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Abstract

Objective: This study establishes a fluid dynamics model personalized with patient-specific 

imaging data to optimize neoadjuvant therapy (i.e., doxorubicin) protocols for breast cancers.

Methods: Ten patients recruited at the University of Chicago were included in this study. 

Quantitative dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging 

data are leveraged to estimate patient-specific hemodynamic properties, which are then used to 

constrain the mechanism-based drug delivery model. Then, computer simulations of this model 
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yield the subsequent drug distribution throughout the breast. By systematically varying the dosing 

schedule, we identify an optimized regimen for each patient using the maximum safe therapeutic 

duration (MSTD), which is a metric balancing treatment efficacy and toxicity.

Results: With an individually optimized dose (range = 12.11 – 15.11 mg/m2 per injection), 

a 3-week regimen consisting of a uniform daily injection significantly outperforms all other 

scheduling strategies (P < 0.001). In particular, the optimal protocol is predicted to significantly 

outperform the standard protocol (P < 0.001), improving the MSTD by an average factor of 9.93 

(range = 6.63 to 14.17).

Conclusion: A clinical-mathematical framework was developed by integrating quantitative MRI 

data, advanced image processing, and computational fluid dynamics to predict the efficacy and 

toxicity of neoadjuvant therapy protocols, thus enabling the rational identification of an optimal 

therapeutic regimen on a patient-specific basis.

Significance: Our clinical-computational approach has the potential to enable optimization of 

therapeutic regimens on a patient-specific basis and provide guidance for prospective clinical trials 

aimed at refining neoadjuvant therapy protocols for breast cancers.
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I. Introduction

Neoadjuvant therapy (NAT), which generally refers to the therapy (e.g., chemotherapy, 

hormone therapy, radiation therapy) administered before surgery, has become the standard-

of-care for the treatment of locally advanced breast cancers [1]. NAT often results in a 

reduction of tumor burden, which increases the feasibility of breast conserving surgery and 

decreases the risk of recurrence [1,2]. However, current NAT regimens are not without 

limitations. Based on a recent pooled analysis of 52 studies from 1999 to 2016 [3], the 

pathologic complete response rate of breast cancer patients receiving NAT is highest in 

HER2+ tumors with a median of 50%, followed by triple-negative breast cancer (TNBC) 

at 32.6%, and lowest for HR+/HER2− tumors at 9.3%. Thus, there is still a substantial 

proportion of breast cancer patients who have suboptimal responses to standard NAT 

regimens. One major barrier to improving patients’ response to NAT is the challenge of 

tailoring treatments for individual patients.

Determining which treatments are appropriate for a given breast cancer patient, as 

well as the dose, timing, combination, and order of those therapies, is a complex and 

challenging process. In the standard-of-care setting, NAT generally consists of multiple 

cycles of cytotoxic therapies administered every 2-4 weeks. Depending on the subtype 

and stage, different regimens are recommended. For example, in HER2+ disease, HER2-

targeted therapies are administered in combination with chemotherapy [4,5]. In TNBC, 

standard NAT consists of taxane- and anthracycline-based chemotherapy [6,7]. Additionally, 

within each treatment cycle of a particular therapy, there is an opportunity to improve 

chemotherapy dosing schedules for early breast cancer [8-12]. The pivotal Intergroup 
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Trial C7941 demonstrated that a dose-dense (every 2 week) schedule of doxorubicin, 

cyclophosphamide, and paclitaxel prolonged disease-free survival when compared to the 

standard (every 3 week) dosing interval [11]. Subsequently, the randomized phase III E1199 

trial demonstrated that weekly administration of paclitaxel resulted in superior disease free 

and overall survival compared to the standard three-week dosing interval, with similar rates 

of serious adverse events but higher incidence of neuropathy with weekly treatment [9]. 

Over thirty trials have examined the impact of dose intensity on disease recurrence, with 

a patient-level meta-analysis demonstrating a consistent benefit with shortened treatment 

intervals [12].

Although clinical trials provide convincing evidence of the increased efficacy of dose-dense 

treatment, they require thousands of patients to achieve adequate power and reach a 

convincing conclusion. Furthermore, each clinical trial can only investigate a very limited 

number of alternative therapeutic regimens. Moreover, population-based approaches cannot 

capture the unique biological features characterizing the tumors of individual patients, 

leading to sub-optimal outcomes. But given the enormous number of therapeutic options, 

which continuously increase as new therapeutic targets and approaches identified [5,13-15], 

it is simply impossible for clinical trials to experimentally evaluate all the possible drug 

combinations, dosing, and scheduling strategies that might be appropriate for a particular 

patient. Alternatively, clinical-computational approaches rely on mathematical models that 

can be initialized and constrained by patient-specific features to render personalized 

computer simulations that predict therapeutic efficacy [16]. These technologies enable the 

exhaustive exploration of multiple regimens in silico, and are therefore highly coveted as a 

strategy to guide treatment optimization for individual patients.

In this contribution, we present a rigorous, but practical, framework for integrating clinically 

available imaging data with a mechanism-based, biophysical model to predict treatment 

efficacy and toxicity which can then be used to optimize NAT (Fig. 1). Specifically, we 

use pre-treatment quantitative magnetic resonance imaging (MRI) to identify patient-specific 

tissue geometry and properties to personalize a computational fluid dynamic model. With 

this clinical-computational system, a patient-specific “digital twin” [17] is established to 

provide a rigorous estimate of hemodynamics and pharmacokinetics. We then systematically 

test in silico a large range of practical therapeutic protocols. Finally, based on an objective 

function which simultaneously accounts for the treatment efficacy within the tumor and the 

toxicity outside the tumor, the optimization of therapeutic protocols is performed for each 

individual patient. We test the proposed methodology in an initial set of ten breast cancer 

patients to identify treatment regimens designed to outperform the standard-of-care regimen. 

We conclude that the proposed framework has the potential to serve as a foundation for 

designing patient-specific therapeutic regimens that can achieve superior patient outcomes 

with lower toxicities.

II. Materials and Methods

A. Patient Recruitment

Ten women were enrolled in an ongoing IRB-approved study to receive a research 

MRI prior to biopsy (Protocols # IRB15-1596, IRB16-0396, IRB16-1410, 9127-CR012, 
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approved by BSD IRB Committee B, The University of Chicago Biological Sciences 

Division/University of Chicago Medical Center). All the patients had BI-RADS (Breast 

Imaging Reporting and Data System) 4 or 5 lesions identified on screening mammography. 

All the patients had biopsy-proved malignant breast tumors (invasive ductal carcinomas, 

invasive ductal carcinomas, or ductal carcinoma in situ). For each biopsied tumor, 

immunohistochemical (IHC) stains were performed to examine ER/PR reactivity, and 

fluorescence in situ hybridization or IHC staining was performed to test HER2 expression 

in cases of invasive cancer. Multiple subtypes of breast cancer were identified among these 

patients, including ER+/PR+/HER−, ER+/PR+, and TNBC (see Supplementary Table S1).

B. Therapeutic Regimens

The therapeutic regimens administered to each patient varied according to disease subtype 

and are summarized in Supplementary Table S1. Specifically, four of the patients 

underwent neoadjuvant treatment, while the other six patients received upfront surgery. 

We acknowledge that the heterogeneity of this patient cohort could lead to a mismatch 

between the simulated and administered treatments, thus the main purpose of this analysis 

is not to compare predicted and observed results. Rather, our objective is to develop a 

robust methodology that is capable of handling data types available in the clinical setting 

and to simulate realistic drug efficacy and toxicity effects on individual patients. Therefore, 

we simulate treatment with single-agent doxorubicin, an anthracycline chemotherapy that 

kills cancer cells via DNA damage [18], as it is commonly used to treat breast cancer and 

exhibits a narrow therapeutic index [18,19]. The methodology can be generalized to estimate 

performance of other therapeutic regimens including one or multiple drugs, and can also be 

applied to more homogeneous cohorts.

C. MRI Acquisition and Analysis

MRI studies for all enrolled patients were performed on 3T MR systems equipped with 

16-channel bilateral breast coils. The scanning protocol majorly consisted of pre-constrast 

T1 mapping, diffusion-weighted (DW-) MRI, and dynamic contrast-enhanced (DCE-) MRI. 

Detailed imaging parameters can be found in Supplementary Section S1.1. The MR images 

for each patient were passed through a processing pipeline [20,21] to yield tissue geometry 

and physiological properties. Particularly, breast contours and tissues were segmented via 
the k-means algorithm, vasculature was segmented via a Hessian-based filter, and the tumors 

were segmented via a fuzzy-c means algorithm [21]. DCE-MRI data were analyzed by a 

Patlak model [22] to estimate the parametric maps of the bolus arrival time (BAT), volume 

transfer coefficient (Ktrans), and plasma volume fraction (vp). BAT was used to determine 

blood flow directions in the vascular network, vp used to correct radius (R) of segmented 

vasculature, and Ktrans used to calibrate spatially resolved maps of vascular hydraulic 

conductivity (Lp) and permeability (P) via linear scaling [20]. DW-MRI data were analyzed 

by standard methods [23] to yield parametric maps of the apparent diffusion coefficient 

(ADC), which were then used to calibrate the spatially resolved maps of interstitial tissue 

hydraulic conductivity (κ) and diffusivity of small molecules (D) via linear scaling [20]. 

Supplementary Section S1.2 provides details on the calculation of parameters.
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D. Image-Guided Modeling

We established a computational fluid dynamic model to describe the steady-state 

hemodynamics and time-dependent drug delivery over the patient’s breast. The 

hemodynamic problem has been reported previously [20]. Briefly, the breast domain was 

divided into the vascular and interstitial space based on the image segmentations to model 

blood and interstitial flow, respectively (see Fig. 1). In the vascular space, we defined the 

vessel network along its centerlines and computed blood flow by solving a pseudo-1D 

problem via Poiseuille’s law [24] (equation (1)), which assumes laminar blood flow 

through the vasculature. In the interstitial space, the flow problem was defined in 3D 

and governed by Darcy’s law [24] (equation (2)), which states that the interstitial flow 

velocity is proportional to the pressure gradient and tissue hydraulic conductivity. The 

interaction (i.e., extravasation and re-absorption) between blood flow and interstitial flow 

was characterized by Starling’s law [24] (equation (3)), which specifies that the extraction 

of fluid from intravascular to extravascular space is proportional to the pressure difference 

across the vessel wall and the hydraulic conductivity of the vessel wall. Thus, the steady-

state hemodynamics model reads as,

Qv = − πR4

8μ
dpv
dl , l ∈ Λ (1)

ut = − κ ∇pt, x ∈ Ωt (2)

qe = Lp(pv − pt), l ∈ Λ, x ∈ ∂Ωt ∩ ∂Ωv . (3)

Detailed definitions of the geometry, variables, and parameters are provided in Table I. In the 

3D tissue domain, Dirichlet boundary condition for pressure (i.e., pt = 2 × 104 g cm−1 s−2) 

was assigned on the surface contour of breast and the chest wall, and Neumann boundary 

condition represented by equation (3) was assigned on the interface of the vascular and 

extravascular space. In the 1D vascular domain, Dirichlet boundary conditions for pressure 

were assigned at the terminal ends of the vascular network, where the values of terminal 

pressure as well as blood flow direction automatically determined using an optimization 

procedure informed by BAT measurement. Details of boundary condition determination in 

the vascular domain were presented in ref. 20.

To model drug delivery, we first assume that the drug propagates through the vasculature as 

determined by the patient’s hemodynamic analysis described in the previous paragraph, and 

we define a source flux (J; defined in equation (5)) to model interstitial drug distribution 

once it extravasates. The concentration of delivered drug in the interstitial domain (Ct) was 

then governed by the advection-diffusion equation:

∂Ct
∂t = − ut ⋅ ∇Ct + ∇ ⋅ (D ∇Ct), x ∈ Ωt (4)

with the drug source flux given as a boundary condition,
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J = P(Cp − Ct)n, x ∈ ∂Ωt ∩ ∂Ωv . . (5)

In addition, a no-flux boundary condition was given in the rest of breast boundary. The first 

term on the right-hand-side of equation (4) describes the advection of the drug carried by the 

bulk interstitial flow, the second term models the diffusion of drug due to a concentration 

gradient, and the last term represents the drug source delivered by the vasculature. The 

advection flow in the interstitial space was imported from the output of the hemodynamic 

model.

For both the hemodynamic and drug delivery components of the model, the parts regarding 

1D vascular domain are spatially discretized using the finite difference method, and 

3D tissue domain using the finite element method. Time stepping for the drug delivery 

component is represented by the Crank-Nicolson method. Detailed numerical methods can 

be found in Supplementary Sections 1.3 and 1.4.

Initial condition of Ct was assigned as being 0 everywhere in the breast at t = 0. Initial 

condition of Cp was determined based on the reported pharmacokinetics of doxorubicin in 

humans. Specifically, a single infusion of doxorubicin with a standard dose of 60 mg/m2 

body surface area (BSA) would yield a peak plasma concentration of 1 – 10 μg/ml (the 

average value is approximately 4.0 μg/ml), and a terminal plasma half-life of 20 – 48 h 

[25-27]. Therefore, we modeled the input profile of plasma concentration resulting from 

a single injection of a 60 mg/m2 dose with a bi-exponential infusion-decay equation (see 

Supplementary Section S1.5 for details). As the administered dose changes, the magnitude 

of the plasma drug concentration is assumed to change proportionally. For schedules 

involving multiple injections, the plasma concentration profiles are determined by summing 

a series of one-injection-profiles scaled by the dose and appropriately delayed in time 

(Supplementary Figs. S3-S4).

E. Definition of the Candidate Treatment Protocols

We attempted to optimize the treatment protocol along both the scheduling and dosing 

dimensions. For each patient, we evaluated 14 different scheduling strategies with the same 

total dose within one treatment cycle lasting 3 weeks (Table II). We assumed the drug could 

be administered via a single injection of the total dose on the first day (i.e., schedule A), via 
two 1/2-dose injections on two different days (i.e., schedules B1 – B5), via three 1/3-dose 

injections on three different days (i.e., schedules C1 – C4), via four 1/4-dose injections 

on four different days (i.e., schedules D1 – D3), or via twenty-one 1/21-dose injections 

every day during the cycle (i.e., schedule E). Additionally, we tested varying the total dose 

administered over the range 0 – 500 mg/m2 BSA. This range is determined from reports 

indicating an increased risk of clinical cardiotoxicity resulting from a cumulative dose of 

doxorubicin above 550 mg/m2 BSA [19].

F. Optimization of treatment efficacy and toxicity

In computational science, optimal control aims to determine the solution of a dynamic 

system that achieves a desired performance over time by adequately adjusting the controls 

Wu et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with certain constraints [22]. In this study, the task of finding the best treatment protocol 

for each patient can be treated as an optimal control problem by considering the therapeutic 

protocols as the target control.

Towards this end, we seek to define a measure to quantify the therapeutic response of 

each treatment protocol estimated by the proposed model. Particularly, we adapted the 

concept of the “therapeutic window” which refers to the range of drug concentration that 

can simultaneously achieve both high efficacy and low toxicity [28]. For a specific therapy, 

the lower bound of the therapeutic window is set by the minimum concentration that 

can effectively kill cancer cells and is determined by the drug concentration inhibiting 

proliferation of the cells by 50% (ID50). Similarly, the upper bound of the therapeutic 

window is set by the minimum concentration that can cause severe toxicity to healthy tissue 

and is determined by the drug concentration that can effectively kill 50% of healthy cells 

(LD50). In this study, we prescribed the ID50 and LD50 as global parameters, whose values 

were determined by in vitro assays reported in the literature; ID50 = 0.25 μg/ml tissue and 

LD50 = 0.90 μg/ml for doxorubicin. Details about the determination of ID50 and LD50, 

and the discussion on associated limitation, can be found in Supplementary Section S1.6. 

Given the ID50 and LD50, we calculate two metrics for each concentration time course: the 

effective duration (ED(x)) and the toxic duration (TD(x)). The ED(x) and TD(x) refer to 

the total time that the drug concentration at location x is greater than the ID50 and LD50, 

respectively. Illustrations for the calculation of therapeutic window, ED, and TD can be 

found in Supplementary Section S1.7 and Fig. S5.

These definitions allowed for construction of a desired measure of therapeutic response, 

maximum safe therapeutic duration (MSTD). Specifically, for each tested protocol p,

MSTD(p) =
∫ΩtumorED(x)dx

∫Ωtumordx −
∫ΩnonTD(x)dx

∫Ωnondx , (6)

where Ωtumor refer to the tumor, and Ωnon = Ωt \ Ωtumor is the healthy tissue; the first term 

indicates the mean of ED(x) within tumor, and second term indicates the mean of TD(x) 

in the healthy tissue. Therefore, the definition of MSTD balances the treatment efficacy on 

tumor cells with the toxicity on healthy tissue. Additionally, to evaluate the improvement 

of the alternative protocols over the standard protocol with respect to therapeutic efficacy 

and safety, we defined the benefit ratio (BR). Specifically, for each tested protocol p, BR is 

defined as,

BR(p) = MSTD(p) ∕ MSTD0, (7)

where MSTD(p) refers to the MSTD obtained by the tested protocol p; MSTD0 refers 

to MSTD obtained by the standard protocol (i.e., a dose of 60 mg/m2 BSA via a single 

intravenous injection per 3-week cycle). In summary, the MSTD measures the performance 

of each treatment protocol by explicitly accounting for both treatment efficacy and toxicity, 

while the BR quantifies the improvement of each alternative treatment protocol relative to 

that of the standard treatment.

Wu et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The MSTD is used as the objective function, and the problem can be solved as a two-step 

optimization scheme with the constraints determined by the practical range of schedules and 

doses. First, for each patient and each treatment schedule, we use a particle swarm method 

[29] to find the optimal total dose within the considered range. The goal was to find the dose 

that achieved the maximal MSTD under each schedule; if the dose leading to the maximal 

MSTD was a range instead of a unique number, the minimal dose in the optimized range 

was selected. Second, for each patient, we compared the maximal MSTDs obtained by all 

investigated schedules and identified the schedule that achieved the highest MSTD. Thus, 

this procedure results in an optimal schedule along with its corresponding optimal total dose.

III. Results

A. Patient-Specific Treatment Optimization

With maximization of the MSTD, we identify the optimal treatment protocol for each patient 

within the selected set of dosing-schedule options (Table II). Figure 2 presents the BR as 

a function of treatment schedule and total dose for each patient. Overall, assuming both 

schedule and total dose can be adjusted, schedule E is the optimal therapeutic schedule for 

all ten patients, while the associated total doses vary across patients, with a range from 

270.69 to 317.28 mg/m2 BSA. The optimal protocols show a large improvement relative 

to the standard protocol, which reveal BR from 6.63 to 14.17 among the cohort. (See 

Supplemental Table S2 detailed reports). These results clearly indicate that optimization of 

the treatment protocols can have a large effect on the BR, and this effect is different for each 

patient.

Figure 3 presents the statistical comparisons of treatment protocols among the patient 

cohort. Overall, the optimized protocols significantly (P < 0.001) increase the MSTDs as 

compared to the standard protocol (Fig. 3a). More detailly, comparing the MSTD achieved 

by each schedule with the standard and the individually optimized total dose (Fig. 3b), 

we notice that optimizing the total dose significantly improves the MSTD (P < 0.05) for 

schedules B3 – B5, C2 – C4, D1 – D3, and E. Additionally, comparing the red boxes 

for schedules B1 – B5 in Fig. 3b, i.e., the two-injection schedules with the individually 

optimized total dose, treatment protocols with an interval between injections of longer than 

3 days (B2 – B5) render a significantly better therapeutic performance (P < 0.001) than 

the treatment schedule with an injection interval of 1 day (B1); while treatment protocols 

with injection intervals longer than 3 days (B2 – B5) are not significantly different from 

each other. Similarly, comparing the red boxes for schedules C1 – C4, i.e., three-injection 

schedules, those with injection intervals longer than 3 days (C2 – C4) also provide a 

significantly larger MSTD (P < 0.001) than the treatment schedule with an injection interval 

of 1 day (C1); while schedules with injection intervals longer than 3 days (h – j) are not 

significantly different from each other. Regarding the four-injection schedules (D1 – D3), 

those with injection intervals longer than 3 days (D2 – D3) are significantly better (P < 

0.001) than the treatment schedule with an injection interval of 1 day (D1); while schedules 

with injection intervals longer than 3 days (D2 – D3) are not significantly different from 

each other. Moreover, among the schedules with injections evenly separated across the 

3-week therapeutic cycle (i.e., B5, C4, D3, and E), increasing the injection frequency yields 
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significantly better treatment performances (P < 0.05; see Fig. 3b, where the red boxes show 

MSTD(E) > MSTD(D3) > MSTD(C4) > MSTD(B5)).

The patient-specific optimization can also be interpretated along the dimensions of schedule 

or dose. Given a candidate schedule, the optimized total doses have a large variation 

across patients (Fig. 4a). For example, with schedule A, the optimal total dose varies from 

32.20 mg/m2 (Patient 3) to 87.78 mg/m2 (Patient 7; see also Supplemental Fig. S6). For 

each patient, different schedules yield different optimal total doses (Fig. 4a); optimizing a 

schedule with a higher injection frequency tends to require a higher total dose. For example, 

for Patient 1, the optimal doses for schedules A, B5, C4, and E are 38.29, 76.41, 112.03, 

and 280.99 mg/m2, respectively. Therefore, assuming the total dose can be adjusted, a set 

of alternative schedules can be identified to provide a range of options for each patient 

(Fig. 4b). In particular, schedules C2, C3, C4, D2, and D3 always rank within the top five, 

with the associated optimized total dose varying from 92.74 to 258.94 mg/m2 BSA, and the 

obtained BR varying from 2.70 to 5.42.

In contrast, given a fixed total dose, the optimal schedules can vary across patients, 

especially when the total dose is low (Fig 4c). For example, with a total dose of 60 mg/m2, 

the optimal schedule for Patient 1 is D1, while the optimal schedule for Patient 2 is C2 (also 

see Supplemental Fig. S7). For each patient, different total doses yield different optimal 

schedules (Fig. 4c). When the total dose is smaller than 100 mg/m2, schedules with small 

intervals are preferred (i.e., A, B1, C1, C2, D1, or D2); while if the total dose is larger 

than 180 mg/m2, schedule E is always the optimal. Therefore, assuming schedules can be 

adjusted, a set of total doses can be identified to provide a range of options for each patient 

(Fig. 4d). Specifically, the highest BR is always achieved by a total dose within the range of 

180 – 360 mg/m2, with schedule E.

More analyses regarding the correlations between image-measured tissue properties and 

personally optimized treatment protocols are included in Supplemental section 2.2. These 

results speak to the importance of incorporating patient-specific characteristics when 

attempting to optimize therapy for individual patients.

B. Efficacy Assessment of the Treatment Protocols

Our analysis shows that different treatment protocols result in stark differences in 

therapeutic performance in terms of MSTD and BR for all the injection protocols tested 

herein. These differences ultimately stem from large variations in ED(x) and TD(x) values 

across the patients during each of the candidate protocols. For example, for Patient 1, the 

standard protocol achieved an voxel-wise ED(x) with median (interquartile range) of 2.50 

(2.33 – 2.67) days within the tumor (Fig. 5a), and a TD(x) of 1.17 (0.92 – 1.25) days in 

the healthy tissue (Fig. 5d); while the optimal protocol achieved an ED(x) of 20.92 (20.83– 

20.92) days within the tumor (Fig. 5b), and a TD(x) of 0.00 (0.00 – 0.00) days in the healthy 

tissue (Fig. 5e). Both the ED(x) and TD(x) are significantly different (P < 0.001; Fig. 5c 

and 5f) between the standard and optimal protocols. Similarly, for Patient 2, the standard 

protocol achieved an ED(x) of 3.25 (3.08 – 3.42) days within the tumor (Fig. 5g), and a 

TD(x) of 1.00 (0.00 – 1.17) days in the healthy tissue (Fig. 5j); while the optimal protocol 

achieved an ED(x) of 20.50 (20.17 – 20.58) days within the tumor (Fig. 5h), and a TD(x) 
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of 0.00 (0.00 – 0.00) days in the healthy tissue (Fig. 5k). Again, the ED(x) and TD(x) are 

significantly different (P < 0.001; Fig. 5i and 5l) between the two protocols. Additionally, it 

is worth to notice that, under the optimized protocols, there are isolated regions surrounding 

the main large vessels (i.e., red spots in Fig. 5e and 5f) receiving a high load of the drug, and 

hence exhibit high TD(x). In particular, the regions adjacent to large vessels have a TD(x) of 

1.58 (1.58 – 3.25) days in Patient 1, and 4.92 (3.08 – 7.00) days in Patient 2. Even though 

these regions constitute a small fraction of the whole tissue space and therefore have very 

little effect on the statistics, they might warrant special attention as indicators of potential 

vascular toxicity. A complete report of ED(x) and TD(x) maps obtained for the standard and 

optimized protocols for all patients can be found in Table S3 and Figs. S9a - j.

C. Dynamics of Drug Distribution

To obtain the ED(x) and TD(x) maps and enable the identification of the optimized 

injection protocol for each patient, our mechanism-based model estimates the spatiotemporal 

distribution of drug concentration over the patient’s breast anatomy under each of 

the candidate treatment protocols. We observe that these spatiotemporal maps of drug 

concentration show large variations both across the patient cohort and the candidate 

treatment schedules, thereby driving the differences in ED(x) and TD(x) maps that 

ultimately underlie the variations in MSTD and BR. For example, Fig. 6a-b show 3D 

renderings of the concentration of doxorubicin at four time points under the standard and 

optimal treatment schemes, respectively, for Patient 1; Fig. 6c displays the median (and 

range) of the time course of the concentration of doxorubicin within the tumor. In this 

case, the optimal treatment protocol consists of daily injections of a 13.38 mg/m2 BSA 

dose across a 3-week therapeutic cycle. Observe that the standard treatment scheme yields 

a peak median concentration in the tumor of 1.94 μg/ml at 6 hours after injection, and the 

concentration drops to 6.28×10−3 μg/ml after one week. Conversely, the optimal treatment 

scheme reaches the first peak of median concentration in the tumor of 0.43 μg/ml at 6 hours 

after injection, but in this regimen the following doses lead to an oscillatory pattern with 

increasingly higher concentrations that stabilizes after the third injection to a range from 

0.45 to 0.76 ug/ml. Similar renderings and plots for Patient 2 are given in Fig. 6d-f. In 

this case, the optimal treatment protocol consists of daily injections of a 14.88 mg/m2 BSA 

dose across a 3-week therapeutic cycle. Observe that the standard treatment scheme yields 

a peak median concentration in the tumor of 1.11 μg/ml at 20 hours after injection, and 

the concentration drops to 0.03 μg/ml after one week. Conversely, the optimal treatment 

scheme reaches the first peak of median concentration in the tumor of 0.27 μg/ml at 20 hours 

after injection, but in this regimen the following doses lead to an oscillatory pattern with 

increasingly higher concentrations that stabilizes after the fourth injection to a range from 

0.52 to 0.70 μg/ml.

The different dynamics of drug distribution between these two patients (Fig. 6c and 6f) are 

probably due to their unique tissue properties and associated hemodynamic environments 

in the constructed “digital twins”. In particular, Patient 1 has an image-derived vascular 

permeability (i.e., P in Eq. 5) to the drug of 8.24 × 10−6 (3.80 × 10−6 – 14.50 × 10−6) ml/

(cm2 s), and model-estimated interstitial flow velocity (i.e., ut in Eq. 3) of 8.67 × 10−8 (2.72 

× 10−8 – 21.72 × 10−8) cm/s. (Results present as median and interquartile range.) Patient 2 
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has an image-derived vascular permeability to the drug of 2.96 × 10−6 (1.74 × 10−6 – 4.53 × 

10−6) ml/(cm2 s) and model-estimated interstitial flow velocity of 4.49 × 10−8 (1.59 × 10−8 

– 10.29 × 10−8) cm/s. Comparing using Wilcoxon rank sum test, Patient 1 has a significantly 

higher vascular permeability (P < 0.001) and higher interstitial flow (P < 0.001) than Patient 

2, which leads to a faster drug uptake and higher peak concentration, therefore a larger 

range of concentration oscillation in the optimized protocol. This observation indicates the 

importance of accounting for individual differences in hydrodynamics when estimating the 

drug distribution for different patients.

The 3D renderings for the remaining eight patients can be found in Supplementary Fig 

S10.a - S10.j. Supplementary Movies S1.a - S1.j and S2.a - S2.j display the spatiotemporal 

changes in drug distribution during the entire treatment cycle. Additionally, Supplementary 

Fig S11.a - S11.j presents the drug concentration within each tumor during the entire time 

course for each patient during the standard and optimal treatment protocols.

IV. Discussion

The ability of DCE-MRI and DW-MRI to provide valuable prognostic information early 

during NAT has been well-established [30,31,32]. These studies provide evidence that MRI-

derived measures of tumor status contain information that is strongly related to eventual 

patient response; and provide great motivation for incorporating MRI-derived measures of 

tumor properties to constrain predictive models for optimizing treatment regimens for the 

individual patient.

In this study, we have established a practical clinical-mathematical framework to identify 

optimal NAT regimens by maximizing efficacy and minimizing toxicity for each patient. 

The framework integrates quantitative MRI, advanced image analysis, and mathematical 

modeling to rigorously establish a “digital twin” that can be used to test a large range 

of potential treatment protocols for each individual patient. Based on the results, we find 

that therapies administered at uniform intervals and multiple small doses are predicted 

to outperform the current standard-of-care protocol. This observation shows matches with 

the principle suggested by the dose-dense hypothesis [33-36]; namely, that minimizing the 

regrowth of cancer between administrations of therapy would maximize the cumulative cell 

kill, thereby achieving greater clinical benefit. This observation also matches the results 

of dose-dense clinical trials in breast cancer that were successful on improving clinical 

outcomes [10,11,37]. Therefore, our approach provides a reasonable way to quantify the 

balance between drug efficacy and toxicity.

Our results further indicate that personalizing total dose administered for each patient 

can magnify the benefit of treatment. Increased therapeutic efficacy can be achieved with 

higher injection frequency only when the corresponding optimized doses are identified. The 

regimens with higher injection frequency usually require a lower dose per injection (to 

balance toxicity concerns), but higher total dose (to sufficiently suppress tumor regrowth 

between injections). In fact, without individually optimized doses, many of the treatment 

scheduling strategies evaluated in our study would no longer improve outcomes over 

standard treatment. This is one possible explanation for why some clinical trials failed to 
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demonstrate significant differences between dose-dense and conventional regimens [38], or 

between different dose-dense regimens [39]. We acknowledge that it may be infeasible to 

administer treatment daily (i.e., E) due to the increased time commitment required from 

patients and staff, and limited operating hours of most infusion centers. Alternatively, 

scheduling strategies featuring four injections of 1/4 the total dose each with 3- or 5-day 

intervals (i.e., D2 – D3), or three injections of 1/3 the total dose each with 3-, 5-, or 7-day 

intervals (i.e., C2 – C4) may be more practical, while also providing significantly superior 

results compared to standard NAT (see Fig. 4).

Our results also indicate that personalizing the therapeutic schedule is important if the total 

dose is fixed to a small value. Specifically, when the total dose is restricted to be less 

than 100 mg/m2, the optimal schedules vary across patients and depend on the specific 

dose. In general, smaller doses require treatment schedules with shorter injection intervals. 

A possible explanation of this observation is that when the total dose is small, split doses 

would be too weak to suppress tumor growth per injection. Rather, the small dose needs to 

be given within a short duration to achieve sufficient efficacy (e.g., a single-injection like 

A, or a multiple-injection with short time-intervals like B1, C1, or D1). In contrast, when 

the total dose is allowed to be larger than 180 mg/m2, splitting the total dose into daily 

injections still preserves sufficient efficacy per injection, which leads to the observation that 

schedule E (with highest injection frequency) is always identified as the optimal for all 

patients in the cohort (see Fig. 4).

However, the insensitivity to schedule selection when the total dose is large may also 

relate to a primary limitation of our current model; namely, the current assignment of a 

constant ID50 value based on doxorubicin-sensitive cell lines. This is suboptimal and most 

likely does not capture the heterogeneity of the patient cohort. Future efforts are desired to 

characterize patient heterogeneity regarding treatment sensitivity and toxicity. Assignment 

of patient-specific ID50 and LD50 based on clinically available biomarkers, or calibration of 

patient-specific sensitivity and toxicity using longitudinally monitoring data, are potentially 

more realistic solutions. (See Supplemental section 1.6 for more details.)

Another strength of this study is the range of doses optimized by our system mirrors 

the dosing administered in clinical settings, which further supports the feasibility of this 

methodology. Specifically, for the schedule with a single injection (i.e., A), the optimal total 

doses have a median (range) of 56.52 (32.20 – 87.78) mg/m2, which is well-aligned with the 

clinically suggested standard dose, 60 mg/m2, for single administration per cycle. Similarly, 

the optimal total doses for schedules B1, C1, and D1 are 55.81 (41.15 – 77.08) mg/m2, 63.40 

(53.69 – 80.80) mg/m2, and 74.52 (65.55 – 88.28) mg/m2, respectively, which are also viable 

as a previous phase I study demonstrated that 20 mg/m2 daily for a 96-hour administration 

is tolerable [40]. Other schedules with longer injection intervals reveal larger optimal total 

doses, which matches with reports supporting prolonged infusion as cardioprotective [41]. 

For the continuous daily administration (i.e., E), however, we recognize that even though the 

optimal total doses are still within a viable range, the median (range) of 291.52 (270.69 – 

317.28) mg/m2 is quite large. This could bring increasing risks of dose-dependent decline in 

cardiac ejection fraction, as large-scale studies [19] demonstrated that 8.8% of patients have 

a decline at a cumulative dose of 250 mg/m2, and 32.4% of patients have a decline at 400 
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mg/m2. Although the dose was administered via a single injection in these studies, instead 

of prolonged injections, it suggests a potential concern that our current objective function, 

MSTD, could underestimate the toxicity when the total dose is large (> 250 mg/m2). Future 

efforts refining the objective function at high total dose, as well as validation with animal 

experiments or clinical trials, are desired.

Clinical feasibility is another essential consideration when assessing the potential of 

applying our optimization framework in practice. Our current approach was performed 

on a standard laptop (MacBook Pro with CPU: 2.7GHz Intel Core i5, Memory: 8GB 

1867MHz DDR3) and without using parallel computation. This very basic implementation 

took approximately 9 hours to optimize the therapeutic protocols for one patient; this 

includes 2 h for image processing, 10 min for the steady-state hemodynamic calculation 

[20,21], and multiple 30 min simulations of drug distribution over a 3-week cycle for 14 

candidate therapeutic schedules. Fortunately, several components in the procedure can be 

parallelized. Assuming access to a regular multi-core computational platform, it is possible 

to finish the optimization of therapeutic protocols within 1.5 hours.

A natural extension of our clinical-mathematical framework is to incorporate mechanism-

based models of tumor response that describe tumor growth, invasion, proliferation, death, 

and the immune response [42-45]. This extension would further enable explicit modeling of 

tumor response to treatment and provide outputs that can be directly compared to clinical 

endpoints for validation (e.g., tumor volume). Furthermore, in addition to pre-treatment 

images, imaging measurements from subsequent time points collected during NAT provide 

the opportunity to recalibrate the model and, hence, dynamically update its parameters to 

account for treatment-induced changes in tumor biology. This strategy would ultimately 

enable a more accurate determination of optimal treatment protocols and, potentially, 

superior patient outcomes. Evolving the calibrated parameters over time will also provide 

new insights into changes in the underlying tumor biology during therapy [44,45].

It is also important to note that the proposed model could be refined in several ways to 

provide a more realistic characterization of drug delivery. For example, the vasculature 

employed in the model are those vessels visible given the spatial resolution limitations 

of MRI (i.e., radii in the range of 104 to 188 μm). Neglecting microvasculature could 

lead to an underestimation of local perfusion and interstitial flow, and as a result, cause a 

systematic bias in the estimated concentration of therapeutics. A potential way to overcome 

this challenge is through multi-scale modeling [46], which could couple the terminal ends 

or the surface of visible vasculature with lower-level vascular models of microvasculature 

[47-50]. Furthermore, the current model could be amended to incorporate additional 

biological factors contributing to the drug pharmacokinetics, such as draining of interstitial 

fluid and drugs through the lymphatic system, and the effect of drugs on the vasculature. 

However, incorporating such phenomena in the mathematical formalism would necessarily 

require additional (possibly invasive) measurements. Thus, while the proposed framework is 

somewhat simplified, it does offer a rigorous, practical starting point for quantifying drug 

delivery on a patient-specific basis.
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V. Conclusion

A clinical-mathematical framework was developed to integrate quantitative MRI data, 

advanced image analyses, and established laws of fluid dynamics to predict the efficacy 

and toxicity of a range of NAT protocols, thus enabling the rational identification of an 

optimal therapeutic regimen on a patient-specific basis. We posit that such a technology also 

provides guidance for future, prospective clinical trials in treatment design for breast cancer 

and, indeed, any solid tumor for which NAT is indicated and the requisite data is accessible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow chart of the image processing and simulation framework. The first panel on the 

left, “Patient data”, displays the unprocessed MRI images, including ultra-fast DCE-MRI, 

high-spatial resolution DCE-MRI, variable flip angle data for T1-mapping, and DW-MRI. 

For the DCE series, the cyan and orange arrows represent the pre-and post-contrast scans, 

respectively. Imaging data are then processed and imported into the model; i.e., the panel 

labeled “Model”, which consist of the hemodynamic and drug delivery models to estimate 

patient-specific characteristics. These data are coupled with specific protocols, as shown 

in the panel “Therapeutic protocols”, to estimate treatment-specific drug distribution on an 

individual patient basis. As presented in the panel labeled, “Patient-specific optimization”, 

the spatiotemporal changes in drug distribution are computed during the whole treatment 

cycle for a range of treatment protocols. The last step is to determine the optimal treatment 

protocol that provides the best performance regarding therapeutic efficacy and toxicity.
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Fig 2. 
Improvement in treatment efficacy and safety provided by the optimized treatment protocols. 

Panels (a – j) present surface plots indicating the BR achieved with each candidate treatment 

protocol with respect to the standard regimen for each patient. The x-y plane spans the space 

of potential treatment protocols, where the x-axis represents the total dose given and the 

y-axis refers to the 14 injection schedules investigated in this work. In each surface plot, 

the altitude (i.e., height along the z-axis) and color indicate the performance of the tested 

protocol, where a higher BR indicates better performance. The standard regimen and optimal 

schedule are labeled as cyan and red circles on each surface plot, respectively. Overall, 

schedule E with a patient-specific optimized dose leads to the best BR for all patients in this 

cohort.
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Fig 3. 
Statistical comparisons of the different treatment protocols. Panel (a) compares the MSTDs 

between the standard (blue) and the patient-specific optimal protocol (red) across the cohort. 

In each boxplot, the median (central line), interquartile range (box) and the entire range 

without outliers (black whisker) are shown. Overall, the MSTDs achieved by the patient-

specific optimal protocols are significantly higher than the ones achieved by the standard 

protocol for all patients. Panel (b) presents the MSTD achieved by each treatment schedule 

with the standard total dose (i.e., 60 mg2/m2 BSA; blue) and the individually optimized total 

dose (red) across the cohort. The Wilcoxon rank-sum test is performed for all statistical 

comparisons involved in this figure. The ‘*’ and ‘***’ indicate statistical significance at the 

P < 0.05 and P < 0.001 levels, respectively.
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Fig 4. 
Personal optimization of therapeutic protocols. Panels (a-b) depict different therapeutic 

schedules yield different optimized total doses and different optimized benefit ratios (BR). 

Given the candidate schedules A – E (with red representing the standard schedule), we find 

the optimized total dose for each patient (panel a) and the corresponding optimized BR 
(panel b). Each group of bars in the panel (a) indicates that each administration schedule 

yields a different optimal total dose for each patient; specifically, schedules with higher 

injection frequency tend to require higher optimal total dose. Each group of bars in panel 

(b) indicates that the optimal benefit ratio is always achieved by schedule E for each patient. 

Bars with the same color in panel (a) show, given a specific schedule, the optimal dose 

varies across patients. Bars with the same color in panel (b) show, given a specific schedule, 

the optimal benefit varies across patients. Panels (d-c) depict different total doses yield 

different optimized schedules and different optimized benefit ratios. Given the candidate 

total doses, 24 – 420 mg/m2 (with red representing the standard dose), we find the optimal 

administration schedule for each patient (panel c) and the corresponding optimized BR 
(panel d). Each group of bars in panel (c) indicates that each total dose yields a different 

optimal schedule for each patient. Each group of bars in panel (d) indicates that the optimal 

benefit ratio is always achieved by a total dose within the range of 180 – 360 mg/m2. Bars 

with the same color in panel (c) show, given a specific total dose, the optimal schedule can 

vary across patients. Bars with the same color in panel (d) show, given a specific dose, the 

optimal benefit varies across patients.
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Fig 5. 
ED and TD maps produced by the standard and optimal treatment protocols for Patient 

1 (a-f) and Patient 2 (g-l). Panels (a) and (b) show the ED maps throughout the 

breast (transparent volume) as well as the tumor surface (solid volume) for the standard 

and optimized treatment protocols, respectively. Panels (d) and (e) show the TD maps 

throughout the non-tumor breast tissue (solid, color-coded volume) for the standard and 

optimized treatment protocols, respectively, with the tumors shown as solid, magenta 

volumes. Panels (c) and (f) respectively show boxplots of the distribution of the ED within 

the tumor and the TD outside the tumor for both the standard and optimized regimens. In 

these panels, the distributions of ED and TD values are shown as gray areas, while the 

median (red line), interquartile range (blue box) and entire range without outliers (black 

whisker) define the boxplot. The symbol ‘***’ indicates statistical significance at the P < 

0.001 level by the Wilcoxon rank-sum test. Panels (g-l) display the corresponding data for 

Patient 2. Compared to the standard treatment protocol, the optimized protocol leads to a 

significantly higher ED within tumor and a significantly lower TD in the healthy tissue. 

Therefore, the optimized protocol contributes to enhance treatment efficacy in the tumor 

while limiting toxicity to the rest of the organ.

Wu et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 6. 
Drug distribution over time for Patient 1 (a-c) and Patient 2 (d-f). Panels (a) and (b) show 

the simulated 3D drug distribution dynamics throughout the breast (solid volume) and tumor 

(purple transparent volume) resulting from the standard and optimal treatment protocols, 

respectively, for Patient 1. Within each row, the columns (from left to right) indicate the 

drug distributions at 2 h, 24 h, 7 days, 21 days post-injection, respectively. Additionally, 

the median (and range) of drug concentration time courses sampled at the equivalent voxels 

within the tumor is presented in panel (c), where the standard and optimal protocols are 

shown as blue and red, respectively. Panels (d-f) display the corresponding data for Patient 

2. As compared to the standard treatment protocol, the optimized protocol leads to a more 

consistent concentration of drug across the therapeutic cycle. Qualitatively, Patient 1 has a 

faster drug uptake and higher peak concentration, as well as a larger range of concentration 

oscillation in the optimal protocol.
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TABLE I.

Model Geometry, Variables, and Parameters

Quantities Definition (units)

Geometry

Ωt Interstitial tissue domain (−)

Ωv Vascular region (−)

Ωtumor Tumorous region (−)

Λ Vascular centerlines (−)

l Position along vessels (cm)

x Coordinate in interstitial tissue (cm×cm×cm)

n Unit normal at vascular surface (cm×cm×cm)

Parameter

μ Blood dynamic viscosity (g/(cm s))

R(l) Vessel radius (cm)

Lp(l) Vascular hydraulic conductivity (cm2 s/g)

κ(x) Tissue hydraulic conductivity (cm3 s/g)

D(x) Interstitial diffusivity of drug (cm2/s)

P(x) Apparent vascular permeability (ml/(cm2 s))

Variable

pv(l) Blood pressure (g/(cm s2))

Qv(l) Blood flow rate (cm3/s)

pt (x) Interstitial pressure (g/(cm s2))

ut(x) Interstitial flow velocity (cm/s)

qe(l), qe(x) Net efflux across vessel wall (cm/s)

Cp(t, l) Plasma concentration of drug (μg/ml)

Ct(t, x) Tissue concentration of drug (μg/ml)

J(t, x) Efflux of drug from vessels (μg/(cm2 s))
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TABLE II.

Candidate Treatment Protocols

Sch. # of inj Dose fraction
per inj Injection times

A 1 1 day 1

B1

2 1/2

day 1, day 2

B2 day 1, day 4

B3 day 1, day 6

B4 day 1, day 8

B5 day 1, day 11

C1

3 1/3

day 1, day 2, day 3

C2 day 1, day 4, day 7

C3 day 1, day 6, day 10

C4 day 1, day 8, day 15

D1

4 1/4

day 1, day 2, day 3, day 4

D2 day 1, day 4, day 7, day 10

D3 day 1, day 6, day 11, day 16

E 21 1/21 every day
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