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Abstract

Objective: Ornithine transcarbamylase deficiency (OTC-D) is an X-linked

metabolic disease and the most common urea cycle disorder. Due to high phe-

notypic heterogeneity, ranging from lethal neonatal hyperammonemic events to

moderate symptoms and even asymptomatic individuals, the prediction of the

disease course at an early disease stage is very important to individually adjust

therapies such as medical treatment or liver transplantation. In this translational

study, we developed a severity-adjusted classification system based on in vitro

residual enzymatic OTC activity. Methods: Applying a cell-based expression

system, residual enzymatic OTC activities of 71 pathogenic OTC variants were

spectrophotometrically determined and subsequently correlated with clinical

and biochemical outcome parameters of 119 male individuals with OTC-D

(mOTC-D) as reported in the UCDC and E-IMD registries. Results: Integration

of multiple data sources enabled the establishment of a robust disease predic-

tion model for mOTC-D. Residual enzymatic OTC activity not only correlates

with age at first symptoms, initial peak plasma ammonium concentration and

frequency of metabolic decompensations but also predicts mortality. The critical

threshold of 4.3% residual enzymatic activity distinguishes a severe from an

attenuated phenotype. Interpretation: Residual enzymatic OTC activity reliably

predicts the disease severity in mOTC-D and could thus serve as a tool for

severity-adjusted evaluation of therapeutic strategies and counselling patients

and parents.
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Introduction

Ornithine transcarbamylase deficiency (OTC-D) is an X-

linked urea cycle disorder (UCD) caused by deficiency of

the mitochondrial enzyme ornithine transcarbamylase

(OTC; OMIM# 311250) due to pathogenic variants in the

ornithine transcarbamylase gene (OTC) located on chro-

mosome Xp21.1. OTC-D is the most common UCD with

an estimated incidence of 1: 56,500–63,000 newborns.1–3

Since the urea cycle is the only metabolic pathway of irre-

versible elimination of excess nitrogen through ureagene-

sis in humans, disruption of this pathway leads to

accumulation of ammonia and glutamine in plasma and

thus, affected individuals often present with severe life-

threatening hyperglutaminemia and hyperammonemic

events (HAE) during the neonatal period (early onset,

EO, defined as first 28 days of life) facing mortality rates

as high as 25%–50%. Moreover, survivors often suffer

from significant cognitive deficits, and the (cognitive)

outcome has not improved within the last decades in

neonatal-onset disease.4–8 Some individuals with OTC-D

and other UCDs, however, may be less severely affected

since the clinical phenotype is highly variable, ranging

from severe HAE to mild-to-moderate symptoms with

disease onset any time after the neonatal period (late

onset, LO). Symptoms of LO disease characteristics com-

prise headache, recurrent vomiting, liver dysfunction, psy-

chiatric symptoms or cognitive impairment, even in the

absence of recurrent HAE.9–11

Clinical approaches to predict the disease course and

cognitive outcome in individuals with OTC-D identified

disease onset as well as the severity of initial HAE [peak

plasma ammonium concentration during initial HAE

(NH4
+
max)] as determinants. However, a considerable

variability persists throughout these clinical correla-

tions.2,4,5,9,12–15 Importantly, on the genomic level, OTC

variants leading to complete loss of enzymatic OTC func-

tion are thought to cause higher disease burden as

reflected by EO of symptoms, NH4
+
max, frequency of

HAE, cognitive impairment and mortality as opposed to

partly preserved enzymatic activity.4,12,16 Nevertheless,

methods to systematically investigate enzymatic OTC

function are still lacking since in silico modelling of

pathogenic variants to predict protein function and stabil-

ity is still not reliable and kinetic characterization based

on liver biopsies or purified recombinant human OTC

expressed in bacteria has not yet been adapted for system-

atic measurements.16

Due to the heterogeneity in various clinical prediction

models and existing methodological shortcomings

regarding the impact of the genotypic background on

the clinical outcome, we developed a novel in vitro

expression system for male individuals with OTC-D

(mOTC-D) that enables to predict major clinical out-

come parameters and fosters a precision-based medical

approach for future evaluation of diagnostic and thera-

peutic interventions which are supposed to alter the

clinical disease course.
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Materials and Methods

Research strategy

Recently, we demonstrated that the clinical disease

course and neurocognitive outcome of individuals

with citrullinemia type 1 (CTLN1) and argininosuc-

cinic aciduria (ASA), the most prevalent cytosolic

UCDs, can be reliably predicted by the enzymatic

activity of argininosuccinate synthetase 1 (ASS1) and

argininosuccinate lyase (ASL), respectively, as deter-

mined by a newly established biallelic mammalian

expression system.17,18 As we wanted to know if

enzymatic OTC activity can also predict clinical out-

come in individuals with OTC-D, the most prevalent

mitochondrial UCD and the only X-linked UCD, we

systematically investigated all unequivocal pathogenic

exonic OTC variants and correlated the spectrophoto-

metrically determined enzymatic OTC activity with

individuals’ clinical, biochemical and neurological

follow-up data. Data were retrieved from the North

American Urea Cycle Disorders Consortium (UCDC;

https://www.rarediseasesnetwork.org/cms/ucdc) and the

European registry and network for Intoxication-type

Metabolic Diseases (E-IMD; https://www.eimd-registry.

org/), the two largest observational natural history

studies on UCDs worldwide.

Eligibility criteria

Only hemizygous male individuals carrying known

pathogenic exonic variations in the OTC gene, who were

confirmed by molecular genetic testing and were

enrolled in the observational longitudinal studies of

UCDC or E-IMD, were included in this study. Due to

individual variation of X-inactivation, the methodologi-

cal approach used in this study cannot reliably deter-

mine enzymatic OTC activity in female individuals with

heterozygous variations in the OTC gene. The data

model of both registries, information on written

informed consent as well as the follow-up protocols used

have been previously described in detail.14,19 All proce-

dures were in accordance with the ethical standards of

the Helsinki Declaration of 1975, as revised in 2013.

Written informed consent was given by patients or their

legal guardians before enrollment in this study. Data

were retrieved from the UCDC and E-IMD electronic

databases with the cut-off date for data retrieval being

10 October 2018. The UCDC database is registered at

the US National Library of Medicine (https://

clinicaltrials.gov, NCT00237315), whereas the E-IMD

registry is recorded on the German Clinical Trials Regis-

ter (https://www.drks.de, DRKS00013085).

Plasmids

To generate tagged wild-type OTC expression vectors,

the OTC coding sequence has been modified with an

MYC-tag introduced in between the N-terminal sig-

nalling peptide and the core protein, which was cloned

into HindIII- and NotI-restriction sites in the open-

reading frame of the eukaryotic expression vector

pcDNA5/FRT/TO (Thermo Fisher Scientific). The

inserted OTC coding sequence corresponds to NCBI ref-

erence sequence NM_000531.6 (https://www.ncbi.nlm.

nih.gov/nucleotide/NM_000531.6). Using the Quick-

Change II site-directed mutagenesis kit (Agilent), patho-

genic OTC gene variants reported in mOTC-D

individuals from the E-IMD and UCDC registries were

introduced into the tagged OTC expression vector

according to the manufacturer’s protocol. The correct

nucleotide sequence of every inserted variant was con-

firmed by Sanger-sequencing. All OTC variants reported

in this study and their provided nomenclature have been

checked by applying the Mutalyzer 2.0.34 software

(https://mutalyzer.nl/). pSV-b-Galactosidase control vec-

tor was kindly provided by N. Himmelreich (Heidelberg

University, Germany).

Cell culture and transfections

COS-7 cells were maintained as adherent cell culture in

100 mm culture dishes using a DMEM medium

(Thermo Fisher Scientific) supplemented with 10% heat-

inactivated fetal calf serum in a humified incubator at

37 °C and 5% CO2. Transfections were performed using

Lipofectamine 2000 reagent (Thermo Fisher Scientific)

with 5 lg of the wild-type or mutated MYC-tagged

OTC expression vector, 2.5 lg of each ASS1 and ASL

expression vector and 1 lg of b-galactosidase control

vector. Forty-eight hours after transfection, cells were

lysed and lysates were used to perform Western blot

analysis or spectrophotometric determination of enzy-

matic OTC activity.

Western blot

Forty-eight hours after transfection, COS-7-cells were

washed with ice-cold phosphate-buffered saline (PBS)

and lysed in RIPA buffer (Sigma-Aldrich) followed by

sonification. After centrifugation at 13,000gmax and 4°C
for 10 min, supernatants were used for Western blot-

ting according to standard laboratory protocols. For

protein visualization, PVDF membranes were incubated

with the following primary antibodies: anti-MYC

(1:2000; Cell Signaling) or anti-b-actin (1:2000; Sigma-

Aldrich).
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Spectrophotometric analysis of OTC enzyme
activity

Purified citrate synthase, malate dehydrogenase and fumar-

ase from the porcine heart were purchased from Sigma-

Aldrich. Transfected COS-7 cells were washed in ice-cold

PBS and lysed in a buffer containing 10 mmol/L potassium

phosphate, 10 mmol/L TRIS–HCl at pH 7.4 and by addi-

tional sonification. OTC enzymatic activity was determined

as NAD+ reduction at k = 340–400 nm measured in 40 ll
of lysates (triplicates) diluted in 100 ll of the above-

mentioned buffer supplemented with 2 mmol/L ornithine,

2 mmol/L carbamyl phosphate, 2 mmol/L aspartic acid,

330 lmol/L NAD+, 100 lmol/L acetyl-CoA and 2 mmol/L

ATP, 660 mU/ml fumarase, 1800 mU/ml malate dehydro-

genase and 560 mU/ml citrate synthase, adjusted to pH

7.4. Lysates of COS-7 transfected cells with only b-
galactosidase control plasmid served as a negative control.

Negative control values were subtracted from OTC activi-

ties to adjust for unspecific background activity. OTC

activity values were normalized to b-galactosidase activity

in each sample as determined by the b-galactosidase
enzyme assay system (Promega, Germany) following the

manufacturer’s protocol to control for transfection efficacy.

Adjusted OTC activities were then normalized to the pro-

tein content of each sample. Enzymatic activities are

depicted as a percentage of the total (%) by dividing the

normalized OTC activity of the respective variant by the

normalized wild-type OTC activity.

Clinical variables used for data analyses

Data on the following numerical clinical variables were

collected: HAE (defined as plasma ammonium concentra-

tion (NH4
+) > 100 lmol/L), age at first symptoms, age at

death, initial NH4
+
max (defined as peak plasma ammo-

nium concentration during first HAE), number of HAE

per year of observation (defined as the time between the

date of birth and the last regular visit), initial L-citrulline

and L-glutamine concentrations in plasma and initial oro-

tic acid concentration in urine. Moreover, the cognitive

standard deviation score (SDS) at the most recent visit

was calculated using the normative data from the stan-

dardization sample of each cognitive test. The most recent

visit was chosen to include the latest developmental data

in the analysis. For each Wechsler Adult Intelligence Scale

(n = 3), Wechsler Abbreviated Scale of Intelligence

(n = 11), Wechsler Intelligence Scale for Children (n = 6)

and Wechsler test, unknown version (n = 1) full scale IQ

were selected. For Bayley Scales of Infant Development

(n = 15), mental developmental index and cognitive scale

were used. For the Adaptive Behavior Assessment System

(n = 4), the general adaptive composite was used.

As for categorical clinical variables, data of the follow-

ing items were collected: mortality, disease onset (EO,

LO, asymptomatic), presence or absence of movement

disorders (dystonia and/or chorea and/or ataxia), tone

change (muscular hypotonia and/or muscular hypertonia

and/or spasticity), hepatocellular injury (alanine amino-

transferase ≥250 U/L or aspartate aminotransferase

≥250 U/L), liver transplantation (LTx) and kidney dys-

function (full age spectrum glomerular filtration rate

(FAS-GFR) < 90 mL/min/1.73 m2). For symptomatic

individuals with reported HAE during the initial presenta-

tion, the biochemical data of initial NH4
+
max, initial

plasma L-glutamine and urinary orotic acid concentra-

tions represent the highest values, respectively, and the

lowest value for initial plasma L-citrulline concentration

prior to initiation of treatment. For symptomatic individ-

uals without reported HAE during initial presentation,

initial NH4
+
max was defined as the upper limit of the nor-

mal range (50 lmol/L). For untreated asymptomatic indi-

viduals, NH4
+ max values represent the highest reported

follow-up values during the observation period; plasma

L-citrulline, plasma L-glutamine and urinary orotic acid

concentrations represent the arithmetic mean of all

reported follow-up values. Asymptomatic individuals with

mOTC-D receiving therapeutic agents (scavenger, for L-

citrulline concentration analysis additionally L-citrulline

and/or L-arginine substitution) were not considered for

biochemical sub-analysis in order to prevent a confound-

ing bias with iatrogenic interventions.

We investigated the impact of the residual enzyme

activity of OTC in vitro as determined by the established

expression system on clinical outcome parameters out-

lined above.

Data availability statement

The data sets generated and analysed during the current

study are not publicly available due to existing data pro-

tection laws. Furthermore, data ownership is retained by

the members of the UCDC and E-IMD consortia making

data only available for specific research purposes. Data

availability is subject to the consent of both consortia

upon request.

Statistical analyses

All analyses were performed using R (http://www.r-

project.org). To evaluate the association between a con-

tinuous dependent variable and the residual enzyme

in vitro activity of OTC as predictor variable, a linear

regression or generalized additive regression model

(GAM) with automated smoothing selections was used.

In GAM, the linear relationship between the response
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variable and predictors is replaced by non-linear smooth

functions to evaluate an apparently non-linear relation-

ship between dependent and predictor variables. The R

package ‘mgcv’ was used to fit GAM regressions. To com-

pare a numeric dependent variable between two groups, a

t-test with Welch correction was applied. We used unbi-

ased recursive partitioning to determine cut-off values for

the impact of the enzymatic OTC activity on outcome

variables.20 Cox-proportional hazard regression and

Kaplan–Meier estimates were used to analyse mortality. p

values reported were two-sided. p ≤ 0.05 was considered

statistically significant.

Results

Description of the study population and OTC
protein functions

In 119 male individuals with OTC-D and a total of 71

different OTC gene variants, we systematically determined

OTC protein expression levels by Western Blot and enzy-

matic activities using the newly established OTC enzy-

matic assay. Results of Western blot analysis are shown in

Figure S1. Residual enzymatic OTC activities per variant

are illustrated in Figure S2. Detailed descriptive character-

istics of the study population for each subsequent analysis

are specified in Table S1.

Enzymatic activity is inversely correlated to
the severity of the initial presentation

First, we studied whether age at first symptoms and bio-

chemical parameters such as initial NH4
+
max, L-

glutamine, L-citrulline in plasma and orotic acid level in

urine correlate with in vitro enzymatic activity. Age at

first symptoms correlated with residual enzymatic OTC

activity (n = 100, p < 0.0001, R2 = 0.17, linear regres-

sion), demonstrating that individuals with high residual

enzymatic OTC activity present with first symptoms later

in life than those with low residual enzymatic OTC activ-

ity (Fig. 1). This association is particularly strong for vari-

ants leading to residual enzymatic activities below 10%.

In analogy, the disease onset of mOTC-D is strongly asso-

ciated with residual enzymatic OTC activity as deter-

mined by the enzymatic assay. Individuals with early

onset (n = 50) showed significantly lower enzymatic

activities than those with LO (n = 56, p < 0.001, Tukey

multiple comparison of means) and asymptomatic indi-

viduals (n = 10, p < 0.01, Tukey multiple comparison of

means) (Fig. S3).

Initial NH4
+
max is negatively correlated with residual

OTC activity (n = 98, p < 0.0001, R2 = 0.10, GAM analy-

sis). Moreover, recursive partitioning identified a

threshold separating mOTC-D individuals with a severe

initial decompensation from those with an attenuated

form. Residual enzymatic OTC activity of below or equal

to 4.6% was associated with a more severe decompensa-

tion (n = 98, p < 0.001), showing mean initial NH4
+
max

of 1,703 lmol/L in comparison to 652 lmol/L (mean)

for residual activities >4.6% (Fig. 2). Unlike age at first

symptoms and initial NH4
+
max, there was no significant

correlation between residual enzymatic OTC activity and

initial plasma L-glutamine (n = 32, p = 0.06, Pearson’s

product–moment correlation), L-citrulline (n = 25,

p = 0.20, r = 0.26, Pearson’s product–moment correla-

tion) or urinary orotic acid concentrations (n = 34,

p = 0.91, r = 0.02, Pearson’s product–moment correla-

tion).

Residual OTC activity correlates with the
frequency of hyperammonemic events

In the next step, we assessed whether residual enzymatic

OTC activity could also predict the severity of disease

course and found a correlation with the number of HAE

per year of observation (n = 52, p < 0.05, R2 = 0.06,

GAM analysis), showing a higher number of HAE below

the threshold of 16.0% (n = 52, p < 0.05, recursive parti-

tioning) (Fig. 3). In mean, individuals with residual

Figure 1. Residual enzymatic OTC activity predicts age at first

symptoms. Age at first symptoms (days) subject to residual enzymatic

OTC activity (%). Each point represents a single patient (n = 100).

The grey line displays the estimated regression curve. Linear

regression, p < 0.0001, R2 = 0.16.
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enzymatic activities below or equal to 16.0% (n = 35)

present with 3.2 HAE per year of observation, whereas

individuals with residual OTC activities above 16.0%

(n = 17) present with 0.3 HAE per year of observation.

Low residual OTC activity increases the risk
of mortality

Mortality negatively correlates with residual enzymatic

OTC activity (n = 16/119, p = 0.005, odds ratio = 0.87,

Cox Proportional Hazard). Male individuals with residual

OTC activity below or equal to 4.3% had a higher risk of

mortality than those with higher residual activities

(n≤4.3% = 9/28, n>4.3% = 7/91, p = 0.003, recursive parti-

tioning) (Fig. 4). Corresponding mortality rates are

32.1% for residual OTC activities below or equal to 4.3%

and 7.7% for residual activities above 4.3%.

A correlation between residual OTC activity and cogni-

tive SDS at last follow-up test (n = 40, p = 0.12,

R2 = 0.04, linear regression) was not found. However,

sub-analyses showed that cognitive SDS was associated

with initial NH4
+
max (n = 29, p = 0.002, R2 = 0.40, multi-

ple linear regression) but not with age at first symptoms

(n = 29, p = 0.56, R2 = 0.40, multiple linear regression).

Residual enzymatic activity was not associated with

tone change (N = 93, p = 0.06, Welch two-sample t test),

movement disorder (n = 90, p < 0.93, Welch two-sample

t-test), liver transplantation (n = 119, p = 0.09, Welch

two-sample t-test), kidney dysfunction (n = 105,

p = 0.44, Welch two-sample t-test) or hepatocellular

injury (n = 83, p = 0.44, Welch two-sample t-test).

Discussion

The major aim of this study was to evaluate whether

residual enzymatic activity of mutated OTC protein could

precisely predict disease severity. To this end, we com-

pared in vitro enzymatic activity of unequivocal exonic

OTC variants with clinical outcome data reported in the

UCDC and E-IMD databases. Residual enzymatic OTC

activity reliably predicts phenotypic severity as reflected

by the initial presentation, metabolic disease course and

mortality for male individuals. We found for male indi-

viduals with OTC-D that (I) residual enzymatic OTC

activity correlates with age at first symptoms, (II) enzy-

matic OTC activity below or equal to 4.3% is associated

with higher initial plasma NH4
+
max and higher mortality

rates and (III) residual enzymatic OTC activity below or

Figure 2. Residual enzymatic OTC activity correlates with initial plasma NH4
+
max. (A) Initial plasma NH4

+
max (lmol/L) subject to residual enzymatic

OTC activity (%) as determined in the expression system. Each point represents a single patient (n = 98). The grey line displays the estimated

regression curve. GAM analysis, p = 0.004, R2 = 0.102. (B) Box plot illustrating initial NH4
+
max (lmol/L) with residual enzymatic OTC activity below

or equal to 4.6% (n = 27) and above 4.6% (n = 71). Data are shown as median (black thick line) and mean (triangle), length of the box

corresponds to interquartile range (IQR) and upper and lower whiskers correspond to the max. of 1.5 9 IQR, each point represents an outlier.

Recursive partitioning, p = 0.001.
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Figure 3. Residual enzymatic OTC activity predicts number of HAE per year. (A) Number of HAE (NH4
+
max ≥ 100 lmol/L) per year of observation

subject to residual enzymatic OTC activity (%). Each point represents a single patient (n = 52). The grey line displays the estimated regression

curve. GAM-analysis, p = 0.04, R2 = 0.06. (B) Boxplot illustrating number of HAE (NH4
+
max ≥ 100 lmol/L) per year of observation with residual

enzymatic OTC activity below or equal to 16.0% (n = 35) or above 16.0% (n = 17). Data are shown as median (black thick line) and mean (trian-

gle), length of the box corresponds to IQR and upper and lower whiskers correspond to the max. of 1.5 9 IQR, each point represents an outlier.

Recursive partitioning, p = 0.04.

Figure 4. Residual enzymatic OTC activity correlates with mortality. Kaplan–Meier curve illustrating estimated overall survival (A) in total and (B)

with residual enzymatic OTC activity below or equal to 4.3% (n = 28, grey) or above 4.3% (n = 91, black). Censored individuals are marked with

a “+”. Of the two remaining (non-representative) individuals above the age of 55 years, one individual has been censored who died at the age of

59 years due to an epileptic state. Dotted lines are indicating the confidence interval of 95%. Recursive partitioning, p = 0.003.
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equal to 16.0% is associated with a higher number of

HAE per year of observation.

Residual enzymatic OTC activity qualifies as
a predictive biomarker for disease severity

As in vitro residual enzymatic OTC activity reflects dis-

ease severity and reliably predicts major clinical and bio-

chemical outcome parameters, it qualifies as a

prognostic and predictive biomarker as defined by Katz21

and the US Food and Drug Administration.22 As there

are currently no approved pharmacotherapies aiming at

increasing enzymatic OTC activity, the required reflec-

tion of net treatment effects on the outcome to truly

serve as a validated surrogate marker cannot be

addressed at present.23 However, the demonstrated cor-

relations could further encourage the development of

new therapies targeting the increase of enzymatic OTC

activity. In particular, the established disease prediction

model enables a precision-based medical approach as it

indicates to which level residual enzymatic OTC activity

needs to be increased to convert the phenotype from

severe to attenuated.

Using the identified robust cut-off values of residual

enzymatic OTC activities enables risk stratification of

mOTC-D phenotypes and their underlying OTC variants.

According to the above-mentioned thresholds, we suggest

a new classification comprising two clinical phenotypes:

Severe phenotype for OTC variants leading to residual

enzymatic activity below or equal to 4.3% (high initial

NH4
+
max and mortality rate) and attenuated phenotype for

OTC variants leading to residual enzymatic activity above

4.3% (lower initial NH4
+
max and mortality rate).

Showing that the onset type is associated with residual

enzymatic OTC activity allowed us to validate the current

classification system based on EO, LO and asymptomatic

individuals. A major shortcoming of the existing clinical

classification system is the lack of predictive options since

patients will be attributed retrospectively to one class after

the onset of first symptoms. The here presented comple-

mentary stratification system is able to further specify and

predict the evolving phenotype before first symptoms

might have manifested and is based on the genotypic

background of affected individuals.

This new system of risk stratification allows counselling

of patients and their families with regard to relevant clini-

cal and biochemical long-term outcome parameters as

early as genetic testing is completed. However, with

regard to counselling patients and families, it is important

to emphasize that this disease prediction model cannot

predict the exact individual disease course but is of

importance to anticipate the expected outcome in an

evidence-based manner. Moreover, it serves as a useful

tool for the severity-adjusted evaluation of (future) thera-

pies and care concepts and allows the evaluation of exist-

ing diagnostic concepts (e.g. newborn screening) in a

standardized and severity-adjusted manner.

Modelling evidence-based thresholds for
clinical health outcomes in male OTC-D

It has recently been shown that residual enzymatic activity

of the cytosolic urea cycle enzymes ASS1 and ASL reliably

predict disease severity of individuals with CTLN1 and

ASA, respectively.17,18 As we wanted to know if these

associations also hold true for OTC-D, the most prevalent

urea cycle disorder, we investigated residual activities of

the mitochondrial enzyme OTC in vitro. Comparable to

CTLN1 and ASA, residual OTC activity correlates with

initial NH4
+
max and the number of annual HAE in

mOTC-D. Intriguingly, it predicts further relevant clinical

endpoints, which are mortality and age at first symptoms.

Although individuals with mOTC-D present a higher

metabolic disease burden with more severe and more fre-

quent HAE and higher mortality rates, the neurocognitive

outcome in survivors seems to be better than in individu-

als with distal UCDs, suggesting additional underlying

pathomechanisms other than NH4
+-dependent neurotoxic

alterations alone.14,18

In the context of determining the accuracy of our

expression system, the cut-off value for mortality of 4.3%

can be seen as similar to the one for initial peak plasma

NH4
+
max (4.6%), reinforcing the clinical relevance of this

threshold. This goes in line with the clinical observation

that the most severely affected individuals with mOTC-D

still frequently die during their first metabolic decompen-

sation in the neonatal period despite improved intensive

care as well as efficacious intravenous and extracorporeal

detoxification strategies. Thus, it is tempting to speculate

that therapeutic interventions that are able to increase the

residual enzymatic activity at an asymptomatic state early

in life might be a very promising option to reduce mor-

tality.

This is reinforced by the interesting finding that the

threshold for a lethal disease course in mOTC-D is simi-

lar for different mammalian species. Knocking out the

OTC gene in mice results in high and early mortality,

while different currently used mouse models (spf, spf-j

and spfash) with residual OTC activities of 5%–20% pre-

sent milder phenotypes with low mortality rates and ons-

light biochemical alterations.24–27

Our results support the notion of higher mortality rates

among individuals carrying an OTC variant leading to

complete loss of OTC function.2,4 The study cohort shows

one-third of mortality rates for individuals with residual

enzymatic OTC activities below or equal to 4.3% as
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opposed to mortality rates of less than 10% for individu-

als with higher residual enzymatic OTC activities. More-

over, only two of the observed deaths occurred after the

neonatal period. This fact strengthens the need for early

diagnosis and stratification of fatal mutations in order to

reduce mortality.

Low plasma L-citrulline, high plasma L-glutamine and

the detection of orotic acid in urine are highly indicative

of OTC-D in clinical practice.9,10 However, these bio-

chemical parameters do not seem to qualify as reliable

predictive biomarkers for the severity of the initial

decompensation or the subsequent disease course. Similar

limitations account for neurological alterations, such as

tone change and movement disorders.

Intriguingly, residual enzymatic OTC activity showed

no correlation with the cognitive outcome as measured

by IQ testing. However, in line with recent works, a sub-

analysis of our cohort revealed an association between

cognitive SDS and initial NH4
+
max.

12–14 These findings

indicate that the height of the initial NH4
+
max appears

not only to be determined by the underlying residual

enzymatic activity but also by other non-standardized fac-

tors, such as but not limited to (1) timepoint and inten-

sity of initial medical management and (2) effect size of

the cause(s) of the initial decompensation (e.g. catabolic

state, protein load, etc.), which are very heterogeneous

between various individuals having similar or the same

residual enzymatic activities.

Although the UCDC and E-IMD registries have been

systematically collecting follow-up data of UCD individu-

als since 2003 and 2011, respectively, we are still missing

intra-individual long-term data on cognitive functioning

and cerebral brain imaging to improve our understanding

of the natural cognitive disease course and to reveal mor-

phological changes as well as their underlying pathomech-

anisms of neurological impairment.

Directions for future research

The exploratory data on alterations of protein expression

of OTC variants captured in this study can be used as a

basis for further characterization of underlying molecular

pathomechanisms of the respective pathogenic variants.

For more than two decades, researchers have aimed at

developing gene therapies for OTC-D.28-33 Recently, a

phase 1/2 study of adeno-associated virus 8 gene therapy

in adults has been conducted (https://clinicaltrials.gov/,

Identifier: NCT02991144). Using the newly established

expression system could be of help to assess the treatment

effects of new therapeutic approaches (e.g. by application

of gene therapies, chaperones or antisense nucleotides).

Chaperones improving the stability of translated protein

and antisense nucleotides targeting altered splicing of the

precursor mRNA to increase the concentration of cor-

rectly translated protein have shown beneficial effects in

other inborn diseases.34,35 Achieving an increase of resid-

ual enzymatic OTC activity above the threshold of 5% by

therapeutic means might not only reflect a reduction of

mortality but also the phenotypic conversion from a sev-

ere to an attenuated disease course.

Limitations

The here presented stratification system is not able to pre-

dict exact maximal heights of NH4
+, number of HAE or

age at onset. It appears likely that other factors like diag-

nostic and therapeutic delay or severity of catabolic state

influenced by protein intake, infections, drugs, awareness

of preceding symptoms or compliance to life-long therapy

modify the clinical severity of an individual affected by

OTC-D. It has been reported that even the same muta-

tions can cause clinically variable appearances in different

individuals.1,5,16,36 The study results need to be evaluated

prospectively in the future.

Moreover, our study has some inherent limitations.

First, due to the applied cloning technique utilizing the

OTC coding sequence, we were not able to design intro-

nic mutations or those variants associated with defective

splicing. Second, variants that affect substrate binding

affinity (Km-variants) could not be investigated as our

assay uses supraphysiological substrate concentrations

leading to artificially increased enzymatic activities in

those variants. Third, we could not include female indi-

viduals with OTC-D because of variable X-inactivation.

Our study does not claim to systematically analyse the

underlying molecular events in every OTC variant includ-

ing impaired protein folding or decreased protein stabil-

ity. Rather, the results of protein expression levels should

be considered somewhat exploratory and encourage fur-

ther investigation in future studies.

Furthermore, the structure of the UCDC and E-IMD

registries did not enable the inclusion of data from both

registries for every subanalysis. Despite systematic

requirements for data collection, the given data density

and quality reduced test power for some analyses. Fur-

ther intraindividual long-term data are crucial to sub-

stantiate our findings, and longer observation periods

and the inclusion of more individuals might help to

reveal further and strengthen given genotype–phenotype
correlations, in particular, with regard to classify cogni-

tive alterations or to identify asymptomatic individuals.

It seems likely that the group of male individuals with

an attenuated phenotype comprises different subpheno-

types, such as life-long asymptomatic individuals, which

might be revealed by evaluating long-term data in the

future.
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Conclusion

Given the genotype–phenotype correlations revealed in this

study, we suggest a new severity-adjusted classification sys-

tem and prediction model for male individuals with OTC-

D dividing affected individuals into two phenotypic classes:

severe (residual enzymatic OTC activity ≤4.3%) and attenu-

ated phenotypes (residual enzymatic OTC activity >4.3%).

This classification system can be considered complementary

to the current clinical classification system for OTC-D

based on the disease onset (EO, LO and asymptomatic).

Given the impact of enzymatic OTC, ASS1 and ASL activi-

ties as predictive and prognostic biomarkers for the clinical

disease course and outcome of individuals with OTC-D,

CTLN1 and ASA, respectively, we are confident that this

approach can be adapted and applied to other monogenetic

inborn errors of metabolism. This would not only enable

early identification of severely affected individuals prefer-

ably before irreversible organ dysfunctions might have

manifested but could also facilitate the development and

implementation of individual therapeutic care concepts

adjusted to the anticipated disease severity.
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