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Abstract

Objective: Computed tomography (CT) to material property conversion dominates proton range 

uncertainty, impacting the quality of proton treatment planning. Physics-based and machine 

learning-based methods have been investigated to leverage dual-energy CT (DECT) to predict 

proton ranges. Recent development includes physics-informed deep learning (DL) for material 

property inference. This paper aims to develop a framework to validate Monte Carlo dose 

calculation (MCDC) using CT-based material characterization models.

Approach: The proposed framework includes two experiments to validate in vivo dose and water 

equivalent thickness (WET) distributions using anthropomorphic and porcine phantoms. Phantoms 

were irradiated using anteroposterior proton beams, and the exit doses and residual ranges were 

measured by MatriXX PT and multi-layer strip ionization chamber. Two pre-trained conventional 

and physics-informed residual networks (RN/PRN) were used for mass density inference from 

DECT. Additional two heuristic material conversion models using single-energy CT (SECT) and 

DECT were implemented for comparisons. The gamma index was used for dose comparisons with 

criteria of 3%/3mm (10% dose threshold).

Main results: The phantom study showed that MCDC with PRN achieved mean gamma passing 

rates of 95.9% and 97.8% for the anthropomorphic and porcine phantoms. The rates were 86.0% 

and 79.7% for MCDC with the empirical DECT model. WET analyses indicated that the mean 

WET variations between measurement and simulation were −1.66 mm, −2.48 mm, and −0.06 mm 

for MCDC using a Hounsfield look-up table with SECT and empirical and PRN models with 

DECT. Validation experiments indicated that MCDC with PRN achieved consistent dose and WET 

distributions with measurement.
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Significance: The proposed framework can be used to identify the optimal CT-based material 

characterization model for MCDC to improve proton range uncertainty. The framework can 

systematically verify the accuracy of proton treatment planning, and it can potentially be 

implemented in the treatment room to be instrumental in online adaptive treatment planning.

1 Introduction

Clinical evidence has shown that proton therapy can reduce side effects and unplanned 

hospitalizations for patients compared to conventional photon therapy. In contrast to a 

photon treatment modality, proton pencil beam scanning machines can deliver conformal 

doses to the target volumes while sparing the adjacent organs at risk (van de Water et al., 
2011; Knopf and Lomax, 2013). Such sharp dose characteristics require definite proton 

range prediction to ensure dosimetry consistency between the treatment planning system 

(TPS) and treatment delivery system (Baumann et al., 2016). Modern Monte Carlo-based 

TPS (Paganetti et al., 2008; Chang et al., 2020) requires material mass density information 

of patients to perform dose calculations for treatment planning. This information is usually 

acquired from single-energy computed tomography (SECT) images via a Hounsfield look-

up table (Schneider et al., 2000). However, the SECT to material property conversion 

dominates proton range uncertainty, and a typical margin of 2.5% is reserved for this 

uncertainty (Paganetti, 2012).

During the last decade, dual-energy computed tomography (DECT) has been explored to 

improve proton dose calculation (Bourque et al., 2014; van Elmpt et al., 2016; Wohlfahrt 

et al., 2017). A simulation-based retrospective patient study has shown that DECT can be 

used to refine a conventional Hounsfield look-up table to improve proton range uncertainty 

(Wohlfahrt et al., 2020). Meanwhile, data-driven modeling methods such as machine 

learning (ML) and deep learning (DL) have been investigated to derive accurate proton 

relative stopping power (RSP) (Su et al., 2018) and material mass density (Chang et 
al., 2022a). However, the performance of data-driven models may be compromised by 

measurement noises due to the ill-posed nature of inverse modeling (Arridge et al., 2019). 

The issue can potentially be resolved by using physics-informed machine learning to 

regularize the models with physics insights (Chang and Dinh, 2019; Karniadakis et al., 
2021). Chang et al. (2022b) proposed a physics-informed DL framework to supervise the 

learning with a physics model. This approach can increase the predictive capability of 

material mass density mapping using DECT images. Although various data-driven methods 

have been investigated for DECT to material property conversion, there is still a lack of 

direct proton measurement to quantify the uncertainty for ML/DL methods regarding dose 

and range distributions.

Various methods have been explored to minimize proton range uncertainty, such as 

magnetic resonance imaging, range probe, and proton radiography (Knopf and Lomax, 

2013). The proton imaging using multi-layer ionization chambers (MLIC) features real-time 

measurement without additional implants. The method is promising for clinical applications 

regarding in vivo range verification (Rinaldi et al., 2014; Deffet et al., 2020). Proton range 

measurement using a commercial MLIC typically requires 20 minutes to cover an area of 

180×180 mm2 by multiple proton fields with a size of 45×45 mm2 and 1296 total spots 
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(Farace et al., 2016). At the same time, dosimetry verification is essential to understand the 

limits of DL-based material conversion methods. Conventional two-dimensional (2D) ion 

chambers for patient-specific dose measurement require changes in experiment setups for 

different measured depths (Arjomandy et al., 2010; Karger et al., 2010).

This study proposes a validation framework to evaluate the feasibility of Monte Carlo 

dose calculation (MCDC) using CT-based material characterization methods, including 

mechanistic and physics-informed DL models. For the first time, the framework leverages 

the state-of-the-art multi-layer strip ionization chamber (MLSIC) detector (Zhou et al., 
2022), which features spatiotemporal signal identification. The device can effectively 

capture the dosimetric characteristics of a proton treatment beam, including position, 

energy, profile, and dose spot-by-spot. In contrast, commercial MLIC devices such as Zebra 

(IBA Dosimetry, Germany) can only measure a spot’s depth dose information. The newly 

designed MLSIC can measure a single proton field with a field size of 160×160 mm2 and 

1681 spots within 4 minutes, and this measured time is dominated by the beam delivery 

time. The device can be used to efficiently quantify in vivo proton range uncertainty 

within patients. We also emulate the proton dosimetry measurement at various depths 

using multiple beam energies to efficiently and systematically verify dose accuracy without 

changing experiment setups.

To demonstrate the usability of the proposed validation framework, we investigate in which 

CT-based material characterization models can work robustly, effectively, and accurately 

with proton MCDC. While the previous work (Chang et al., 2022b) only focused on image 

quality assurance, the originality of the present work can be summarized in three aspects to 

conduct the feasibility study for clinical implementation:

• The proposed validation framework, for the first time, leverages the 4D MLSIC 

to systematically and efficiently validate CT-based material characterization 

models for MCDC within the measurement time of four minutes.

• The proposed validation framework can conserve the proton physics and quantify 

the uncertainty for CT-based material characterization methods caused by photon 

physics.

• The proposed validation framework can holistically evaluate in vivo proton 

range distributions and identify the sources of uncertainty (i.e., lung, soft, or 

bone tissues) to enable divide-and-conquer strategies to further improve range 

inaccuracy in proton therapy.

2 Materials and methods

Monte Carlo dose calculation (MCDC) algorithms have been implemented into proton TPS 

to achieve accurate and robust treatment planning. The accuracy of MCDC is impacted by 

CT material characterization and proton range uncertainty. Mechanistic and semi-analytical 

models (Schneider et al., 2000; Meyer et al., 2010; Bourque et al., 2014) have been 

developed to characterize materials from CT for proton therapy. A recent investigation 

involves using conventional and physics-informed DL methods (Su et al., 2018; Chang et 
al., 2022c; Chang et al., 2022d) to improve the uncertainty from CT to material conversion. 
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However, there is still a lack of proton experiment data to validate those newly proposed 

DL models. This work investigates the feasibility of utilizing physics-informed DL-based 

CT material characterization for proton therapy using the proposed validation framework 

and state-of-the-art detectors. The proposed framework systematically validates the physics-

informed DL model regarding proton dosimetric and range accuracies.

2.1 CT material characterization using physics-informed deep learning

Occam’s razor is preferred by conventional data-driven methods because the simplest model 

is usually interpretable and generalizable (Blumer et al., 1987; Domingos, 1999). However, 

the model performance may be saturated when dealing with a substantial amount of data 

(Champion et al., 2019). DL with hierarchical model structures has been proven as a 

universal approximator that can discover complex patterns from data (Hornik et al., 1989; 

LeCun et al., 2015). The so-called physics-informed DL uses physics insights to regularize 

conventional DL models (pure data driven) to increase the predictive capability especially 

when the data are insufficient to allow DL models to capture the underlying physics (Chang 

and Dinh, 2019). Chang et al. (2022b) have introduced a physics-informed loss function to 

regularize the training of DL models for material property inference from DECT images.

Eq. (1) gives a loss function (ℒ), applied to supervise the learning of physics-informed DL 

models to find the optimal mass density where ℒMSE and ℒphysics are the conventional 

mean square error (MSE) and physics-informed loss functions. The conventional DL models 

are trained merely using ℒMSE. Eq. (2) defines a physics loss where yphysics insight and ymeas 

denote a physics-based model and measured data of CT Hounsfield units.

ℒ = ℒMSE + ℒpℎysics (1)

ℒpℎysics = ∑ ypℎysics insigℎt − ymeas 2
2

(2)

Eq. (3) defines a heuristic model for yphysics insight (Chang et al., 2022b) where ρm,DL 

presents the mass density, queried from DL models during each training iteration. The ρe,w 

is the electron molar density for water (0.56 mol/cm3). The ∑iωiZi Ai presents the electron 

molar density for calibration materials where ω, Z, and A are the elemental weight percent, 

atomic number, and atomic mass number. The z and z are parameters that can be derived 

from the elemental composition of phantom materials using the power law additivity rule 

(Mayneord, 1937; Spiers, 1946; Bourque et al., 2014). The kph, kcoh, and kincoh are fitting 

parameters (Jackson and Hawkes, 1981; Schneider et al., 1996), depending on a CT energy 

spectrum. Based on our institutional data, the estimated values are 1.4 × 10−5, 1.6 × 10−3, 

and 0.9, respectively.

ypℎysics insigℎt ≡ 1000
ρm, DL∑iωi

Zi
Ai

ρe, w
⋅ kpℎz3.62 + kcoℎz1.86 + kincoℎ

kpℎzw
3.62 + kcoℎzw

1.86 + kincoℎ
− 1 (3)
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2.2 Validation framework for Monte Carlo dose calculation

Figure 1 depicts the framework to validate proton MCDC using CT-based material 

mass density characterization models including a Hounsfield look-up method, empirical 

correlation, and conventional and physics-informed DL-based models. The workflow 

includes three steps: a) computed tomography (CT) numbers to material mass density 

conversion; b) proton treatment planning for beam delivery; c) validation experiments to 

measure the dose and WET distributions using proton pencil beams. The performance of 

each model was evaluated, and the optimal method should allow MCDC to be consistent 

with measured dose and WET distributions.

2.2.1 Data acquisition—Figure 1(c4)–(c5) shows an adult anthropomorphic phantom, 

CIRS (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA) Atom M701 

and a porcine tissue phantom (meatPhan). The phantoms were irradiated by anterior proton 

pencil beams to acquire dosimetry and WET data for validation. The meatPhan included 

air (lung surrogate), porcine adipose, muscle, rib, and femur to increase the heterogeneity 

of the phantom. The meatPhan was made with a 200×200×200 mm3 container. All 

Phantom images were acquired with a Siemens SOMATOM Definition Edge scanner. To 

reduce CT image noise, the reconstruction kernels of I41s/3 and Q30f/3 with sinogram-

affirmed iterative reconstruction (SAFIRE) was used for SECT and DECT. DECT material 

decomposition was performed using Siemens Syngo.Via, and the acquired parametric 

maps included effective atomic number, electron density relative to water, and virtual 

monochromatic images. Table 1 summarizes the acquisition parameters for CT scans.

2.2.2 CT numbers to material mass density conversion—Multiple CT-based 

material characterization models were implemented to demonstrate the proposed validation 

framework. Two heuristic models, a Hounsfield look-up model (Schneider et al., 2000) and 

empirical correlation (Hünemohr et al., 2014), were implemented to characterize material 

properties using SECT and DECT images. Figure 1(a1)/(a2) shows that CT numbers are 

directly obtained from the CT machine. Siemens Syngo.Via was used to derive DECT 

parametric maps in Figure 1(a2), including the effective atomic number (Zeff), relative 

electron density (ρe), and virtual monochromatic images (VMI) of 80 keV, 135 keV, and 

190 keV. Figure 1(a4) shows the CT-density curve for the look-up method in SECT. Table 

A1 (Appendix A) gives the Hounsfield look-up table to convert CT numbers to material 

mass densities (Chang et al., 2020). Figure 1(a5) gives the empirical model using Zeff and 

ρe to derive relative stopping power (RSP) maps. Then the voxel RSP can be converted to 

mass densities in Table A1 (Appendix A). MATLAB R2021a was used to program heuristic 

models.

We adopted two pre-trained residual networks (ResNet) (He et al., 2016; Wang et al., 2018) 

for evaluation: conventional ResNet (RN) and physics-informed ResNet (PRN) in Figure 

1(a6) from the previous work (Chang et al., 2022b). Figure 2 depicts the model structure of 

ResNet, including four convolutional layers, two fully connected layers, and twenty residual 

boxes. Each residual block includes two convolutional and single residual layers. Rectified 

linear units (ReLU) (Nair and Hinton, 2010) were used as the activation function. Table 

B1 (Appendix B) summarizes the model parameters for the ResNet. RN and PRN share 
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the same model architecture but use different loss functions. RN was trained only using the 

MSE loss. In contrast, PRN was trained using the MSE and physics-informed loss functions 

given by Eq. (1). The training data included 79 CT slides (512×512×79 voxels) from an 

electron density phantom with known material properties (Chang et al., 2022b). Training 

times for RN/PRN were approximately two hours using NVIDIA Quadro RTX A6000. The 

validation dataset included 512×512×651 CT voxels from the anthropomorphic phantom in 

Figure 1(c4). DL models were implemented using the PyTorch framework (Paszke et al., 
2019).

2.2.3 Material composition assignment for proton Monte Carlo dose 
calculation—We used the RayStation 10B (RayPhysics, 2020) to perform the Monte 

Carlo dose calculation. RayStation includes an internal table of 50 materials to correlate the 

CT voxel density to the proper material composition and mean ionization energy. The 50 

pre-tabulated materials are interpolated from the eight basic materials given in Table 2 with 

the compositions from the literature (ICRP23, 1975; ICRU44, 1989; ICRU49, 1993). Eq. 

(4) gives the inverse rule of mixtures where ρ, w, Mix, U, and L denote the density, weight 

percent mass, mixture (interpolated material), basic material as the upper bound, and basic 

material as the lower bound. The selection of the upper and lower bounds is based on the 

interpolated material density that falls between which two basic materials. Eq. (4) can be 

rearranged, and we can derive wL as density functions given by Eq. (5). Eq. (6) shows the 

solution for wU since the summation of wU and wL is one. The densities of the interpolated 

50 materials range from 0.001 g/cm3 to 2.7 g/cm3 with an incremental density of 0.055 

g/cm3. Then the elemental composition of each interpolated material can be obtained by Eq. 

(5)–(6) and the basic materials given in Table 1. RayStation will assign the pre-tabulated 

material composition to each CT voxel based on the material closest in mass density.

1
ρMix

= wL
ρL

+ 1 − wL
ρU

(4)

wL = ρL
ρMix

⋅ ρU − ρMix
ρU − ρL

(5)

wU = 1 − wL (6)

2.2.4 Proton planning for beam delivery—The treatment planning system (TPS), 

RayStation 10B, was used to design two types of proton treatment plans for dosimetry and 

WET measurement, as shown in Figure 1(b1) and Figure 1(b2). Firstly, the proton plans 

for dosimetry included an anterior proton beam at a 0° gantry angle, and the exit dose 

was measured for the validation procedure. Each proton plan was designed with a single 

energy beam to investigate the impacts on anatomical heterogeneity from different phantoms 

and phantom sites. Multiple single-energy plans were used to emulate the proton dose 

distribution at different depths without the need to change the experiment setup. Secondly, 

proton plans for WET measurement used multiple proton beams with large spot spacing (40 

mm) to obtain integrated depth doses for range calculation from each proton spot. Because 
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sparse spots were used for WET measurement plans, multiple proton beams were delivered 

to achieve a spatial resolution of 4 mm for WET maps. Table 3 gives the details of proton 

plans for each measurement and Monte Carlo dose calculation (MCDC). NVIDIA Quadro 

RTX 8000 was used for MCDC.

2.2.5 Validation experiment—Proton pencil beams were delivered by Varian ProBeam 

System (Varian Medical Systems, Palo Alto). To measure dose distribution, Figure 1(c1) 

depicts a MatriXX PT (IBA Dosimetry, Germany) with an active area and resolution 

of 244×244 mm2 and 7.6 mm. A solid water phantom (2-cm thick) is placed on the 

MatriXX PT for dose buildup. For WET measurement, Figure 1(c2) shows a multi-layer 

strip ionization chamber (MLSIC) that is featured in the capability of spatiotemporal 

measurement with a large active area (Zhou et al., 2022). The detector includes an active 

area, spatial, and time resolution of 256×256 mm2, 2 mm, and 0.32 ms. Figure 1(c3) shows 

the experiment setup for dosimetry and WET measurement using an anterior proton beam.

To measure a WET map, MLSIC is first used to measure the residual range (Rphantom) 

of exit proton beams from the phantom. The total measured time is approximately four 

minutes, dominated by the machine preparation time of treatment delivery systems. The 

phantom WET is defined as the water thickness, which causes the same Rphantom. In actual 

experiment design, we can do the measurement twice, with and without the phantom, using 

the identical proton beam and experiment setup to obtain Rphantom and the proton range 

without the phantom (Rwater). Then the WET can be obtained by taking the difference 

between the two ranges (Rwater – Rphantom) (Zhang et al., 2010). The 80% distal range (R80) 

should be used for the WET calculation because R80 represents that the electromagnetic 

interactions have stopped 50% of the protons (Paganetti, 2018). Therefore, R80 has 

minimum impacts by the energy spread of proton beams (Hsi et al., 2009; Schuemann 

et al., 2014). We use Eq. (7) to derive WET, where x denotes R80 from MLSIC or TPS.

W ETx = R80water − R80x (7)

2.3 Evaluation

Comparisons of dose-difference distributions can show the consistency between the 

measurement and simulation (Mah et al., 1989). However, a two-dimensional (2D) 

comparison is challenging for a steep dose gradient region since small spatial uncertainty 

can result in significant discrepancies between the measurement and simulation (Low et 
al., 1998). A distance-to-agreement (DTA) concept is introduced to properly quantify this 

discrepancy to define the acceptance criterion for dose comparisons (Hogstrom et al., 1984; 

ICRU42, 1987). The DTA is a distance used to search the calculated dose point, which best 

agrees with a measured point. Low et al. (1998) proposed a quantity, the so-called gamma 

index, to quantify dose distribution discrepancies using acceptance criteria of percentage 

dose difference and DTA. The calculation passes the criteria if the gamma index is less than 

one. Otherwise, the calculation fails. The percentage gamma passing rate (%GP) is derived 

by taking the passing image pixels divided by total image pixels. High-dose regions need to 

be verified for radiation therapy to ensure the coverage of lesion volumes, and a 10% dose 

threshold is typically applied before gamma analysis.
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For proton therapy, the Imaging and Radiation Oncology Core (IROC) (Taylor et al., 2016) 

defines the validation procedure for proton institutions participating in the clinical trials 

sponsored by National Cancer Institute. IROC provides the standard criteria for various 

anthropomorphic phantoms. The criteria (Kerns et al., 2016; Taylor et al., 2016; Taylor et 
al., 2017) are: 5%/3 mm for brain; 7%/ 4mm for head and neck; 7%/5mm for left lung; 

7%/ 4 mm for liver; 5%/5 mm for spine; 7%/4 mm for pelvis. The acceptable gamma 

passing rate is 85%. Our institutional gamma criteria are 3%/2 mm for patient quality 

assurance using a homogeneous water phantom. However, this study used anthropomorphic 

phantoms, including heterogeneous effects from the anatomy and geometry that increase the 

difficulty for gamma comparisons. We used the gamma criteria of 3%/3 mm and a 10% dose 

threshold to investigate the discrepancy between measured and simulated dose distribution. 

The optimal simulated planar dose for gamma analysis was searched from a 3D simulated 

dose matrix with an anteroposterior dose grid size of 1 mm.

The WET variation is another evaluation metric to quantify the discrepancies between the 

measurement and simulation using 3D measured data. This quantity was explored since 

the in vivo proton range uncertainty can be estimated from the residual ranges of proton 

penetrating through phantoms (Cormack, 1963; Schneider et al., 2004; Mumot et al., 2010). 

Eq. (8) gives the WET variation (ΔWET) by using the measured WET (WETmeas) from 

MLSIC and simulated WET (WETsim) from TPS. We used ΔWET for histogram distribution 

analyses to compare the mean and standard deviation of ΔWET predicted by different 

models. We took the absolute values of ΔWET to generate a 2D WET map to emphasize the 

regions that showed significant discrepancies between the measurement and simulation.

ΔW ET = W ETsim − W ETmeas (8)

3 Results

3.1 Gamma analysis for the anthropomorphic phantom and meatPhan

Figure 3(a)–(d) depict the gamma passing rate versus different proton energies for the CIRS 

anthropomorphic phantom. The passing rates are above 95% for RN and PRN at brain and 

HN sites. Figure 3(c) shows that only PRN achieves the gamma pass rates above 90% for 

all energies at the lung site, while the passing rates drop to 84% and 77% for the SECT 

and empirical models at 203 MeV. Figure 3(d) illustrates that the empirical model yields the 

gamma passing rates below 76% for all energies at the pelvic site. Figure 3(e) shows the 

gamma passing rate for meatPhan at various proton energies. Both RN and PRN models can 

result in the gamma passing rate above 95% across all energies. However, the passing rates 

decrease to 75% and 69% for the SECT and empirical models at 193 MeV and 192 MeV. 

Table 4 indicates that PRN achieves the maximum values of mean gamma passing rates for 

each phantom.

Figure 4–7 depict 2D dose distributions and gamma index maps by measurement and Monte 

Carlo simulation for the anthropomorphic phantom at different sites. Dose discrepancies 

between the measurement and SECT model can be observed at the sternum location for 

the brain and lung. The empirical model yields high gamma indexes in skull and sternum 
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regions for the brain, HN, and lung, and RN can improve those local high gamma indexes. 

Meanwhile, PRN can further reduce the gamma indexes compared to RN results. Figure 

8 shows the dose distributions and gamma index maps for the meatPhan. The SECT, 

empirical, and RN models yield high gamma indexes in the porcine femur region. However, 

PRN can remedy the gamma indexes in the femur region.

3.2 Water equivalent thickness analysis for the anthropomorphic phantom

Figure 9 depicts the WET and WET variation (ΔWET) maps by measurement and Monte 

Carlo simulation for the CIRS anthropomorphic phantom at the pelvic site. The SECT and 

empirical model result in local high WET variation (ΔWET ~4 mm) in the ischium region. 

The empirical model also yields high local ΔWET in pelvic bone and sacrum. Compared to 

the SECT and empirical models, PRN can reduce the WET variation in the bone regions. 

Figure 10 shows WET variance distributions obtained by pixel-by-pixel comparisons of 2D 

WET maps between the measurement and simulation by each model using Eq. (8). Figure 

10 shows that PRN achieves the minimum mean ΔWET of −0.06 mm compared to other 

models.

RN, and (e1) PRN for the anthropomorphic phantom at a pelvic site with a 216 MeV 

proton beam. (a2) Digitally reconstructed radiograph of the phantom anatomy with a red 

box to denote the beam field size. (b2)-(e2) Comparisons of the WET absolute difference 

(|ΔWET|) between measurement and MCDC with different images described as (b1)-(e1). 

The anthropomorphic phantom was irradiated with anterior beams and the proton residual 

ranges were measured with MLSIC for WET analyses.

4 Discussion

The current clinical proton patient quality assurance typically checks 2D dose distribution 

at two depths using a water phantom. This procedure is equivalent to using two energies 

for dose-difference comparisons by the proposed framework. Figure 3 demonstrates that 

randomly selecting two energies may not be entirely trustworthy when we compare the 

dose distributions using the anthropomorphic and porcine phantoms. The gamma passing 

rates can be high for some energies, but the passing rates drop below acceptance values 

for other energies. In contrast, the proposed framework adopts two evaluation metrics, dose 

and WET distributions, to systematically verify the accuracy of in vivo proton scattering 

and range distributions by Monte Carlo dose calculation. WET evaluation can quantify 

the proton range uncertainty, which dominates the treatment quality. Although Figure 3 

depicts that both RN and PRN show similar performances regarding gamma passing rate, 

Figure 10 shows that RN results in 0.3 mm more range inaccuracy than PRN. The previous 

work (Chang et al., 2022b) only focused on developing the material characterization 

method, and the previous model evaluation cannot directly correlate to clinical impacts. 

This work demonstrates that the proposed framework can systematically and efficiently 

validate Monte Carlo dose calculation using various CT-based material characterization 

models. The framework does not require a special setup for patients, and it can potentially 

be implemented in treatment rooms for online adaptive treatment planning.
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The gamma analyses indicate that PRN improves the mean gamma passing rates by 1.8%, 

1.4%, 4.0%, and 6.3% for the brain, HN, lung, and pelvis from the anthropomorphic 

phantom compared to the SECT model. The phantom study also shows that PRN can 

increase the overall mean gamma passing rates by 9.9% from the empirical model across all 

phantom sites. Figure 4, Figure 6, and Figure 7 depict that local high gamma indexes occur 

in the skull, spine, and femur regions for the SECT and empirical models. At the same time, 

PRN can enhance the dose agreement to the measurement in these bone regions. For the 

meatPhan, PRN can improve the mean gamma passing rates by 5.0% and 18.1%, compared 

to the SECT and empirical models. PRN with physics-informed training can additionally 

increase the mean gamma passing rate by 1.2% from the conventional DL model (RN). 

Figure 8 shows that local high gamma indexes happen in the femur bone region for most 

models except PRN. Generally, the PRN results are consistent with dosimetry measurement, 

and the gamma passing rates are above 90% for the anthropomorphic phantom and 

meatPhan.

Figure 3(e) shows that the gamma passing rates for the SECT and empirical models drop 

below 85% at 190–195 MeV. Based on the digitally reconstructed radiograph in Figure 

8(a2), Figure 11 depicts that the gamma failures happen in the rib and femur bone regions 

(blue arrow). Figure 11(b1) displays that the SECT model allows fewer protons to penetrate 

through the rib region (blue arrow) compared to the empirical model in Figure 11(b2). 

However, both models disagree with the measurement at 190 MeV and 195 MeV in 

Figure 11(c1)–(c2)/(f1)–(f2). A high dose gradient usually occurs for the regions, including 

partial proton penetration, and a small spatial uncertainty can result in a significant dose 

difference(Low et al., 1998). Figure 8(b1) shows that more protons penetrate through the 

rib region and the gamma passing rate increases due to reducing the dose gradient. Thus, 

the drop in gamma passing rates observed in Figure 3(e) is due to the range inaccuracy 

in the bone region. This result is consistent with the WET distributions in Figure 10 

that the empirical model predicts shorter WET (longer residual ranges) than the SECT 

method. The result also suggests that it is more efficient to do radiation therapy quality 

assurance using the proposed WET measured method compared to the conventional 2D 

gamma analyses. The 2D gamma method requires measuring multiple energies to validate a 

model systematically.

Aside from dosimetry analyses, the measurement of WET maps can directly detect range 

discrepancies induced by TPS simulation with different mass density conversion models. 

Figure 9(b2) shows that the SECT model yields a WET variation of ~4 mm in pelvic 

bone regions compared to the measurement. The empirical model further worsens the WET 

agreement to the measured data in pelvic bone and sacrum regions, as shown in Figure 

9(c2). Contrarily, the DL models can improve the WET inconsistency in these bone regions. 

Figure 10 depicts that PRN can improve the mean of WET distributions by 1.6 mm and 2.4 

mm from the SECT and empirical models. Compared to the conventional DL model (RN), 

PRN with physics-informed training can further reduce the mean WET by 0.3 mm. The 

WET analyses show consistent results compared to the dosimetry analyses. Both validation 

experiments indicate that PRN can deliver the most accurate mass density maps for Monte 

Carlo dose calculation using the CIRS anthropomorphic phantom and meatPhan. The WET 

analyses require proton beams to penetrate through phantoms such that residual ranges can 
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be measured by MLSIC. However, the design of MLSIC includes a 2-cm buildup layer, and 

the residual proton range must be larger than the thickness of this layer to ensure proton 

penetration for the entire measured region. For a 216-MeV proton beam, the minimum 

residual range is 2.9 cm across the measured pelvic region from the anthropomorphic 

phantom. Therefore, the current WET method is limited to using high-energy proton beams 

(≥ 216 MeV).

Figure 3 and Figure 10 show that the empirical model consistently performs worse than 

the Hounsfield look-up method in SECT. The Hounsfield look-up table (HLUT) is machine-

specific since each CT energy spectra can vary between each scanner due to different 

machine designs, manufacture of machine compartments, or manufacture of X-ray tubes. In 

contrast, we did not re-calibrate the empirical model using the institutional CT scanner. We 

used Siemens Syngo.Via to derive DECT parametric maps as the empirical model inputs, 

and the original model calibration was based on a different material decomposition method 

(Hünemohr et al., 2014). Using twin-beam DECT protocols can also compromise the image 

quality (Almeida et al., 2017), increasing uncertainty for the empirical model. Future work 

should include machine-specific and software-specific calibration to commission DECT 

material characterization models using the institutional data before using the model for 

proton treatment planning.

ML/DL-based methods have exhibited the capability of CT noise suppression and DECT 

parametric mapping for accurate RSP prediction (Su et al., 2018; Chang et al., 2022a). 

However, ML and DL belong to inverse modeling, and the methodology is ill-posed: 

the solution can be impacted by data noise and quantity (O’Sullivan, 1986). The optimal 

model should base on validation experiments to ensure the robustness of these inverse 

models. Therefore, establishing validation procedures become a crucial step in exploring 

the feasibility of these material mapping methods for clinical applications. Such procedures 

include validation experiments to quantify the clinical impacts and explore the limits of 

each model. The current work aims to develop a validation workflow using anthropomorphic 

and heterogeneous tissue phantoms for proton dosimetry and WET map measurement. The 

current framework adopts the 190-keV virtual monochromatic image, which can suppress 

metal artifacts, to extend the framework applicability of the framework for future spine 

implant or hip prosthesis patients (Wellenberg et al., 2018a; Wellenberg et al., 2018b). 

Future investigation will likely focus on using the proposed workflow to measure WET 

maps of various animal tissue or tissue substitute phantoms to quantify proton range 

uncertainty for different tissues. Most importantly, the impact of tissue heterogeneity on 

the range uncertainty needs to be evaluated, and the results can be potentially used to prevent 

ML and DL from outputting physically unreasonable values.

5 Conclusions

A validation framework was developed to access the applicability of a DL-based mass 

density inference model for MCDC using anthropomorphic and porcine tissue phantoms. 

The dosimetry and WET map analyses indicated that the physics-informed DL model could 

deliver accurate material mass density maps for MCDC to achieve good agreement with 

the measured data regarding dose-difference, distance-to-agreement, and WET distributions. 
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The proposed framework has the potential to quantify the uncertainty of using DL models 

for proton treatment planning and in vivo proton range uncertainty due to the heterogeneity 

of patient anatomy.
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Appendix A.: Hounsfield look-up table.

Table A1 shows the Hounsfield look-up table to convert SECT numbers to material mass 

densities.

Table A1.

Hounsfield look-up table.

CT number (Hounsfield unit) Mass density (g/cm3) Relative stopping power

−1024 9.0 × 10−4 9.0 × 10−4

−980 1.0 × 10−3 1.0 × 10−3

−741 0.26 0.257

−707 0.30 0.288

−560 0.45 0.432

−93 0.94 0.891

−61 0.95 0.916

−48 0.98 0.929

−24 0.99 0.958

0 1.0 1.0

19 1.03 1.001

29 1.05 1.002

48 1.06 1.045

52 1.07 1.049

76 1.09 1.067

101 1.12 1.097

189 1.14 1.094

200 1.15 1.103

242 1.18 1.149

383 1.29 1.263

427 1.34 1.289

549 1.41 1.384

565 1.42 1.394

628 1.46 1.430

702 1.52 1.495

761 1.56 1.513

829 1.61 1.586
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CT number (Hounsfield unit) Mass density (g/cm3) Relative stopping power

923 1.68 1.656

1157 1.82 1.780

1260 1.92 1.898

2495 2.71 2.685

Appendix B.: Model structure of ResNet

Table B1 summarizes the model form and model parameters of ResNet.

Table B1.

Model form and model parameters of ResNet. Res., Conv., and ConvA/ConvB denote the 

residual, convolutional and convolutional layer A/B.

Network Layer Number of channels Kernel size Stride Padding

ConvA/ConvB Conv. 64/64 7/3 2/1 3/0

Res. Block

A1 Conv./Conv./Res. 64/64/64 3/3/1 2/1/2 1/1/0

A2 Conv./Conv./Res. 128/128/128 3/3/1 2/1/2 1/1/0

A3 Conv./Conv./Res. 256/256/256 3/3/1 2/1/2 1/1/0

Res. Block

B1 Conv./Conv./Res. 64/64/64 2/2/1 2/1/2 1/1/0

B2 Conv./Conv./Res. 128/128/128 2/2/1 2/1/2 1/1/0

B3 Conv./Conv./Res. 256/256/256 2/2/1 2/1/2 1/1/0
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Figure 1. 
Validation framework for Monte Carlo dose calculation using physics-informed deep 

learning models, including three steps: (a) CT to material mass density conversion using 

SECT with (a4) HLUT and DECT with (a5) the empirical and (a6) conventional/physics-

informed ResNet models; (b) proton plans for (b1) dosimetry and (b2) WET measurement 

using (b11)-(b13) single field proton beams and (b21)-(b23) proton beams with sparse spots; 

(c) validation experiment using (c1) MatriXX PT and (c2) MLSIC to measure proton beams, 

penetrating through (c4) anthropomorphic and (c5) porcine tissue phantoms.
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Figure 2. 
Model structure of the residual network (ResNet). ConvA and ConvB denote two distinct 

convolutional layer A and B defined in Table B1. FC is the fully connected layer with 64 

hidden units.
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Figure 3. 
Variation of gamma passing rates (%GP) at different energies of the CIRS adult male 

phantom at (a) brain, (b) head-and-neck (HN), (c) lung, and (d) pelvic sites and the porcine 

tissue phantom (meatPhan).
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Figure 4. 
Dose distributions by (a1) measurement and Monte Carlo dose calculation (MCDC) using 

images from (b1) SECT with a Hounsfield look-up table (HLUT) and DECT with (c1) 

the empirical model, (d1) RN, and (e1) PRN for the anthropomorphic phantom at a brain 

site with a 190 MeV proton beam. (a2) Digitally reconstructed radiograph of the phantom 

anatomy with a red box to denote the beam field size. (b2)-(e2) Comparisons of dose 

distributions using gamma index between measurement and MCDC with different images as 

described in (b1)-(e1). The anthropomorphic phantom was irradiated with an anterior beam 

and the exit dose was measured with MatriXX PT (IBA Dosimetry, Germany).
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Figure 5. 
Dose distributions by (a1) measurement and Monte Carlo dose calculation (MCDC) using 

images from (b1) SECT with a Hounsfield look-up table (HLUT) and DECT with (c1) the 

empirical model, (d1) RN, and (e1) PRN for the anthropomorphic phantom at a head-and-

neck (HN) site with a 188 MeV proton beam. (a2) Digitally reconstructed radiograph of 

the phantom anatomy with a red box to denote the beam field size. (b2)-(e2) Comparisons 

of dose distributions using gamma index between measurement and MCDC with different 

images as described in (b1)-(e1). The anthropomorphic phantom was irradiated with 

an anterior beam and the exit dose was measured with MatriXX PT (IBA Dosimetry, 

Germany).
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Figure 6. 
Dose distributions by (a1) measurement and Monte Carlo dose calculation (MCDC) using 

images from (b1) SECT with a Hounsfield look-up table (HLUT) and DECT with (c1) the 

empirical model, (d1) RN, and (e1) PRN for the anthropomorphic phantom at a thoracic 

site with a 199 MeV proton beam. (a2) Digitally reconstructed radiograph of the phantom 

anatomy with a red box to denote the beam field size. (b2)-(e2) Comparisons of dose 

distributions using gamma index between measurement and MCDC with different images as 

described in (b1)-(e1). The anthropomorphic phantom was irradiated with an anterior beam 

and the exit dose was measured with MatriXX PT (IBA Dosimetry, Germany).
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Figure 7. 
Dose distributions by (a1) measurement and Monte Carlo dose calculation (MCDC) using 

images from (b1) SECT with a Hounsfield look-up table (HLUT) and DECT with (c1) 

the empirical model, (d1) RN, and (e1) PRN for the anthropomorphic phantom at a pelvic 

site with a 219 MeV proton beam. (a2) Digitally reconstructed radiograph of the phantom 

anatomy with a red box to denote the beam field size. (b2)-(e2) Comparisons of dose 

distributions using gamma index between measurement and MCDC with different images as 

described in (b1)-(e1). The anthropomorphic phantom was irradiated with an anterior beam 

and the exit dose was measured with MatriXX PT (IBA Dosimetry, Germany).
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Figure 8. 
Dose distributions by (a1) measurement and Monte Carlo dose calculation (MCDC) using 

images from (b1) SECT with a Hounsfield look-up table (HLUT) and DECT with (c1) the 

empirical model, (d1) RN, and (e1) PRN for the porcine tissue phantom (meatPhan) with 

a 200 MeV proton beam. (a2) Digitally reconstructed radiograph of the phantom anatomy 

with a red box to denote the beam field size. (b2)-(e2) Comparisons of dose distributions 

using gamma index between measurement and MCDC with different images as described 

in (b1)-(e1). The meatPhan was irradiated with an anterior beam and the exit dose was 

measured with MatriXX PT (IBA Dosimetry, Germany).
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Figure 9. 
Water equivalent thickness (WET) maps by (a1) measurement and Monte Carlo dose 

calculation (MCDC) using images from (b1) SECT with a Hounsfield look-up table (HLUT) 

and DECT with (c1) the empirical model, (d1) RN, and (e1) PRN for the anthropomorphic 

phantom at a pelvic site with a 216 MeV proton beam. (a2) Digitally reconstructed 

radiograph of the phantom anatomy with a red box to denote the beam field size. (b2)-(e2) 

Comparisons of the WET absolute difference (|ΔWET|) between measurement and MCDC 

with different images described as (b1)-(e1). The anthropomorphic phantom was irradiated 

with anterior beams and the proton residual ranges were measured with MLSIC for WET 

analyses.
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Figure 10. 
Distribution of WET variation (ΔWET) by Eq. (7) between the measurement (Meas.) and 

simulation (Sim.) by each model. The solid lines are Gaussian fitted ΔWET data from each 

model with different means (μ) and standard deviations (σ).
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Figure 11. 
Measured dose distribution for the porcine phantom (meatPhan) using (a) 190 MeV and (b) 

195 MeV proton beams. Monte Carlo dose calculation using images from (b1) SECT with 

a Hounsfield look-up table (HLUT) and (b2) the empirical model. (c1)-(c2) Corresponding 

gamma index maps to (b1)-(b2). Monte Carlo dose calculation using images from (e1) 

SECT with HLUT and (e2) the empirical model. (f1)-(f2) Corresponding gamma index 

maps to (e1)-(e2).
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Table 1.

CT acquisition parameters.

CIRS anthropomorphic phantom Porcine tissue phantom (meatPhan)

Slice thickness 1.5 1.0

Field of view 500 mm

Voxel size 0.977×0.977 mm2

Collimation 64×0.6 mm

SECT

CTDIvol, 32 cm 26.5 mGy 23.2 mGy

mAseff 393 mAs 344 mAs

X-ray tube voltage 120 kVp

DECT

CTDIvol, 32 cm 8.5 mGy 9.1 mGy

mAseff 397 mAs 424 mAs

X-ray tube voltage 120 kVp with Au/Sn filters
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Table 2.

Basic materials for interpolating 50 fixed materials used by RayStation proton Monte Carlo dose calculation. 

Information including mass density, mean ionization energy (I), elemental composition in weight percent (%).

Density (g/cm3) I (eV) H C N O Na Mg Al P S Cl Ar K Ca

Air 0.001 85.7 75.5 23.2 1.3

Lung 0.26 75.3 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2

Adipose 0.95 63.2 11.4 59.8 0.7 27.8 0.1 0.1 0.1

Muscle 1.05 74.7 10.2 14.3 3.4 71 0.1 0.2 0.3 0.1 0.4

Cartilage 1.10 75.0 9.6 9.9 2.2 74.4 0.5 2.2 0.9 0.3

Bone1 1.85 106.4 4.7 14.5 4.2 44.6 0.2 10.5 0.3 21

Bone2 2.10 106.4 4.7 14.5 4.2 44.6 0.2 10.5 0.3 21

Aluminum 2.70 166 100
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Table 3.

Proton planning parameters for measurements, and information of the Monte Carlo dose calculation (MCDC).

Proton plan type Dosimetry measurement WET measurement

Phantom CIRS M701 CIRS M701 CIRS M701 CIRS M701 meatPhan CIRS M701

Site Brain HN Lung Pelvis - Pelvis

Energy (MeV) 169–201 175–189 189–207 200–213 180–205 216

Field size (mm2) 200×200 200×200 200×200 200×200 180×180 120×120

Spot spacing (mm) 4 4 4 4 4 4

Number of proton spots 2601 2601 2601 2601 2116 961

Number of simulated particles 3.2×109 5.7×109 7.9×109 7.0×109 8.9×109 3.6×109

Dose voxel size
+

 (mm3) 2×1×2 2×1×2 2×1×2 2×1×2 2×1×2 2×1×2

MCDC time (min) 5.2 14.6 19.4 16.4 20.3 8.5

+
(Right-Left) × (Posterior-Anterior) × (Inferior-Superior)

Phys Med Biol. Author manuscript; available in PMC 2023 October 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chang et al. Page 31

Table 4.

Means and standard deviations of gamma passing rates from different models.

SECT Empirical RN PRN

Brain 95.0% ± 2.2% 94.3% ± 3.4% 96.8% ± 1.1% 96.8% ± 0.8%

HN 97.1% ± 0.6% 94.8% ± 1.8% 98.2% ± 0.7% 98.5% ± 0.7%

Lung 89.2% ± 2.6% 85.1% ± 4.6% 93.0% ± 2.3% 93.2% ± 1.4%

Pelvis 88.6% ± 2.6% 69.6% ± 4.0% 94.6% ± 1.7% 94.9% ± 2.6%

meatPhan 92.8% ± 7.1% 79.7% ± 8.8% 96.6% ± 1.2% 97.8% ± 1.6%
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