulmonary hypertension (CTEPH).

New drugs
Within the past 5 years, there have been several phase III registration trials for new PAH-specific drugs,

namely macitentan, selexipag, riociguat and imatinib. Macitentan is a new and improved agent of the ERA

drug class that has recently been approved by the US Food and Drug Administration for the treatment of

PAH patients. Selexipag, an oral agonist of the IP prostanoid receptor, opens up a new class of PAH-specific

drugs acting on the prostacyclin pathway. Riociguat, a guanlyate cyclase stimulator, is representative of a

new class of drugs with a new mechanism of action targeting the NO pathway. Imatinib, a tyrosine kinase

inhibitor, is the first non-vasoactive drug to go into phase III clinical development and targets pathways

solely related to vascular remodelling.

Macitentan
Macitentan is a novel dual ERA with sustained receptor binding [21], and optimised physicochemical

properties leading to enhanced tissue penetration [22]. Studies have shown that macitentan has a limited

drug–drug interaction profile [23, 24]. It also has no significant inhibitory effects on hepatic bile salt

transport [25] and, therefore, has the potential for a favourable liver safety profile [26].
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FIGURE 1 Established and putative mediators and pathways involved in the pathogenesis of pulmonary arterial hypertension. BMPR2: bone morphogenetic
peptide receptor 2; VIP: vasoactive intestinal peptide; NO: nitric oxide; RANTES: regulated on activation, normal T-cell expressed and secreted; MCP: monocyte
chemoattractant protein; IL: interleukin; PDGF: platelet-derived growth factor; EGF: epidermal growth factor; FGF: fibroblast growth factor; VEGF: vascular
epidermal growth factor; PDK: pyruvate dehydrogenase kinase; PDH: pyruvate dehydrogenase.
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Data from the large, multicentre, double-blind phase III SERAPHIN (Study with an Endothelin Receptor

Antagonist in Pulmonary Arterial Hypertension to Improve Clinical Outcome) trial have recently been

published [27]. SERAPHIN was an event-driven trial with a primary end-point of time to first morbidity or

mortality event. Morbidity and mortality were chosen as a primary end-point to reflect recommendations

from the 4th World Symposium on Pulmonary Hypertension [28], with the aim of providing robust,

clinically meaningful data that is relevant to the long-term nature of PAH. In the SERAPHIN study, 10 mg

of macitentan significantly reduced the risk of morbidity and mortality by 45% (p,0.001). Macitentan was

well tolerated by the patients in this trial and, notably, adverse events commonly associated with the ERA

drug class (elevated liver aminotransferases and peripheral oedema) occurred at a similar rate to patients

who received placebo across all groups [27]. Macitentan has recently been approved by the US Food and

Drug Administration for the treatment of PAH patients.

Selexipag
Selexipag is a highly selective oral IP receptor agonist that is rapidly hydrolysed to a long-acting metabolite

[29]. Both selexipag and its active metabolite have a high binding affinity for the IP receptor and, unlike

prostacyclin analogues, do not activate other prostanoid receptors. The selective nature of selexipag may

translate into an improved safety profile, particularly with regards to gastrointestinal effects as, unlike

iloprost and beraprost, selexipag and its metabolite do not stimulate gastric smooth muscle via the

prostaglandin E (EP) receptors EP3 and EP1 [30].

In a phase II proof-of-concept study in 43 patients with symptomatic PAH receiving either ERA or PDE-5i

therapy, selexipag significantly improved PVR compared with placebo (treatment effect, per protocol

analysis, 30.3%; p50.0045) (fig. 3) [31]. Selexipag-treated patients also experienced an increase in 6-min

walk distance (6MWD) (mean change from baseline 24.7 m) although this did not reach significance when

compared with placebo. Selexipag was well tolerated at doses up to 800 mg twice daily [31]. The

encouraging preliminary results from this pilot study provided the rationale for investigating the effect of

selexipag on morbidity and mortality in the event-driven phase III GRIPHON (Prostaglandin Receptor

Agonist in Pulmonary Arterial Hypertension) study [32].

Oral drugs acting on the prostacyclin pathway, such as selexipag, are an attractive therapeutic proposition.

Intravenous prostacyclin analogues are potent drugs but their invasive mode of administration is a major

drawback to their utility and also acceptance by the patient. Although selexipag is the first oral IP receptor

agonist investigated for PAH, it is not the first oral drug to be developed for this pathway. Beraprost is an

oral prostacyclin analogue that is already in clinical use. In clinical trials, beraprost was shown to have initial

effects in improving exercise capacity [17] and reducing disease progression [16]; however, these effects

TABLE 1 Efficacy parameters tested in historical registration trials of drugs approved for use in pulmonary arterial
hypertension

Drug Study
acronym

Parameters that improved [Ref.]

Exercise
capacity

FC Haemo-
dynamics

TTCW Signs and
symptoms

Survival

Endothelin pathway
Bosentan Study 351

BREATHE-1
q q q q q NT [4, 5]

Sitaxsentan# STRIDE-1 and 2 q q q Q Q NT [6, 7]
Ambrisentan ARIES-1 and 2 q q q q q NT [8]

NO pathway
Sildenafil SUPER-1 q q q Q Q NT [9]
Tadalafil PHIRST q Q q q Q NT [10]

Prostacyclin pathway
Intravenous epoprostenol q q q NT NT q [11, 12]
Inhaled iloprost AIR q q q q" q NT [13]
Subcutaneous treprostinil q NT q q q NT [14]
Inhaled treprostinil TRIUMPH q Q NT Q Q NT [15]
Oral beraprost ALPHABET q q Q q q NT [16, 17]

FC: functional class; TTCW: time to clinical worsening; NO: nitric oxide; NT: not tested; q: parameter improved; Q: parameter did not improve.
#: withdrawn from market in 2010 due to two cases of fatal hepatic failure linked to its use; ": TTCW was defined as a combination of o10%
improvement in walking distance combined with an absence of clinical deterioration.
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were not sustainable over the longer term [33]. This lack of sustainability coupled with an adverse event

profile typical of prostacyclin therapy means its risk–benefit profile is not ideal [16].

The efficacy of another oral prostacyclin analogue, treprostinil, was assessed in the FREEDOM-C trial. The

addition of oral treprostinil therapy to background ERA or PDE-5i therapy failed to produce significant

improvements in either 6MWD or Borg dyspnoea score [34]. It seems unlikely that oral treprostinil will be

approved by the regulatory authorities.

Riociguat
Riociguat is a stimulator of soluble guanylate cyclase (sGC) that targets the NO pathway. Riociguat also

sensitises sGC to NO and triggers downstream increases in cyclic guanosine monophosphate that will

promote vasorelaxation [35].

In a phase II study in patients with functional class II/III PAH or CTEPH, treatment with riociguat for 12 weeks

resulted in a significant increase in 6MWD and reductions in PVR [36]. Subsequently, riociguat has been

evaluated in two large phase III trials: PATENT-1 (Pulmonary Arterial Hypertension sGC-stimulator Trial) in

445 treatment-experienced and -naı̈ve patients with PAH [37] and CHEST-1 (Chronic Thromboembolic

Pulmonary Hypertension sGC-Stimulator Trial) in 263 patients with inoperable CTEPH [38].

In PATENT-1, 12 weeks of treatment with riociguat was well tolerated and resulted in significant

improvements in 6MWD (placebo-corrected improvement 35.8 m; p,0.001), PVR (p,0.001), functional

class (p50.003), time to clinical worsening (p50.005) and Borg dyspnoea score (p50.002) [37]. Interim

data from the long-term extension study PATENT-2 have recently been reported: after 1 year of treatment,
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FIGURE 2 Compounds acting on pathogenic pathways of pulmonary arterial hypertension. BMPR2: bone morphogenetic peptide receptor 2; VIP: vasoactive
intestinal peptide; NO: nitric oxide; RANTES: regulated on activation, normal T-cell expressed and secreted; MCP: monocyte chemoattractant protein; IL:
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6MWD continued to improve with a mean increase in the overall cohort (n5214) of 48¡72 m compared

with baseline [39]. Functional class also continued to improve and 68% of the overall cohort were in

functional class I/II after 1 year of treatment (versus 38–49% at baseline); 36% and 57% of patients showed

improved or stable functional class, respectively. Riociguat has recently been approved by the US Food and

Drug Administration for the treatment of PAH patients.

In CHEST-1, patients with CTEPH treated for 16 weeks showed a significant increase in 6MWD (46 m;

p,0.001) and secondary end-points, including PVR (p,0.001), reductions in N-terminal pro-brain

natriuretic peptide (NT-proBNP; p50.001) and functional class (p50.003), compared with placebo [38].

Previously, there was little evidence that PAH-specific therapies were useful in the treatment of patients with

CTEPH. The BENEFIT (Bosentan Effects in Inoperable Forms Of Chronic Thromboembolic Pulmonary

Hypertension) trial explored the efficacy of bosentan in the treatment of 157 patients with inoperable

CTEPH and showed significant improvement in PVR versus placebo, but no significant improvement in

6MWD [40]. Riociguat has recently been approved by the US Food and Drug Administration for the

treatment of inoperable CTEPH patients or operable CTEPH with recurrent PH.

Imatinib
Imatinib is an anti-proliferative agent that was originally designed to inhibit the oncogenic Bcr-abl tyrosine

kinase in patients with chronic myeloid leukaemia [41]. Imatinib also has an inhibitory effect on platelet-

derived growth factor and c-KIT signalling. These compounds are both important in vascular smooth

muscle cell proliferation and hyperplasia and have been implicated in the development of PH [42–44].

Imatinib has been shown to reverse pulmonary vascular disease in animal models of PAH [45], and has

been shown to have in vitro anti-proliferative and pro-apoptotic effects on pulmonary artery smooth muscle

cells taken from patients with PAH [46].

An initial case study reported the effects of imatinib in a patient with PAH classified as New York Heart

Association (NYHA) functional class IV, whose condition was deteriorating despite receiving combination

therapy with oral bosentan, inhaled iloprost and sildenafil (but who refused intravenous prostacyclin

therapy) [47]. Treatment with imatinib produced improvements in the patient’s 6MWD and

haemodynamics and the patient improved from NYHA functional class IV to II. This effect was sustained

after 6 months of treatment [47].

In a 24-week, phase II study in 59 patients with PAH (functional class II–IV) and who had an inadequate

response to previous therapy, patients were additionally treated with imatinib or placebo. Patients treated

with imatinib showed a mean improvement of 22 m in 6MWD compared with a decline of 1 m in the

placebo group, although this difference was not significant [48]. However, significant improvements were

seen in PVR (imatinib -300 dyn?s?cm-5 versus placebo -78 dyn?s?cm-5; p,0.01) and cardiac output

(imatinib +0.6 L?min-1 versus placebo -0.1 L?min-1; p50.02).

In the recently reported phase III IMPRES (Imatinib in Pulmonary Arterial Hypertension, a Randomised,

Efficacy Study) trial, imatinib used as add-on therapy significantly improved exercise capacity and

haemodynamics in patients with advanced PAH. These advanced patients were symptomatic despite

treatment with two or more PAH-specific therapies. However, imatinib did not provide a benefit in terms

of functional class, time to clinical worsening or mortality [41].
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There are concerns regarding the side-effect profile of imatinib in PAH. In the phase II trial, serious adverse

events were reported in 39% of patients treated with imatinib versus 23% in the placebo group [48]. Both

serious adverse events and discontinuations were more frequent with imatinib than placebo in the phase III

trial (44% versus 30% and 33% versus 18%, respectively) [41]. Adverse events reported in the phase III trial

were similar to those reported with the use of imatinib in other indications; however there was an

unexpectedly high incidence of subdural haematoma patients receiving imatinib in addition to oral

anticoagulants [41].

Other kinase inhibitors have been considered for the treatment of PAH. Of these, the most promising is

nilotinib, a follow-on compound from imatinib. Rat models suggest that this may be a more efficacious

treatment compared with imatinib [49], and the efficacy and safety of this treatment in PAH has recently

been investigated [50]. The results have not yet been published. The more general kinase inhibitors

sorafenib and dastinib have also been explored for the treatment of PAH; however, due to safety concerns

they are unlikely to undergo further development [51].

New drugs in early phase of development
As shown in figure 1, there are a number of new pathways implicated in vasoconstriction and/or

remodelling of the vasculature that are key to the pathogenesis of PAH. These pathways have provided

researchers with many new possible drug targets for the treatment of PAH. A number of compounds that

target these pathways are being investigated preclinically and some of these have progressed into small

studies with patients (fig. 2). A recent and extensive review article has been published outlining some of the

more detailed mechanisms for these targets [52]. In this review, we will also discuss these new pathways

according to their role in the pathogenesis of PAH and aim to provide a succinct overview and update.

Vasoactive factors
Vasoactive intestinal peptide
Vasoactive intestinal peptide (VIP) is a molecule that acts to relax the vasculature and reduce the effects of

vasoconstrictors [53]. The importance of VIP in PAH was demonstrated in mutant mice models, where

deletion of the VIP gene led to significant increases in right ventricular (RV) systolic pressures, vascular

remodelling and inflammation [54]. In these VIP knockout mice, both the vascular and right ventricular

remodelling were attenuated by treatment with VIP. Further experiments in rat models with

monocrotaline-induced PAH suggested that treatment with VIP may be more effective than treatment

with bosentan and that combination therapy with bosentan could potentially give a greater efficacy than

either VIP or bosentan therapy alone [53].

In humans, a small study observing the effects of VIP in 20 patients with idiopathic PAH during right heart

catheterisation demonstrated that a single dose of VIP temporarily improved haemodynamics [55]. The

single-centre, open-label study of eight patients found that haemodynamics and 6MWD were improved

following 3 months of treatment with VIP [56]. The multicentre phase II study in 56 patients suggested that

there was no reduction in PVR or increase in exercise capacity over 12 weeks compared with placebo [57, 58].

It is not clear to date if there will be additional trials with VIP.

Endothelial NO synthase couplers
Endothelial NO is a well-known and established contributory factor to PAH and it is important in the

regulation of vascular tone. The production of endothelial NO is dependent on endothelial NO synthase

(eNOS). An increased understanding of this enzyme has found that eNOS must be dimerised, or coupled, in

order to produce NO and to cease production of vasoconstrictors such as superoxide [59]. Because eNOS

can produce both vasorelaxant and vasoconstrictive molecules, the coupling of eNOS has a two-fold impact

on the balance of vasoactive factors released in the endothelium.

The efficacy of the eNOS coupling molecule, the eNOS co-factor sapropterin dihydrochloride, with PH has

been assessed in the treatment of patients [60]. The small study of 18 patients monitored markers of NO

synthesis, inflammation, exercise capacity and cardiac function [60]. Although NO synthesis did not appear

to increase following treatment with sapropterin dihydrochloride, there were significant (p50.002)

improvements in exercise capacity and the treatment was well tolerated, indicating this is a treatment that

may warrant further study.

Rho kinases
Rho kinases mediate vasoconstriction and endothelial dysfunction; two key components of PAH [61]. The

rho-kinase pathway causes downstream changes to intracellular calcium and causes calcium sensitisation.
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Changes in response to and levels of intracellular calcium are important as intracellular calcium signalling is

involved in vasoconstriction and pulmonary arterial smooth muscle cell proliferation [62].

The rho-kinase inhibitor fasudil has shown promising results in the treatment of PAH in monocrotaline-

induced rat models, even when compared to the licensed treatments bosentan and sildenafil [63].

In a small cohort of 15 patients with PAH, exposure to fasudil during right heart catheterisation produced

significant (p,0.05) decreases in mean pulmonary arterial pressures and tended to decrease PVR, although

it did not affect cardiac output [64]. This study tested the same parameters following exposure to NO and

found similar results, suggesting that fasudil might produce similar results to treatment with NO.

Serotonin
Serotonin is an important vasoactive and mitogenic compound that is synthesised by the endothelial cells

and acts on pulmonary arterial smooth muscle cells [65]. The serotonin transporter is required for

serotonin to elicit its mitogenic effects and transgenic mice overexpressing the serotonin transporter have

been shown to spontaneously develop PH [66].

Chronic administration of the serotonin receptor antagonist terguride has been shown to dose-dependently

prevent the development and progression of monocrotaline-induced PAH in rats [67]. A 16-week study

investigated the effect of terguride on PVR, 6MWD, haemodynamics, NT-proBNP and time to clinical

worsening in 78 patients with PAH [68]. Although there were no overall significant improvements in PVR

or the other end-points investigated, subgroup analysis found that PVR significantly improved in patients

who were also treated with an ERA [68]. Terguride is already marketed in Japan for the treatment of

hyperprolactinaemia and, as such, has already passed some of the stages and testing that are required for a

treatment to be approved.

Apelin
Apelin is a peptide that is thought to play a role in angiogenesis, and regulate endothelial and smooth

muscle cell apoptosis and proliferation, and has wider effects by altering eNOS expression [69]. Patients

with PAH typically have lower levels of apelin.

Reduced or altered expression of BMPR2 has been linked to PAH [70]. Disruption of BMPR2 signalling via the

peroxisome proliferator-activated receptor (PPAR)c/b-catenin complex was found to reduce levels of apelin

promoting pulmonary arterial smooth muscle cell proliferation and reduce endothelial cell apoptosis [71].

Results from animal models show that apelin elicits a vasodilatory effect [72, 73] and can reduce pulmonary

arterial pressures [73]. Chronic administration in animal models also shows a pressure-reducing effect that

may be due to a stabilising effect of apelin on the endothelial cells [71, 74].

As apelin is a peptide, some of the key challenges to the use of apelin in the treatment of PAH are its short

half-life, developing an appropriate mode of administration, and managing the systemic vasodilatory effect

of apelin [69].

Inflammatory mediators
Immunosuppressants
The prevalence of PAH in patients with autoimmune diseases such as systemic sclerosis and HIV have long

indicated a link between immunity and PAH. Preclinical studies have shown that levels of pleiotropic

cytokines such as interleukin (IL)-6 and IL-1b, which have roles in immune regulation, haematopoiesis and

inflammation, are increased in patients with PAH [65, 75]. Further to this, a case report of a patient with

Castleman’s-related PAH showed that treatment of the patient with the anti-IL-6 monoclonal antibody

tocilizumab was effective [75]. Tocilizumab is currently licensed for the treatment of rheumatoid arthritis

and is also licensed for the treatment of Castleman’s disease in Japan. As tocilizumab is already in clinical

use, its safety profile in patients without PAH is well established, and the preclinical and case study data

suggest this may be an interesting therapeutic option for patients with some forms of PAH, perhaps related

to autoimmunity.

Another immunosuppressant that has been investigated in animal models of PAH is rapamycin. Rapamycin

is a potent anti-proliferative agent that has been shown to prevent the RV wall thickening and increased

proliferation of pulmonary vasculature that leads to the development of PAH in hypoxic mice [76]. In

addition, rapamycin also reversed pulmonary vascular remodelling in mice that were allowed to develop

hypoxia-induced PAH. Therefore, both these immunosuppressants, rapamycin and tocilizumab, may

provide a novel therapeutic strategy for PAH [76].
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Growth factors
Epidermal growth factor receptor blockers
Epidermal growth factor (EGF) has been shown to increase pulmonary arterial smooth muscle cell

proliferation that can contribute to the vascular remodelling, which is, in part, causative of PAH [77]. Serine

elastases act to break down extracellular matrix and this can lead to the release of EGF. In mouse models of

monocrotaline-induced PAH, the use of serine elastase inhibitors has been shown to reverse the

monocrotaline-induced PAH [78].

In rats with monocrotaline-induced PAH, the EGF receptor inhibitors gefitinib, erlotinib and lapatinib were

shown to inhibit EGF-induced smooth muscle cell proliferation of the pulmonary vasculature [77].

However, at their highest tolerated dose, there was no significant improvement in RV systolic pressure or

hypertrophy observed. Furthermore, no upregulation of EGF receptors was observed in lung tissue of

patients with idiopathic PAH [77], suggesting that EGF receptor antagonists may not be as promising for

the treatment of PAH as was originally thought.

Nevertheless, the results from the experiments with the serine elastase inhibitors show that targeting the

EGF pathway might still be an effective treatment strategy for PAH and that this is an area that requires

further investigation.

BMPR2 mutation
PPARc agonists
PPARc is a transcription factor that appears to be important in pulmonary arterial smooth muscle cell

proliferation. Mutant mice with the PPARc gene knocked out of either the endothelial or smooth muscle

cells have been shown to develop PAH [79, 80].

As previously mentioned, BMPR2 mutations can be causative of PAH and are responsible for many cases of

seemingly idiopathic PAH [70]. PPARc is a downstream target of BMPR2 signalling and on formation of a

complex with b-catenin appears to trigger the transcription on apelin (the importance of which was

described previously) [71].

Treatment of rats with experimental PAH using the PPARc agonist rosiglitazone attenuated the

development of hypoxia-induced PAH [81]. When compared with hypoxic rats not treated with

rosiglitazone or normal rats, the expression of the markers endothelin and vascular endothelial growth

factor was similar in the rosiglitazone-treated and normal mice; they had deteriorated in the hypoxic, non-

treated rats [81].

A recent study explored the vasodilatory effects of PPARc antagonists in human pulmonary arteries taken

from patients without PAH during resection of lung carcinoma. This study found that the PPARc
antagonists pioglitazone and rosiglitazone act to relax human pulmonary arteries, and that rosiglitazone was

the most potent vasodilator [82]. These results further suggest that PPARc antagonists may also be a novel

therapeutic route for the treatment of PAH.

Mitochondrial dysfunction
Dichloroacetate
In healthy people, adenosine triphosphate (ATP) is produced by the Krebs cycle; however, evidence has

shown that when a patient with PAH experiences RV hypertrophy, ATP production is increasingly driven

by the less efficient process of glycolysis [83, 84]. It has been hypothesised that the shift to increased

glycolysis could, in part, be caused by activation of pyruvate dehydrogenase kinase (PDK). This prevents

pyruvate from entering the Krebs cycle so that energy must then be generated via glycolysis [83]. The PDK

inhibitor dichloroacetate has been shown to decrease proliferation and increase apoptosis of pulmonary

arterial smooth muscle cells from monocrotaline-induced mice models of PAH, as well as reducing growth

in pulmonary arterial smooth muscle cells from patients with idiopathic PAH [85]. Further studies in rat

models of PAH found that dichloroacetate increased glucose uptake and, with chronic therapy, improved

cardiac output [86].

As stimulation of serotonin receptors in pulmonary arterial smooth muscle cells has been shown to decrease

apoptosis and activate the PDK pathway, it is possible that the serotonin inhibitor terguride, described

earlier in this review, may also act, at least in part, via a PDK pathway [87].

Endothelial progenitor stem cells and mesenchymal stromal cells
Endothelial progenitor cells (EPCs) originate in the bone marrow and are thought to migrate to sites of

vascular injury and differentiate into endothelial cells in order to repair the damaged tissue [88]. In patients

with PAH, the levels of circulating EPCs are altered and EPCs may also be dysfunctional [89–91].
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Transplantation of EPCs in mouse models of monocrotaline-induced PAH has been shown to prevent the

development of PAH [92].

A small, randomised controlled trial was conducted over 12 weeks in patients with idiopathic PAH, where

16 patients were treated with conventional therapy and 15 patients additionally received an intravenous

infusion of EPCs [93]. At the end of this preliminary study, 6MWD was significantly (p,0.0001) improved

in the EPC-treated patients, as were mean pulmonary arterial pressure, PVR and cardiac output. There were

no serious adverse events in the EPC group.

An alternative to EPCs are mesenchymal stromal cells (MSCs). MSCs are adult stem cells that are also

derived from the bone marrow. MSCs have the advantage that they can be prepared in batches to be used

when needed, as with chemical-based therapies [92]. To date, MSCs have only been tested in rat models of

monocrotaline-induced PAH. However, various studies have shown that MSCs will have a beneficial effect

in rats with monocrotaline-induced PAH suggesting that these may provide an efficacious and more

convenient therapy for PAH [92].

Conclusions
Currently available PAH-specific therapies have improved outcomes in PAH, but the disease remains

progressive and ultimately fatal. In light of an increasing understanding of the pathogenesis of the disease, a

number of new drugs are in clinical and preclinical development. These not only act on established

pathways involved in the regulation of pulmonary vascular tone by the endothelium, but also on new

pathways implicated in pulmonary vascular remodelling. In addition, changes in the way clinical trials are

performed in PAH, with the move towards long-term, event-driven studies, will provide more robust and

clinically relevant data. This should strengthen the basis upon which physicians will judge if and when to

use new treatments.
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