
Joint Frequency and Image Space Learning for MRI 
Reconstruction and Analysis

Nalini M. Singh,
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Dept. of Health Sciences & Technology, MIT, Cambridge, MA, USA

Juan Eugenio Iglesias,
A. A. Martinos Center, Massachusetts General Hospital, Boston, MA, USA

Harvard Medical School, Cambridge, MA, USA

Centre for Medical Image Computing, UCL, London, UK

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Elfar Adalsteinsson,
Research Laboratory of Electronics, MIT, Cambridge, MA, USA

Dept. of Electrical Engineering & Computer Science, MIT, Cambridge, MA, USA

Adrian V. Dalca,
A. A. Martinos Center, Massachusetts General Hospital, Boston, MA, USA

Harvard Medical School, Cambridge, MA, USA

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Polina Golland
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

Dept. of Electrical Engineering & Computer Science, MIT, Cambridge, MA, USA

Abstract

We propose neural network layers that explicitly combine frequency and image feature 

representations and show that they can be used as a versatile building block for reconstruction 

from frequency space data. Our work is motivated by the challenges arising in MRI acquisition 

where the signal is a corrupted Fourier transform of the desired image. The proposed joint learning 

schemes enable both correction of artifacts native to the frequency space and manipulation 

of image space representations to reconstruct coherent image structures at every layer of the 
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network. This is in contrast to most current deep learning approaches for image reconstruction 

that treat frequency and image space features separately and often operate exclusively in one of 

the two spaces. We demonstrate the advantages of joint convolutional learning for a variety of 

tasks, including motion correction, denoising, reconstruction from undersampled acquisitions, and 

combined undersampling and motion correction on simulated and real world multicoil MRI data. 

The joint models produce consistently high quality output images across all tasks and datasets. 

When integrated into a state of the art unrolled optimization network with physics-inspired data 

consistency constraints for undersampled reconstruction, the proposed architectures significantly 

improve the optimization landscape, which yields an order of magnitude reduction of training 

time. This result suggests that joint representations are particularly well suited for MRI signals 

in deep learning networks. Our code and pretrained models are publicly available at https://

github.com/nalinimsingh/interlacer.

1. Introduction

Magnetic resonance imaging (MRI) (Lauterbur, 1973) acquires frequency space data and 

converts these measurements to images for visualization and downstream analysis. Practical 

imaging considerations often affect the data acquisition process. For example, motion occurs 

during acquisition (Andre et al., 2015), noise affects sensor readings (Macovski, 1996), 

and sub-Nyquist undersampling is routinely used to speed up data acquisition (Lustig et 

al., 2008). Traditionally, the acquired frequency space signals are converted to image space 

reconstructions via an inverse Fourier transform, with each individual frequency space 

measurement contributing to all output pixels in the image space. As a result, local changes 

in the acquired frequency space data induce global effects on the entire output image. To 

produce accurate image reconstructions, modeling tools for Fourier imaging must correct 

these global artifacts in addition to performing fine-scale image space processing.

Recently, neural networks have emerged as an alternative approach for MRI reconstruction 

(Aggarwal et al., 2018; Hammernik et al., 2018; Hyun et al., 2018; Lee et al., 2017; Putzky 

and Welling, 2019; Quan et al., 2018; Schlemper et al., 2017; Sun et al., 2016; Yang et 

al., 2017; Aggarwal et al., 2018; Hammernik et al., 2018; Cheng et al., 2018; Han et al., 

2019; Zhu et al., 2018; Duffy et al., 2021; Haskell et al., 2019; Johnson and Drangova, 

2019; Küstner et al., 2019; Pawar et al., 2018; Shaw et al., 2020; Oksuz et al., 2019; 

Usman et al., 2020; Benou et al., 2017; Jiang et al., 2018; Manjón and Coupe, 2018). 

Most existing architectures are based on purely frequency space representations or purely 

image space representations. Here, we propose and demonstrate joint frequency-image space 

representations that enable networks to learn a wide set of tasks including and beyond the 

extensively studied undersampled reconstruction. To motivate our approach, we examine 

the correlation structure for frequency and image space representations in Fig. 1. Local 

neighborhoods around a pixel exhibit strong correlations, suggesting that local convolution 

operations, which are widely successful on image space computer vision tasks, might also 

be useful when applied to frequency space data to capture this local structure. Convolutional 

operations in frequency space promise to enable direct correction of local frequency space 

artifacts corresponding to global image space effects, while convolutional image space 
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processing facilitates complementary correction of artifacts that are best captured in the 

image domain.

1.1 Prior Work

We study joint representations in the context of three corruption processes that arise during 

the imaging process.

Motion.—Previous retrospective motion correction strategies (Batchelor et al., 2005; 

Haskell et al., 2018) are cast as large, non-convex optimization problems with iterative 

solutions that are slow to compute. Deep learning methods (Duffy et al., 2021; Haskell et 

al., 2019; Johnson and Drangova, 2019; Küstner et al., 2019; Pawar et al., 2018; Shaw et 

al., 2020; Usman et al., 2020) solve the motion correction problem with a neural network 

operating purely in the image space, even though motion artifacts are induced directly in 

the frequency space during data acquisition. An alternative approach has been demonstrated 

recently that detects motion directly on frequency space data, followed by motion correction 

via an image space network (Oksuz et al., 2019).

Noise.—Previous work on MRI denoising applies classical signal processing techniques 

including filtering (Manjón et al., 2008) and wavelet-based methods (Anand and Sahambi, 

2010; Nowak, 1999). Deep learning methods employ convolutional networks solely on 

image space data (Benou et al., 2017; Jiang et al., 2018; Manjón and Coupe, 2018).

Undersampling.—Classical undersampled reconstruction techniques either construct 

the output image as a least-squares estimate from the acquired frequency space data 

(Pruessmann et al., 1999) or combine convolutional filters in the frequency space with 

an inverse Fourier transform (Griswold et al., 2002; Lustig and Pauly, 2010). Many 

deep learning methods apply convolutions to image space reconstructions of the acquired 

undersampled frequency data (Aggarwal et al., 2018; Hammernik et al., 2018; Hyun et 

al., 2018; Lee et al., 2017; Putzky and Welling, 2019; Quan et al., 2018; Schlemper et 

al., 2017; Sun et al., 2016; Yang et al., 2017). To improve the quality and fidelity of the 

reconstruction, the convolutional layers can be combined into an architecture that emulates 

unrolled optimization, with a convolutional regularizer coupled with a physics-inspired 

data consistency constraint that is enforced after each iteration (Aggarwal et al., 2018; 

Hammernik et al., 2018). Alternatively, the convolutional architectures can act directly on 

the frequency space data (Akçakaya et al., 2019; Cheng et al., 2018; Han et al., 2019). The 

notably different AUTOMAP architecture uses fully-connected layers to convert frequency 

space data to the image space and then applies further image space convolutions (Zhu et al., 

2018), incurring prohibitive memory complexity of (N4) for a N × N image.

More recently, solutions that combine frequency and image space convolutions have 

been demonstrated in the context of undersampled reconstruction. One approach is to 

combine separately trained pure frequency and pure image space networks into a common 

architecture (Eo et al., 2018; Souza and Frayne, 2019; Wang et al., 2019). The most closely 

related work to ours integrates frequency and image space blocks within the same network 

(Zhou and Zhou, 2020), effectively implementing one of the two variants we consider in this 
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paper. Here we propose an additional layer architecture that also tightly couples frequency 

and image space representations and evaluate both variants on a wide variety of tasks, 

well beyond the undersampled reconstruction scenario for which the previously combined 

architectures have been proposed.

In our experiments, a basic network that simply concatenates joint layers outperforms its 

pure frequency and image counterparts across a large set of artifacts and reconstruction 

quality metrics. To investigate how the joint layer architecture interacts with the data 

consistency constraints often used in undersampled reconstruction, we train the basic 

network with such a constraint and observe that it compares favorably with the state of 

the art task-specific undersampled reconstruction networks (Eo et al., 2018; Schlemper 

et al., 2017) that also incorporate a data consistency constraint. Moreover, we probe the 

relationship between the proposed joint layers and the widely used unrolled optimization 

architectures by replacing image convolutional layers with our joint layers in a state of 

the art unrolled optimization network, MoDL (Aggarwal et al., 2018). Using the proposed 

joint layers improves the training landscape and reduces training time by about an order of 

magnitude.

To summarize, our contributions are as follows:

1. We define two task-independent convolutional layer architectures that tightly 

couple frequency and image representations of an input image that can be used 

in conjunction with unrolled optimization, data consistency constraints, and other 

sophisticated strategies for building and training reconstruction neural networks.

2. We demonstrate in simulation experiments that joint networks outperform pure 

image or pure frequency space networks for reconstructing high quality images 

in the presence of (i) extreme motion, (ii) heavy noise, and (iii) combination of 

artifacts, such as motion and undersampling.

3. We demonstrate that the proposed joint learning strategy is compatible with a 

data consistency constraint and performs favorably relative to state-of-the-art 

networks specifically designed for the undersampled reconstruction task.

4. We demonstrate on complex-valued, multicoil, real world data that incorporating 

joint layers into unrolled optimization networks results in more effective training 

and an order of magnitude decrease of training time, suggesting that the 

proposed architectures are particularly well suited for image representation in 

MRI reconstruction networks.

This paper is organized as follows. In the next section, we define the proposed layer and 

network architectures. Section 3 provides the implementation details and describes our 

ablation studies. Section 4 reports experimental results, followed by the discussion of the 

proposed layers, their limitations, and conclusions in Section 5.

2. Joint Networks

MRI acquires Fourier transform measurements, referred to as k-space data. We assume a 

2D multislice MRI acquisition. For each slice in this setup, the goal of image reconstruction 
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is to generate an image I from the acquired Fourier transform measurements F = ℱ{I}. 

Classically, this reconstruction is computed via a 2D inverse Fourier transform, producing 

an estimated image I = ℱ−1 F . In practice, corrupted and possibly undersampled 

measurements F  are acquired instead of F, and the goal is to estimate the desired image 

I from the corrupted signal F . Many strategies exist for selecting which measurements 

to acquire in frequency space. Here we consider Cartesian sampling, where measurement 

coordinates kx and ky are evenly sampled across the 2D Fourier plane, but our method can 

be generalized to other acquisition schemes. In this section, we define two neural network 

layer variants that combine image and frequency space convolutional features, referred to 

as Interleaved and Alternating, specify the network architectures, and describe the 

learning procedure.

2.1 Joint Layer Structures

Fig. 2 illustrates the layer structures of the two joint networks. We use un to denote the 

frequency space input and vn to denote the image space input of layer n. Thus, u0 = F  and v0 

= ℱ−1{u0} represent the frequency space and image space inputs to the network.

In the Interleaved setup, layer inputs are combined via learned, layer-specific mixing 

parameters αn and βn that parameterize the sigmoid function s(x) = (1+e−x)−1 to constrain 

the mixing coefficients to (0,1):

un = s αn un + 1 − s αn ℱ vn ,
vn = s βn vn + 1 − s βn ℱ−1 un . (1)

Real and imaginary parts of inputs are represented as separate channels at each layer and 

are joined appropriately to form complex numbers when computing the Fourier transform ℱ 
{·} or its inverse. Next, the layer applies batch normalization (BN), a convolution, and an 

activation function with a skip connection to produce the outputs:

un + 1 = σ wn ⊛ BN un + bn + u0,
vn + 1 = σ′ wn′ ⊛ BN vn + bn′ + v0, (2)

where (wn, bn) are learned frequency space convolution weights and biases, wn′ , bn′  are 

learned image space convolution weights and biases, and σ(·) and σ′(·) are activation 

functions specific to the frequency space and image space network components, described 

later in this section.

This layer architecture is a generalization of networks that operate purely in frequency 

space, obtained by choosing s(αn) = 1 and s(βn) = 0, and of networks that operate purely in 

image space, that arise when s(αn) = 0 and s(βn) = 1. When 0 < s(αn) < 1 and 0 < s(βn) < 1, 

this layer represents a function that cannot be expressed solely via pure image or frequency 

space convolutional layers that do not invoke the Fourier transform or its inverse. Note that 

the frequency output un of layer n is not required to be the Fourier transform of the layer’s 

image output vn, only that the mixing is applied to either two frequency space outputs or 

two image space outputs. This additional flexibility ensures that un and vn are not entirely 
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redundant and the network learns the right features to capture MRI structure based on the 

input data and the task at hand.

In the Alternating setup, each layer sequentially incorporates frequency and image space 

convolutions with the appropriate batch normalization and activation function:

vn = ℱ−1 σ wn ⊛ BN un + bn + u0 ,
un + 1 = ℱ σ′ wn′ ⊛ BN vn + bn′ + v0 , (3)

i.e., the reconstruction alternates between convolutions in the frequency and image space. A 

version of this architecture was previously introduced as part of a task-specific network for 

undersampled reconstruction (Zhou and Zhou, 2020).

For both joint architectures, the frequency space convolutions represent element-wise 

multiplications in the image space. Since the convolution kernels have limited width, the 

learned convolutions cannot represent all such element-wise multiplications, but instead 

parameterize the subset whose 2D Fourier transform is zero outside of a central region. 

Coupled with nonlinearities in the frequency space, these operations enable the network to 

use global, spatially varying operations not captured by image space convolutions.

Although both of these layers explicitly include the Fourier transform and its inverse, no 

parameters are associated with those transforms. Thus, we learn only convolutional weights, 

biases, and possibly mixing coefficients. Since our networks incorporate Fourier transforms, 

they have an overall (N2 logN) space complexity for N × N images.

2.2 Activation Functions

Adopting the standard practice of using the ReLU nonlinearity for image data, we define σ′
(x) = ReLU(x) for all convolutions in the image space. This operation is applied separately 

to real and imaginary channels of each image space convolution output (Trabelsi et al, 

2018). However, the zero-gradient of this nonlinearity for negative values is ill-suited for 

networks that operate on frequency space data, as individual inputs can take on a large range 

of positive and negative values. We introduce an alternative nonlinear activation function 

that we apply to both the real and imaginary channels of each frequency space convolution 

output:

σ(x) = x + ReLU x − 1
2 + ReLU − x + 1

2 . (4)

This nonlinearity’s magnitude increases with that of the input everywhere, while preserving 

the distinction between positive and negative inputs. We found that networks using this 

nonlinearity consistently outperformed networks that employed ReLU activation functions 

on frequency space convolution outputs.

2.3 Learning

The networks evaluated in this paper can be trained with any differentiable loss function 

ℒ. In our experiments, we investigate a wide variety of loss functions. We train the 

joint network f(·; θf, θi) for image reconstruction by optimizing a set of frequency 
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space parameters θf and a set of image space parameters θi over the training dataset 

D = Fm, Im  using stochastic gradient descent-based strategies to obtain

θf*, θi* = arg min
θf, θi

∑
m = 1

D
ℒ Im, ℱ−1 f Fm; θf, θi , (5)

where θf and θi depend on the setup of the joint layer.

3. Implementation Details and Ablation Architectures

We construct each joint network to contain 10 joint frequency and image space layers. 

We performed a hyperparameter sweep and observed that the accuracy of reconstruction 

on the validation set stopped improving for networks that included more than 10 joint 

layers. A single 2D convolutional layer acts on the frequency space output u10 of the final 

joint layer to produce the final 2-channel complex output F . The estimated image I  is the 

inverse Fourier transform of the network’s output, i.e., I = ℱ−1 F . All convolution blocks 

within both types of joint layers have kernel size 3×3 and 64 output features, resulting in a 

total of 670,622 parameters for the Interleaved network and 706,438 parameters for the 

Alternating network.

To evaluate the utility of combined frequency and image space layers as a network building 

block for manipulating Fourier imaging data, we compare performance of the Interleaved 

and Alternating architectures to two similarly structured baseline architectures with only 

frequency or only image space operations.

First, we create an architecture Frequency that performs convolutions only on frequency 

space data and train the network g(·; θf) to identify frequency space parameters

θf* = arg min
θf

∑
m = 1

D
ℒ Im, ℱ−1 g Fm; θf . (6)

The network contains 20 convolution layer to match the joint networks’ 10 pairs of 2 

convolution layers. As in the Interleaved and Alternating networks, each convolution 

layer has kernel size 3×3 and 64 output features, followed by the final, two-feature 2D 

convolutional layer, resulting in 706,438 parameters. This network captures the convolution 

strategy used in (Akçakaya et al., 2019; Han et al., 2019; Kim et al., 2019), which 

incorporate frequency space convolutions in the context of other task-specific architectures 

and loss choices.

We also implement an image space network Image. The network g(·; θi) is trained by 

optimizing

θi* = arg min
θi

∑
m = 1

D
ℒ Im, g ℱ−1 Fm ; θi . (7)
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This network’s architecture is identical to that of Frequency and also contains 706,438 

parameters, but it operates on image space data. This network captures the convolution 

strategy used in prior work that incorporates image space convolutions with task-specific 

architectures and loss function choices, e.g., unrolled optimization and data consistency 

constraints (Aggarwal et al., 2018; Hammernik et al., 2018; Haskell et al., 2019; Hyun et al., 

2018; Küstner et al., 2019; Lee et al., 2017; Manjón and Coupe, 2018; Pawar et al., 2018; 

Putzky and Welling, 2019; Quan et al., 2018; Schlemper et al., 2017; Sun et al., 2016; Yang 

et al., 2017).

We initialize all convolution weights using the He normal initializer (He et al., 2015) and 

use the Adam optimizer (Kingma and Ba, 2014) (learning rate 0.001) until convergence. We 

initialize s(α) and s(β) to 0.5. Training each model requires one day on an NVIDIA RTX 

2080 Ti GPU. Our code and pre-trained models for each of these networks is available at 

https://github.com/nalinimsingh/interlacer.

4. Experiments

In this section, we evaluate the proposed joint layers in a set of experiments that progress 

from simulated data and basic networks to real world complex-valued multicoil MRI 

measurements and unrolled optimization frameworks with physics-inspired data consistency 

constraints. The experiments in this section are performed on brain MRIs from multiple 

datasets. Additional experiments on FastMRI single coil knee MRI, including comparisons 

with the top methods on FastMRI leaderboard, are provided in Appendix A.

4.1 No Data Consistency

In this section, we present experiments where no data consistency contraint is employed in 

training our networks. These experiments directly compare the performance of the different 

layer types described in Sections 2 and 3. These experiments are particularly useful for 

understanding the relative performance of these methods in settings where direct data 

consistency may not be desirable because the acquired data is corrupted by an artifact.

Data.—In this experiment, we simulate artifacts of interest in a set of 6,276 T1-weighted 

brain MRI images from patients aged 55–90 collected as part of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (Mueller et al., 2005). We select the central 2D axial 

image of each volume for training and evaluation. To simulate acquired data, we apply the 

2D Fourier transform to each image. After simulating the artifacts as described below, 

we normalize each input and output training pair by dividing by the maximum value 

in the corrupted image. The k-space data were zero-padded in this dataset during the 

original image reconstruction process, prior to our simulations. As a result, the quantitative 

results from these experiments do not represent model performance when deployed on raw, 

acquired k-space data (Shimron et al., 2022). Instead, these experiments probe the relative 

performance of competing methods on tasks for which large datasets of raw k-space are 

not readily available, such as motion correction and denoising. Subsequent experiments with 

raw, acquired frequency space data that have not been padded demonstrate that the proposed 

joint layers can also handle non-padded data. We split the dataset into 4,115 training 

images, 2,061 validation images, and 100 test images such that no subjects are shared across 
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the training, validation, and test sets. Preliminary experiments and hyper-parameters are 

evaluated on the validation dataset; the test set is only used for computing the performance 

statistics.

Training Loss and Evaluation Metric.—We train Frequency, Image, Interleaved, 

and Alternating networks described in Section 3 using L1 loss on the real and imaginary 

components of the output and employ the SSIM scores (Wang et al., 2004) between the 

ground truth and reconstructed magnitude images to evaluate the quality of reconstruction 

on the test set.

4.1.1 Experimental Setup

Motion.: Imaging subjects may move as measurements are being acquired at different points 

in the Fourier space. In practice, all points within a single line F(·, ky) in frequency space 

are acquired rapidly together. Thus, it is commonly assumed that no motion occurs during 

acquisition of a single frequency space line. In this work, we use a rigid-body motion model 

for motion that occurs between acquisitions of successive lines.

If the imaged subject is affected by a rotation ϕky about the origin, a horizontal translation 

Δxky, and a vertical translation Δyky during acquisition of line ky, the acquired signal 

corresponds to the rigidly transformed image Iky

F ⋅ , ky = ℱ Iky ⋅ , ky , where
Iky(x, y) = I x − Δxky cos ϕky − y − Δyky sin ϕky,
x − Δxky sin ϕky + y − Δyky cos ϕky .

(8)

Eq. (8) forms a translated and rotated version of the desired image I. A pure translation 

without rotation in the image space corresponds to a phase shift in the frequency space:

F t kx, ky = F kx, ky exp −j2π kx
Δxky

N + ky
Δyky
N (9)

for a N ×N image. A pure rotation about the center of the image space without translation 

corresponds to a rotation by the same angle in the frequency space:

F r kx, ky = F kx cos ϕky − ky sin ϕky,
kx sin ϕky + ky cos ϕky .

(10)

To simulate motion artifacts during image acquisition as described in Eq. (8), we sample 

three motion parameters at various lines in frequency space: a horizontal translation Δx, 

vertical translation Δy, and rotation ϕ. We report results for the case when the fraction γm 

of the total number of lines at which motion occurs is 0.03, though the trends in our results 

hold for several different values of this parameter. We apply the sampled motion parameters 

to contiguous lines in frequency space between consecutive motion line samples. Translation 
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parameter values are drawn uniformly from the range [−8px, 8px], corresponding to physical 

translations on the range [−8mm, 8mm]. Rotation parameter values are drawn uniformly 

from the range [−11°, 11°]. These parameter ranges are chosen to include extreme motion 

at the upper limit of what might be expected in a typical MRI scan. For a Cartesian, 

fully-sampled acquisition, the resulting combined frequency space data represents the signal 

acquired when the imaging subject shifts according to the sampled motion parameters at 

each of the randomly sampled lines in frequency space.

Noise.: Noisy MRI data can be modeled via an additive i.i.d. complex Gaussian distribution:

F kx, ky = F kx, ky + ϵ1 + jϵ2,
ϵ1, ϵ2 N 0, σ2IN × N , ϵ1⫫ϵ2, (11)

where (μ, Σ) represents the Gaussian distribution with mean μ and covariance Σ. This 

noise distribution gives rise to the standard Rician distribution on MRI image space pixel 

magnitudes (Cárdenas-Blanco et al., 2008).

To simulate noisy acquisitions as described in Eq. (11), we sample pixelwise independent 

noise from a zero-mean Gaussian distribution. We report results in the case where this noise 

has standard deviation γn of 10,000, though our observed trends are consistent for both 

smaller and larger values of this parameter. This value was chosen because it visually results 

in an aggressive noise corruption on the magnitude image; the average resulting magnitude 

image has SNR≈1.5.

Undersampling.: To speed up image acquisition, a common approach is to only acquire 

data at a subset Sy of discrete “lines,” i.e., values of ky ∈ Sy:

F kx, ky =
F kx, ky ky ∈ Sy
0 ky ∉ Sy . (12)

We simulate undersampling as described in Eq. (12) with sampling frequency γs = 25% 

(equivalent to an acceleration factor of 4), where the selected line indices Sy are sampled 

at random. These lines are selected without a bias toward the low-frequency lines at 

the center of the Fourier plane of each image, independently of the sampling pattern 

in all other images. This challenging undersampling pattern measures how well different 

layer architectures perform under non-traditional acquisition schemes, for example, when 

using scan-specific acquisition patterns (Bahadir et al., 2020). Our subsequent experiments 

evaluate the proposed layers with more conventional undersampling schemes. As an aside, 

the ground truth data in this experiment has conjugate symmetry in the frequency space, so 

in the hypothetical case of γs=50% with our random sampling scheme it is possible that 

all of the data required to perfectly reconstruct the image is present in the input. This is 

impossible for the acceleration factor of γs=25% in this study.

Undersampling with Motion.: Undersampling reduces scan time and thus is commonly 

used to limit the time during which motion can occur. We analyze the setting where 

both motion corruption and undersampling occur simultaneously (Fig. 3), forcing the 
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reconstruction algorithms to correct both types of artifacts. As in the pure motion 

experiments, for each slice, we set the fraction of lines γm = 0.03. For each line affected by 

motion, we sample three parameters of motion: Δxi, Δyi, and ϕi, corresponding respectively 

to a horizontal translation, vertical translation, and counterclockwise rotation about the slice 

origin. We simulate the corresponding motion-corrupted frequency space as described in Eq. 

(8). We then sample the full center 8% of ky-lines and sample the remainder of the line 

indices from a uniform distribution to achieve an overall 4x acceleration factor.

4.1.2 Results—Fig. 4 reports reconstruction quality statistics for all four types of 

simulations described in Section 4.1.1: motion, noise, undersampling, and motion combined 

with undersampling. The Interleaved and Alternating architectures outperform the 

baseline architectures for nearly every task and subject. Across all tasks and nearly all 

subjects, the Interleaved and Alternating architectures are quite similar in numerical 

performance. Sample image reconstructions for the motion, motion with undersampling 

and denoising tasks are shown in Figs. 5–7. Qualitatively, for each task, the Frequency 

network provides a blurry version of the ground truth image. The Image network 

provides a reconstruction which effectively removes ‘background’ effects but has limited 

success in correcting these artifacts within the image. In contrast, the Interleaved 

and Alternating networks provide sharper, high-quality reconstructions across all tasks. 

Further, the frequency space reconstructions provided by those networks appear the most 

faithful to the ground truth frequency data.

4.2 Hard Data Consistency Constraint

Deep learning for undersampled reconstruction is an active area of research and several 

state of the art methods have emerged for this task. In this experiment, we compare 

Interleaved and Alternating networks to such methods on ADNI data introduced in 

Section 4.1.

Undersampling is fundamentally different from motion and noise corruption, because the 

acquired data for lines ky ∈ Sy are the correct, desired outputs of the reconstruction 

algorithm at those frequency space locations. Data consistency can be enforced at test time 

and at intermediate layers of the network by substituting the appropriate k-space lines into 

the k-space representations of the image (final or intermediate) produced by the network. 

We enforce data consistency in Interleaved and Alternating networks by copying the 

acquired frequency space data into the network output.

We compare Interleaved and Alternating networks to a U-Net (Falk et al., 2019), the 

CascadeNet (Schlemper et al., 2017), which combines image space convolutions with forced 

data consistency at each layer of the network, and, most similar to our method, the KIKI 

network (Eo et al., 2018), which includes two separate image and frequency space networks. 

The KIKI-net architecture incorporates four networks operating in the frequency, image, 

frequency, and image spaces, respectively. This is in contrast to our networks, where every 

layer contains convolutions in both spaces and uses a custom nonlinearity for the frequency 

space layers. Moreover, the KIKI-net architecture imposes a data consistency constraint after 

each k-space subnetwork. For tasks other than undersampled image reconstruction, the data 
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consistency constraints in CascadeNet and KIKI-net would incorrectly force the acquired 

k-space lines to be maintained in the final reconstruction; thus, we restrict comparisons with 

CascadeNet and KIKI-net to the undersampled reconstruction case.

We use implementations of the baseline methods available at https://github.com/

zaccharieramzi/fastmri-reproducible-benchmark (Ramzi et al., 2020). We scale each network 

to have roughly 800,000 parameters for fair comparison with our joint architectures. We use 

an L1 loss function to train the networks and SSIM scores to evaluate their performance on 

the test set.

Undersampling patterns.—In addition to the random sampling scheme in Section 4.1, 

we simulate two traditional undersampling patterns: (i) the central 8% of lines are fully 

sampled while every fourth line of the outer regions of k-space is sampled and (ii) the 

central 4% of lines are fully sampled while every eighth line of the outer regions of k-space 

is sampled.

4.2.1 Results—Fig. 8 reports statistics for U-Net, CascadeNet, KIKI-net, Joint and 

Alternating networks. Fig. 9 provides sample image reconstructions. Interleaved and 

Alternating networks perform comparably to other state of the art methods on the simpler 

uniform undersampling tasks and outperform the state of the art methods on the more 

complex random undersampling task.

4.3 Unrolled Optimization

Finally, we evaluate the performance of the proposed joint layers in the setting of an 

unrolled optimization architecture on real world multicoil MRI data. In this experiment, we 

replace the image space convolutional layers with our Interleaved layers in the MoDL 

framework (Aggarwal et al., 2018) for unrolled optimization. We use the authors’ publicly 

available implementation of MoDL at https://github.com/hkaggarwal/modl. Each iteration 

of the MoDL network first passes the input through convolutional layers that serve as a 

data-driven regularizer and then applies an analytical update based on the data consistency 

term. To keep the total number of convolutions comparable, we train the baseline MoDL 

network with 10 image convolutional layers in each iteration and the joint MoDL network 

with 5 Interleaved layers in each iteration. We set K = 5 iterations for both networks. 

The authors use the strategy of first training a one-iteration MoDL network and using its 

weights to initialize the training of a multi-iteration MoDL network. This process speeds 

up training of the larger unrolled optimization network and avoids instabilities. We found 

that pre-training of a one-iteration model was unnecessary when using the joint layers, 

and train both the one-iteration and the five-iteration joint MoDL networks using random 

initializations. For consistency with the original MoDL training approach, we train all 

networks using L2 loss.

Data.—We use the data from the original MoDL study (Aggarwal et al., 2018). This dataset 

contains raw k-space data from 3D T2 CUBE acquisitions with Cartesian readouts using a 

12-channel head coil. The dataset contains 360 training slices from 4 training subjects and 

a single, separate test subject. We exclude some edge slices in this test volume and use the 
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central 90 slices for our evaluations to match the training distribution. We train all networks 

using a variable density 6x undersampling mask as specified in the original paper.

4.3.1 Results—Figure 10 presents the training curves, validation SSIM, and sample 

reconstructions for all versions of the MoDL architecture. All networks attain similar 

validation SSIM values, but MoDL networks with joint layers achieve high reconstruction 

quality in roughly a third as many epochs as image space networks. Further, using our joint 

layers removes the need to pretrain a one-iteration network. The five-iteration network with 

joint layers trains successfully from random initializations. The resulting differences in wall 

clock training times are summarized in Table 1.

5. Discussion and Conclusions

We demonstrate the advantages of joint image and frequency space learning strategies 

for correcting corrupted MRI data. For tasks where data consistency constraints cannot 

be readily applied, our joint networks produce sharper reconstructions than the more 

blurry, artifacted versions generated by single space networks. For the well-studied task of 

undersampled reconstruction, where data consistency constraints can be imposed easily, we 

show that networks comprising joint layers can be trained with such constraints and compare 

favorably to other strategies that incorporate data consistency constraints to improve the 

quality of single space network reconstructions. For unrolled architectures that iteratively 

perform the steps of an optimization procedure to produce high quality reconstructions, the 

joint layers can straightforwardly replace image convolutional layers to improve training 

landscape and convergence. These results point to joint layers as a useful building block 

when designing neural network architectures for correcting frequency space artifacts.

While we demonstrate our method in a diverse set of acquisition scenarios, our analysis does 

not exhaustively cover all possible imaging artifacts. For example, we do not analyze the 

effects of interslice motion, which may occur in addition to the intraslice motion studied 

in this work and introduces new image content from an adjacent slice into the slice being 

imaged. Further, while we analyze extremely aggressive versions of motion, noise, and 

undersampling to demonstrate the effectiveness of our method in the most challenging 

scenarios, future versions of this method could tune these parameters to more closely match 

the statistics of the patient population being scanned. For example, empirically measured 

motion trajectories could be used to characterize the rate and severity of the induced motion 

artifacts.

In the future, we aim to develop additional strategies for applications where direct 

consistency with acquired data is not necessarily desirable, such as motion correction. We 

also plan to investigate local operations beyond convolutions that more directly capitalize 

on properties and symmetries of frequency space data for use in joint architectures. 

Local convolutions in the frequency space represent a subset of all possible element-wise 

multiplications in the image space. Thus, future work could perform these operations in the 

image space, saving the computational overhead of performing an FFT within each layer, or 

could take advantage of additional element-wise image space multiplications whose Fourier 

transforms are not bandlimited to the size of our filter kernels. The combination of these 
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advances promises to significantly improve reconstruction and analysis of MRI data in the 

face of widely varying acquisition challenges and downstream applications.
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Appendix A.: FastMRI Experiments

We compare the Interleaved and Alternating networks with Frequency and Image 

baseline methods, as well as the top three methods submitted to the single coil track of the 

FastMRI challenge at https://fastmri.org.

A.1 Data

We train and evaluate all networks on the proton density knee MRI frequency space data 

from the single coil FastMRI Dataset (Zbontar et al., 2018). We train separate networks for 

signals acquired with and without fat suppression. We apply the FastMRI 4x undersampling 

scheme at both training and test time. The 4x undersampling scheme acquires all of 

the central 8% of lines and samples lines outside of the central region from a uniform 

distribution such that 25% of all lines are sampled in total. After undersampling the signals, 

we normalize each input and output training pair by dividing by the maximum value in 

the corrupted image. We use the standard FastMRI split of 34,742 training slices from 973 

volumes and 7,135 validation slices from 199 volumes. No subjects are shared across these 

sets. We treat the FastMRI validation set as our test set and use it only for evaluation by 

comparing the network’s output to the high quality fully sampled images provided as part of 

the FastMRI dataset.

A.2 Training Loss and Evaluation Metrics

We evaluate and compare the networks trained with a variety of loss functions and 

assess reconstruction quality via different quality metrics. We train Frequency, Image, 

Interleaved and Alternating networks with seven loss functions: image space L1 

error, frequency space L1 error, a joint L1 metric summing image and frequency L1 errors, 

SSIM (Wang et al., 2004), multiscale SSIM (Wang et al., 2003), and PSNR (Huynh-Thu and 

Ghanbari, 2008). The joint L1 metric weighs the frequency space L1 error by 0.1 relative to 

the image space L1 error to account for differences in the error magnitudes. The SSIM and 

multiscale SSIM scores are computed with window size 7 × 7 and constants k1 = 0.01, k2 = 

0.03.

We also compare the joint networks with top single coil methods on the FastMRI 

benchmark. For these experiments, we use a larger version of the Interleaved network 

comprised of 6 joint layers with two frequency space and two image space convolutions per 

layer, yielding roughly 3 million parameters total.
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A.3 Results

Our results on the knee undersampled reconstruction task replicate the trends observed in the 

brain undersampled reconstruction task. Joint networks outperform single-domain networks, 

as reported in Table 2. This suggests that our joint layers can successfully process acquired, 

complex-valued MRI data. Further, Table 2 confirms that the success of joint learning is not 

specific to a certain loss landscape. Qualitative examples of reconstructions from networks 

trained with various loss functions are shown in Fig. 11.

The reconstructed images produced by the larger Interleaved network are qualitatively 

similar to those produced by the top three methods on the FastMRI leaderboard (Fig. 12). 

Table 3 reports reconstruction quality measures for Interleaved network and the top 

single-slice methods on the FastMRI benchmark. Interleaved network achieves results 

that are close to the state of the art architectures specifically tuned for this task. We 

emphasize that our goal is not to attain state of the art performance on the FastMRI 

benchmark, but rather to show that simple layers comprised of both frequency and image 

space convolutions achieve reasonable performance on this benchmark while offering 

flexibility for correcting a wide range of other artifacts, and for correcting multiple artifacts 

present simultaneously.
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Figure 1: 
Maps of correlation coefficients between a single pixel (center of circle) and all other 

pixels in image (left two panels) and frequency space (right two panels) representations 

of MNIST and a brain MRI dataset. All maps show strong local correlations useful for 

inferring missing or corrupted data in both spaces. Frequency space correlations also display 

conjugate symmetry characteristic of Fourier transforms of real images.
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Figure 2: 
The Interleaved (left) and Alternating (right) layers, embedded within full network 

architectures. Each ‘F-Conv’ or ‘I-Conv’ block applies Batch Normalization (BN), a 

convolution, and an activation function in the frequency or image space, respectively.
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Figure 3: 
Data generation procedure for undersampling in the presence of motion. At line Li in 

frequency space, the original image I is rotated and translated to form Ii
M. Lines from 

the corresponding Fourier transforms F and Fi
M are mixed and undersampled to generate 

motion-corrupted frequency space data F  that would have been acquired under the illustrated 

motion pattern. A similar method is used to simulate pure motion corruption without 

undersampling, where all frequency space lines are maintained to generate F .
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Figure 4: 
Subjectwise SSIM comparison for all brain MRI tasks without data consistency constraints. 

Subjects are sorted by performance of the Interleaved network. For all tasks, networks 

combining frequency and image space convolutions outperform single-domain networks.
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Figure 5: 
Example reconstructions with motion at 3% of scanning lines, zoomed-in image patches, 

difference patches between reconstructions and ground truth images, and frequency space 

reconstructions. The log values are taken of the frequency space data to better visualize its 

dynamic range. In the patch difference, red pixels have a higher value in the reconstruction 

than in the ground truth, while blue pixels have a lower value in the reconstruction than 

in the ground truth. The Interleaved and Alternating architectures more accurately 

eliminate the ‘shadow’ of the moved brain and the induced blurring compared to the single-

domain networks.
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Figure 6: 
Example reconstructions from 4x undersampled, motion-corrupted data data, zoomed-in 

image patches, difference patches between reconstructions and ground truth images, and 

frequency space reconstructions. As in the motion corruption and undersampling examples, 

the Interleaved and Alternating architectures provide more accurate reconstructions 

of the ground truth images and reconstructing a more coherent k-space.
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Figure 7: 
Example reconstructions with noise of standard deviation 10,000. The Interleaved and 

Alternating reconstructions remove the pixelated noise effect without over-smoothing, in 

contrast to the single-domain networks.
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Figure 8: 
SSIM comparison of the joint networks with the state of the art undersampled reconstruction 

approaches on ADNI data. Results are reported for three undersampling patterns: 4x uniform 

undersampling with a fully-sampled central region (left), 8x uniform undersampling with a 

fully-sampled central region (middle), and 4x undersampling at random (right). In all cases, 

simple networks composed of repeated copies of our joint layers perform at least as well 

as other state of the art networks, and in the difficult case of a random sampling pattern, 

outperform the baseline networks.
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Figure 9: 
Example reconstructions from 4x undersampled data, with lines selected at random. The 

Interleaved and Alternating architectures provide more accurate reconstructions of 

the ground truth images, better eliminating ‘ringing’ and blurring artifacts.
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Figure 10: 
Example training loss and validation SSIM curves (left) and sample reconstructions and 

patches for MoDL networks with K = 1, 5 iterations trained with image convolutional 

layers and with the proposed joint (Interleaved) layers. MoDL networks with image 

convolutional layers do not converge if trained directly with K = 5. Instead, a K = 1 MoDL 

network must be trained and used to initialize the weights of a K = 5 MoDL network. MoDL 

networks trained with joint layers do not require pre-training and achieve the same loss and 

validation SSIM values as networks trained with image convolutions in significantly less 

time.
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Figure 11: 
Typical image reconstruction results for all architectures (rows) and loss functions (columns) 

on FastMRI images without fat suppression. The Interleaved and Alternating 

networks provide the sharpest reconstructions for all loss functions. Amongst these, both 

SSIM-based loss functions most sharply reconstruct high frequency structures within the 

zoomed-in patch. Similar results are observed in images with fat suppression.
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Figure 12: 
Comparison of the Interleaved reconstruction results with the top methods on the 

FastMRI single coil knee reconstruction challenge. All images were taken from the FastMRI 

online submission website. Our method produces a reconstruction qualitatively similar to 

those of the top three methods on the leaderboard.

Singh et al. Page 30

J Mach Learn Biomed Imaging. Author manuscript; available in PMC 2022 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh et al. Page 31

Table 1:

Training times for the full (K = 5) versions of the MoDL architecture to achieve validation SSIM≥ 0.98. For 

stable training, MoDL with image space convolutions must be initialized using the weights learned for a K = 1 

MoDL network. MoDL architectures trained with our joint layers require no pre-training. In total, using joint 

layers results in roughly an 8x speed-up over the pure image space approach.

MoDL Layer Pre-Training (Hrs) Training (Hrs) Total (Hrs)

Image Convolution 19 12 31

Joint Layer 0 4 4
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Table 3:

Reconstruction quality statistics on the FastMRI leaderboard test dataset, at 4x undersampling. The FastMRI 

dataset contains images both with and without fat suppression. Simple Interleaved network comprised of 

joint layers is comparable to the three top models on the FastMRI leaderboard, yielding reconstructions with 

SSIM within 3% of the leading methods.

Method MAE SSIM PSNR

Interleaved (Ours) 0.0296 0.768 32.9

AIRS-Net 0.0266 0.784 33.8

SubtleMR 0.0270 0.781 33.7

i-RIM 0.0271 0.781 33.7
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