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Discerning asthma endotypes through
comorbidity mapping

Gengjie Jia1,2,3, Xue Zhong4, Hae Kyung Im 1,5, Nathan Schoettler1,
Milton Pividori 1,6, D. Kyle Hogarth 1, Anne I. Sperling 1, Steven R. White1,
Edward T. Naureckas1, Christopher S. Lyttle 1, Chikashi Terao 7,8,9,
Yoichiro Kamatani 7,10, Masato Akiyama7,11, Koichi Matsuda 10,
Michiaki Kubo 7, Nancy J. Cox4, Carole Ober5 , Andrey Rzhetsky 1,2,5,12 &
Julian Solway 1

Asthma is a heterogeneous, complex syndrome, and identifying asthma
endotypes has been challenging. We hypothesize that distinct endotypes of
asthma arise in disparate genetic variation and life-time environmental expo-
sure backgrounds, and that disease comorbidity patterns serve as a surrogate
for such genetic and exposure variations. Here, we computationally discover
22 distinct comorbid disease patterns among individuals with asthma (asthma
comorbidity subgroups) using diagnosis records for >151M US residents, and
re-identify 11 of the 22 subgroups in the much smaller UK Biobank. GWASs to
discern asthma risk loci for individuals within each subgroup and in all sub-
groups combined reveal 109 independent risk loci, of which 52 are replicated
in multi-ancestry meta-analysis across different ethnicity subsamples in UK
Biobank, US BioVU, and BioBank Japan. Fourteen loci confer asthma risk in
multiple subgroups and in all subgroups combined. Importantly, another six
loci confer asthma risk in only one subgroup. The strength of association
between asthma and each of 44 health-related phenotypes also varies dra-
matically across subgroups. This work reveals subpopulations of asthma
patients distinguished by comorbidity patterns, asthma risk loci, gene
expression, and health-related phenotypes, and so reveals different asthma
endotypes.

Asthma is a prevalent, debilitating, and expensive condition that
affects about 30 million Americans and about 300 million people
worldwide1. It is a heterogeneous complex syndrome that undoubt-
edly represents an amalgam of multiple distinct “diseases,” each
stemming from a different constellation of genetic variations,
environmental exposure histories, and molecular mechanisms that
results in a generally similar clinical diathesis. The heterogeneous
nature of asthma is evidenced in its varying clinical presentations,
spectrum of airway inflammation, and differences in individual

responses to asthma treatments2–14. Moreover, the risk loci dis-
covered by genome-wide association studies (GWASs) in very large
samples of individuals with “asthma” do not account for all of the
genetic risks for asthma, indicating that genetic variants in additional
loci are yet to be discovered. These missing loci likely include those
that contribute to specific subtypes of asthma – but acquiring suffi-
ciently large numbers of individuals with detailed phenotypic and
genetic data to study the genetics of asthma subgroups has been
challenging.
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We and others have performed studies of genetic variation, gene
expression, and DNA methylation in an attempt to identify patient
subpopulations based on pathogenetic mechanism (“endotypes”)15–21,
but such studies require direct patient contact and invasive proce-
dures to obtain airway cells, thereby limiting the number of
participants.

The extreme heterogeneity of asthma makes it paradigmatic of
many complex common diseases. Consequently, designing an
approach to distinguish asthma patient subgroups within which indi-
viduals share common pathogenetic mechanisms could provide a
beacon for parallel approaches in other complex common diseases of
the lung (e.g., COPD, interstitial lung disease) or of other organ sys-
tems (e.g., hypertension, congestive heart failure, type 2 diabetes).

In this work, we describe a novel approach based on the
hypothesis that individuals with different asthma endotypes might be
separable based on the other accompanying (non-asthma) diseases
they have. Our reasoning is as follows: Each comorbiddisease category
(e.g., cardiovascular disease, gastrointestinal disease, or breast cancer)
is characterized by sets of variations across many genes and sets of
exposures (e.g., neighborhood environment, infections, toxins, in
utero, experiential), behaviors, and traumas that together predispose
todiseases in the category22–27. Thus, comorbiddiseases altogether can
be considered a “surrogate” for a corresponding broad genetic and
exposure landscape. It seemed likely to us that the asthma diathesis
that develops in individuals with one of these broad genetic/exposure
landscapes may well have a different pathophysiological basis com-
pared to other asthmatic individuals, whose asthma arises in a very
different genetic/exposure landscape. The endotypes of asthmatic
individuals from such different landscapesmaymanifest in unique sets
of asthma risk loci and distinct phenotypic characteristics. In this
study, we tested this hypothesis.

Results
Developing a workflow for asthma subgroup identification
To identify asthma subgroups with distinct comorbidity patterns from
a collection of diagnosis records, we applied a “topic modeling”
approach28–34, inspired by natural-language processing (NLP). In
essence, identifying asthma subgroups can be considered as the same
task as extracting “topics” (such as “US politics” or “biotechnology
news”) from a collection of newspapers, if the following analogies are
made: (i) A disease code is a “word;” (ii) A patient’s diagnosis record
that contains disease codes (each with its respective abundance) is a
“sentence” that consists ofwords (withwordspossibly repeated); (iii) A
large collection of patient-specific diagnosis histories is a “collection of
sentences”; and (iv) An asthma subgroup as defined by a specific dis-
tribution of co-occurring diseases (i.e., a comorbidity pattern) is a
“topic” (i.e., a probability distribution over words). Specifically, we
implemented a Hierarchical Dirichlet Process (HDP) model35,36, ori-
ginally proposed for unsupervised clustering of large collections of
texts, such as news articles. In our version of implementation, we treat
chronologically ordered clinical histories of individual patients as
sentences. In this representation, natural-language words map to dis-
ease diagnostic codes (a “text”), and a large collection of patient his-
tories maps to “text corpus.” The underlying generative probabilistic
model of data is built on formalism of a stochastic Dirichlet process. In
this formalism, eachdisease subtype is generated by a uniqueDirichlet
process, and Dirichlet processes for individual disease subtypes share
a base distribution which itself is drawn from a Dirichlet process. The
HDP modeling automatically determined the optimal number of sub-
groups through a nonparametric Bayesian model selection approach
(see Methods).

The MarketScan database of diagnosis contains records for over
151 million US residents37, covering 567 major groups of diseases
suggested by ICD code taxonomy38,39. We selected asthma patients
aged 15–70 who also had comorbid diseases to construct the

“collection of sentences” for modeling. The resulting population was
around six million, of which we used records from one million ran-
domly selected individuals each time as input to the HDP modeling,
repeating the modeling process for 100 times (see a flowchart in
Fig. 1a). A large ensemble of clusters was thus generated, and a cluster
therein was essentially a specific frequency distribution of comorbid
diseases. Some resulting clusters were similar, while others were not,
partially due to the stochastic nature of HDP modeling. The inter-
cluster dissimilarity, i.e., dissimilarity between frequencydistributions,
can be measured by Jensen-Shannon divergence, and we then applied
Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN)40–42 to discern the stable subgroups of recurring
clusters fromnon-recurring ones (outliers).We considered a subgroup
to be stable and designated it as an “asthma subgroup,” only if it
enclosed more than 50 cluster points (see Methods for parameter
selection results). By applying this subgroup-discovery workflow, we
identified 22 asthma comorbidity subgroups, each with a unique dis-
tribution of 567 disease frequencies. The specific frequency distribu-
tion of 567 disease groups defined the “comorbidity pattern” in
an asthma subgroup and was quantified collectively by its
enclosed clusters. The median values, as well as minima, the first
quartiles, the third quartiles, andmaxima of the occurring frequencies
of diseases in the clusters are shown in Supplementary Data 1 for each
subgroup.

Next, we conducted sensitivity analyses on our identification
approachusingother four different cohorts, including (i) individuals in
the MarketScan data who were aged between 15 and 70, but carried at
least two asthma codes, (ii) individuals in the MarketScan data who
carried at least one asthma code, but were aged between 40 and 70,
(iii) individuals in the MarketScan data who not only were aged
between 15 and 70andcarried at least one asthmacode, but also had at
least one type of asthma drug prescriptions, and (iv) individuals
enrolled in UK Biobank (UKB). By repeating the exact same procedure
as described above, we could re-discover 21, 20, 22, and eleven sub-
groups out of the original 22, respectively (see Supplementary
Data 2–5 and Supplementary Table 2 for the subgroup profiles). For
visualization purpose only, the asthma subgroups were projected into
a two-dimensional space using the t-SNE algorithm43, and we show the
eleven subgroups that were found in all the different cohorts above in
Supplementary Fig. 1b. Supplementary Fig. 1c shows the hierarchical
clustering of these subgroups, and for each subgroup, a word cloud
summarizes comorbid diseases therein contained and their occurring
frequencies (proportional to the font sizes). For easier reference, we
labeled each asthma comorbidity subgroup with a serial number and
the broader category to which several most frequently occurring dis-
eases belonged (see Fig. 1b for the relative frequencies of top 10
comorbid conditions in each asthma subgroup).

To our knowledge, this is the first such analysis of asthma
comorbidity patterns over the entire disease spectrum. Some comor-
bid conditions identified in the 2007 American National Asthma Edu-
cation and Prevention Program (NAEPP) guidelines44 appear
prominent in certain subgroups, such as gastrointestinal disease in
subgroup 3 and depression in subgroup 11. More interestingly, some
comorbidity associations are novel, such as lymphoma in subgroup 4
and joint disorder in subgroup 5.

Identifying genetic associations specific to asthma subgroups
Our underlying premise is that each individual’s comorbid diseases
arose in a gene-environment background that predisposed to their
occurrences. Therefore, comorbidities can serve as surrogates for the
various overall gene-environment settings in which different asthma
endotypes can arise. By comparing patients with and without asthma
who all share the same comorbidity pattern (as defined in an asthma
comorbidity subgroup), we studied asthma risk genes in a subgroup-
specificmanner. For this purpose, we selected unrelated individuals of
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white British background and with high-quality genotyping from the
UKB45 as a discovery cohort, including 44,383 asthma cases and
260,715 non-asthma controls (see Table 1 and Supplementary Table 4).
With the profiles of subgroups comprehensively defined, we could
assign any individual to the most appropriate asthma subgroup that
best matched an individual’s complete collection of disease diagnoses
and respective occurring frequencies (see Methods).

First, we performed a larger GWAS of asthma by comparing
asthma cases and non-asthma controls among all individuals with any
comorbid diseases (“any-CDs group”)46.We observed 103 independent
loci of genome-wide significance (p < 5 × 10−8), 13 of which were not
previously reported in the NHGRI-EBI GWAS catalog database47.

Second, we assigned asthma cases and non-asthma controls to
their comorbidity subgroups, forming case and control subgrouppairs
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that shared the same comorbidity patterns (see Fig. 2a).Within eachof
the eleven subgroups that were re-discovered in UKB, we carried out a
GWAS of asthma, identifying 14 loci that were also found in the initial
larger GWAS analysis, plus six additional loci that conferred asthma
risk in one subgroup, but not in the other subgroups or in the initial
asthmaGWAS.We showManhattan plots of these results in Fig. 2b and
annotate significant loci with their nearest genes (see Supplementary
Table 1 for the complete loci information).

For example, in addition to being significantly associated with
asthma in the initial larger GWAS, variants near IL1RL1, KIAA2026,
EMSY, andGSDMBwerealso associatedwith asthma in subgroup 3 “GI;”
variants near TSLP, RANBP6, and SLC7A10 in subgroup 8 “Cardiovas-
cular;” and variants near D2HGDH, HLA-DQA1, IL33, and SMAD3 in
subgroups 3 and 8. The lead SNPs at the six subgroup-specific loci
include rs11144271 (near OSTF1, p = 2.50× 10−8) and rs113757163 (near
COX10, p = 1.58× 10−9) in subgroup 5 “Musculoskeletal,” rs2249851 (in
FAM129B, p = 3.30 × 10−9) in subgroup 3 “GI,” rs76225731 (in SNHG14,
p = 3.66 × 10−8) in subgroup 6 “Lung,” rs117262476 (in PCNT,
p = 1.46 × 10−8) in subgroup 4 “Lymphoma,” and rs2765400 (near
KRT8P37, p = 2.56 × 10−8) in subgroup 8 “Cardiovascular.” Five of the six
subgroup-specific loci, except for the last one (rs2765400), werenovel,
meaning, never reported in any asthma GWASs before. If a Bonferroni
correction is further applied to adjust the twelve GWASs in total (ele-
ven subgroups and a general asthma population), and the adjusted
genome-wide significance threshold becomes 4.17 × 10−9 (i.e., 5 × 10−8/
12), then there are two associations that remain significant: rs113757163
near COX10 and rs2249851 in FAM129B.

In summary, we identified a total of 109 independent loci, repre-
senting the union of all genome-wide significant asthma risk loci found
in any of the GWASs in our study (Fig. 3a). We investigated the het-
erogeneity in the effect sizes of the lead SNPs at these 109 loci across
the eleven subgroups, using a Cochran’s Q test48. This revealed sig-
nificant heterogeneity at nine loci (marked with red # symbols in
Fig. 3b), which included all the six subgroup-specific loci (Supple-
mentary Data 6). To validate these discoveries, we conducted a multi-
ancestry meta-analysis49–53 of four additional cohorts, including two
subsets from UKB that were not included in the initial GWAS (a cohort
of white Irish and any otherwhite background, and a cohort of African,
Caribbean and any other backgrounds associated with recent African
descent, respectively), a European ancestry subset of BioVU from the
Vanderbilt University Medical Center54,55, and an East Asian ethnic
group from BioBank Japan (BBJ)56–58. After multiple testing correction,
there remained 61 associations (involving 52 loci) successfully repli-
cated, consisting of 49 (involving 49 loci) from the any-CDs group and
twelve (involving ten loci) from subgroups. The latter, in particular,
included three subgroup-specific loci: rs11144271 (near OSTF1), and
rs113757163 (near COX10), both in subgroup 5 “Musculoskeletal,” and
rs2765400 (near KRT8P37) in subgroup 8 “Cardiovascular” (see Sup-
plementary Data 7 for summary statistics).

Third, using transcriptome data from bronchial epithelial cells
(BECs) obtained by bronchoscopy from a small number of patients (42
asthma cases and 28 non-asthma controls) at the University of
Chicago18,59, we checked for possible differential expression of the
genes nearest to the six subgroup-specific loci. Based on the available

Fig. 1 | Identification of asthma subgroups through topicmodeling. a Flowchart
of asthma subgroup identification. The MarketScan data includes around six mil-
lion asthma patients who have at least one comorbid disease (CD). To enable the
estimation of sample statistics, we randomly selected one million patients and
applied topic modeling to obtain comorbidity clusters (one cluster is projected as
one point in the t-SNE plot). This procedure was repeated 100 times, generating a
large collection of clusters shown as thousands of scattered points in the t-SNE
projection. We used this t-SNE low-dimensional projection of topics only for
visualization purpose, rather than for cluster discovery. With inter-cluster dissim-
ilarity measured by Jensen-Shannon divergence, we applied HDBSCAN to identify
stable subgroups of clusters as well as their hierarchies. A potential subgroup was
deemed to be a stable “asthma subgroup”, only if it harboredmore than 50 cluster
points. We also conducted a sensitivity analysis on our identification approach in
four additional cohorts, and subsequentially show the eleven subgroups that were
commonly found in all the different cohorts above. Then, given the distribution of

diagnosis counts shown in an individual’s record, we can express it as a linear
combination of the distributions of diagnosis counts as defined in the asthma
subgroups, and suggest that the subgroup with the largest assigned coefficient
could represent the individual’s record best, therefore “assigning” the individual to
this subgroup (Wd,n,Φk,n, andΘd,k contain the information about record-diagnosis
co-occurrences, subgroup profiles, and assignment coefficients, respectively; see
Methods for more details). b The top ten frequently occurring diseases in the
identified eleven asthma subgroups. A complete and precise definition of an
asthma subgroup requires one to specify the frequency distribution of 567 disease
groups. For each subgroup, we use a bar plot to show its top ten frequently
occurring diseases, and color-code the bars as well as the annotations by the
broader categories that the diseases belong to. The y axis denotes the normalized
occurring frequency of a given disease, and we can see that a subgroup is named
after the broader category to which several most frequently occurring diseases
belong (see Supplementary Data 1 for the subgroup profiles in detail).

Table 1 | Descriptions of used databases

Database Ethnicity Total sample size (asthma
case count)

Male percentage Median ageg Usage

MarketScan (select age
≥15)a

White (78.3%), Black
(14.5%)f

84,315,387 (6,048,247) 44.8% 41 (29–53) Asthma subgroup identification

UK Biobankb British white 305,098 (44,383) 45.7% 59 (51–64) GWAS discovery, and phenotype asso-
ciation analysis

Irish white 22,600 (3,186) 41.9% 57 (49–63) Replication of GWAS findings via meta-
analysisAfrican, Caribbean 6,833 (998) 40.5% 51 (46–58)

BioVUc White 16,060 (1,668) 50.3% 61 (51–71)

BioBank Japand East Asian 194,413 (3,368) 54.1% 65 (55–73)

UChicago RNAseqe White (37.1%),
Black (58.6%)

70 (42) 32.9% 38 (27–50) Differential gene expression validation

aThe MarketScan insurance claims database in the US, including diagnosis records.
bNational health database in the UK, including diagnosis records and genotype data.
cPatient-based registry of Vanderbilt University Medical Center, including diagnosis records and genotype data.
dPatient-based registry in Japan, including diagnosis records and genotype data.
eRNAseq transcriptome profiles of bronchial epithelial cells of patients enrolled in the University of Chicago.
fImputed percentage based on county-level distributions of race.
gValues in parentheses are interquartile ranges given in years.

Article https://doi.org/10.1038/s41467-022-33628-8

Nature Communications |         (2022) 13:6712 4



diagnosis information, we assigned the 42 asthma cases into comor-
bidity subgroups; only subgroups 5 and 3 involving three genes
(OSTF1, COX10, and FAM129B) contained five or more individuals, and
were included in these analyses. We formularized gene transcript
counts using a generalized linear model of the negative binomial
family60 with age, sex, and ethnicity included as covariates. We com-
pared asthma cases within each group to two reference (control)
groups: 28 non-asthmatic individuals, and the asthma cases that fell
into those subgroups other than the one being tested (see Methods).
As shown in Fig. 3c, OSTF1 expression was significantly reduced while
COX10 was overexpressed in asthmatics in subgroup 5 “Musculoske-
letal”, compared to the expression levels in the non-asthma controls or
in the asthma cases not in subgroup 5. The expression of FAM129Bwas
significantly higher among the cases in subgroup 3 “GI” compared to
either reference group. In addition, we used both the HaploReg v4.161

and the Genotype-Tissue Expression project (GTEx)62 databases to
determine whether the associated SNPs were also expression quanti-
tative trait loci (eQTLs). We found that rs11144271 is an eQTL forOSTF1
in whole blood (p = 2.5 × 10−29), and rs2249851 is an eQTL for FAM129B
in cultured fibroblasts (p = 3.1 × 10−22), in whole blood (p = 1.3 × 10−6), in
pituitary (p = 3.6 × 10−5), and in tibial artery (p = 6.1 × 10−5). Admittedly,
differential expression analysis and functional validation of additional
genes will be needed to infer causal associations between the genes
and subgroup-specific asthma risk.

Next, we performed pathway enrichment analyses based on the
full subgroup association results. Asthma subgroups indeed show
distinct sets of enriched biological pathways/processes, for example,
keratinocyte differentiation (p = 7.52 × 10−16) and the regulation of
leukocyte proliferation (p = 5.27 × 10−7) in subgroup 3 “GI”, and kerati-
nocyte differentiation (p = 4.40 × 10−19) and epidermal cell differentia-
tion (p = 2.24 × 10−14) in subgroup 8 “Cardiovascular”. These enriched
biological pathways or processes could potentially inform subgroup-
specific asthma pathogeneses. Complete listings for all the eleven
asthma subgroups can be found in Supplementary Table 3.

Asthma associations with health-related phenotypes differ
across subgroups
If the identified subgroups reflect true endotypes, then there shouldbe
health-related phenotypes (e.g., measurable clinical differences) that
differentially associate with asthma among comorbidity subgroups
and possibly suggest distinct pathogenetic mechanisms. To test this,
we leveraged the phenotypic data in the UKB resource45, and focused
on a total of 140 different phenotypes that measured ten health-
related categories, including spirometry, blood count, blood bio-
chemistry, urine biochemistry, early life factors, anthropometry,
addictions, diet, physical activity, and local environment. We focused
these studies on the same cohort as we used for the GWAS discovery:
unrelated individuals of white British ethnicity with available diagnosis
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non-Asthma in subgroup 1
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vs.

non-Asthma in subgroup 11

Asthma’s associations 
with genome and many 
health-related phenotypes 

Fig. 2 | Genome-wide significant associations with asthma. a Study design for
association analyses. Starting with the general population who may have any
comorbid diseases (the any-CDs group) in UK Biobank, we were able to assign an
individual with 1 of the 11 asthma subgroups that were found in UK Biobank. Then,
we performed GWASs to identify asthma risk loci for the any-CDs group and for
each subgroup individually (by comparing asthma cases against non-asthma con-
trols within each subgroup). b GWAS Manhattan plots. This figure overlays GWAS
results from the any-CDs group (in black) and from five selected subgroups (in
multi-colors) that contained genome-wide significant asthma risk loci, including
subgroups 3 “GI,” 4 “Lymphoma,” 5 “Musculoskeletal,” 6 “Lung,” and 8

“Cardiovascular.” All the association p values are shown on a –log10 scale on the y
axis, and genomic locations are shownon the x-axis. The threshold of genome-wide
significance (5 × 10−8) is indicated as a horizontal dashed line in red. Triangles at top
indicate SNPs that have a higher –log10(p value) than shown. In addition, we
annotate genome-wide significant loci with the names of their nearest genes, and in
the casewhere a gene is commonly found inmultiple subgroups and in the any-CDs
group, the subgroup serial numbers and letter “G” are written, respectively, in
parentheses under the gene name. In particular, we highlight the genes nearest to
the six subgroup-specific loci by rotating their names with an angle of 45 degrees.
More details can be found in Supplementary Table 1.
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records. We implemented a multivariate adaptive shrinkage (mash)
method63 to assess the heterogeneity of the associations across sub-
groups by benchmarking against the larger group with any comor-
bidities (as benchmarks; see Methods).

The first step was to examine asthma associations for each phe-
notype in the ten categories, in each subgroup as well as in the larger
group. We used the slope estimate of an association, i.e., increased

likelihood of asthma with respect to increasing or decreasing value of
the phenotypic feature, to denote the association’s direction (by the
sign of the slope) and strength (by the absolute value of the slope; see
Supplementary Data 11). The analysis revealed 44 phenotypes asso-
ciatedwith asthmadifferentially across subgroups (see Supplementary
Data 12 for the estimates of the slope differences after benchmarking
against any-CDs group). These subgroup-specific differential

a ln(OR) series of 11 Asthma subgroups
-0.3    0    0.3

ln(OR) of any-CDs group  

1.  Diabetes

2.  Autoimmune 
3.  GI

4.  Lymphoma 

5.  Musculoskeletal
6.  Lung

7.  Heart

8.  Cardiovascular
9.  Brain

10.  Thyroid

11.  Psychiatric

rs117378200
rs117710327

rs3771175
rs150707349

rs60227565
rs186856025

rs10490944
rs118077070

rs3024971
rs1837253

rs34290285
rs10975413
rs35441874
rs75125788
rs34986765

rs6899623
rs59186511
rs10152595

rs1892958
rs145835664

rs17547610
rs75636497

rs7134784
rs10178845
rs10491424
rs12365699

rs112144981
rs2025758

rs112819286
rs11590405
rs28607030
rs72797327

rs7626218
rs4594881
rs2074190

rs249677
rs3851611
rs1381928

rs174566
rs6602347

rs13241235
rs4842921
rs7523907
rs9350929
rs1888072

rs76225731
rs11144271

rs113757163
rs117262476

rs2249851
rs2765400

rs179771
rs10905361

rs4945084
rs157577

rs4742214
rs4792811
rs2069772

rs12785018
rs4749785

rs35570272
rs17312661

rs6808893
rs62065216

rs802731
rs705700

rs10131490
rs7047575
rs4296278
rs1007027

rs11255507
rs3785356

rs16948048
rs35654771

rs2834787
rs6879838
rs4141183

rs10455052
rs1233493
rs3001425

rs13263709
rs72837826
rs28617673

rs9903269
rs1023518
rs2390314

rs16903574
rs72693791
rs45613035
rs17513503

rs1612986
rs10037959
rs12470864

rs114442993
rs7110818

rs115008099
rs1011082
rs1704996

rs72743461
rs992969

rs17406680
rs9271365

rs61815704
rs12123821
rs78728108

rs146644295
rs340928

rs55646091
rs78757963

b

−0.2 −0.1 0 0.1 0.2

*

*

* **

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

**

*

*
*

non-Asthma
(28)

3.GI 
w/ Asthma (7)

non-GI 
w/ Asthma (35)

L2FC = 0.29
p = 0.0056

L2FC = 0.22
p = 0.071

12
.5

13
.0

13
.5

14
.0

FAM129B (rs2249851)

lo
g 2 (

no
rm

al
iz

ed
 tr

an
sc

rip
t c

ou
nt

)

8.
8

9.
0

9.
2

9.
4

9.
6

9.
8

10
.0

OSTF1 (rs11144271)

non-Asthma
(28)

5.Musculoskeletal 
w/ Asthma (5)

non-Musculoskeletal 
w/ Asthma (37)

10
.2 L2FC = ‒ 0.30

p = 0.0019

L2FC = ‒ 0.25
p = 0.011

lo
g 2 (

no
rm

al
iz

ed
 tr

an
sc

rip
t c

ou
nt

)

7.
5

8.
0

8.
5

COX10 (rs113757163)

non-Asthma
(28)

5.Musculoskeletal 
w/ Asthma (5)

non-Musculoskeletal 
w/ Asthma (37)

L2FC = 0.21
p = 0.0027

L2FC = 0.27
p = 0.0066

lo
g 2 (

no
rm

al
iz

ed
 tr

an
sc

rip
t c

ou
nt

)

#

#

#
#
#
#
#
#

#

# Significant heterogeneity in SNPs’ 
ln(OR) across asthma subgroups

Genome-wide significant associations*

c

614

Asthma subgroups

any-CDs group

89

Article https://doi.org/10.1038/s41467-022-33628-8

Nature Communications |         (2022) 13:6712 6



associations are highlighted in color (blue signifies less positive than
the benchmark, red signifiesmore positive than the benchmark) in the
meta-plots in Fig. 4 and Supplementary Fig. 7, which show the pos-
terior means and variances of the association slopes. This analysis
demonstrated that clinically relevant phenotypes indeed varied across
subgroups, with some suggesting potential subgroup-specific endo-
typic mechanisms (see Discussion).

Finally, we have collated summary statistics of relevant health-
related phenotypes available in MarketScan and UKB data (including
white blood cell counts, spirometry measurements, body mass index,
smoking status, age of asthma onset, and asthma medications), and
compare them in a subgroup-specific manner in Supplementary
Tables 5–9. As shown in Supplementary Table 6, the abnormalities of
spirometry measures (including reductions of predicted forced vital
capacity (FVC), forced expiratory volume in one second (FEV1), peak
expiratory flow (PEF), and the ratio of FEV1 to FVC (FEV1/FVC) are
greatest in subgroup 6 “Lung” and are modest in subgroup 5 “Mus-
culoskeletal;” Supplementary Table 9 shows that inhaled steroid
combinations with long-acting beta agonists or antibody inhibitors,
both of which medication categories are usually prescribed for more
severe asthma, have the largest fraction of users in the “Lung” sub-
group and less than half that fraction in the “Musculoskeletal” sub-
group. Collectively, these suggest that the “Lung” subgroup may
comprise individuals with more severe asthma than that experienced
by individuals in the “Musculoskeletal” subgroup.

Discussion
Currently, the most widely adopted method of asthma classification is
basedon severity, definedby the level of symptoms, lung function, and
rescue bronchodilator use44. Asthma has also been classified by onset
age: early- and late-onset64; by the presence or absence of allergic
sensitization: atopic and nonatopic65,66; by the level of symptom con-
trol: controlled, partly controlled, and uncontrolled67; or, more
recently by the co-occurrence of other medical conditions like
obesity68,69, rhinosinusitis70, and depression71–73, which are thought to
exacerbate symptoms or even directly contribute to asthma patho-
genesis. One problem with the current classifications lies in poor
coherence and subjectivity; studies have shown that poor agreement
can exist across classification systems74, official guidelines, and

physician assessment75. Additionally, there is increasing evidence that
the current classifications can sometimes be too broad to adequately
reflect the highly heterogeneous characteristics observed in asthma
populations4,64,76. In this study, we sought to discover asthma subtypes
in a data-driven, probabilistic modeling-based unsupervised way: (i)
We gathered large-scale, multi-dimensional datasets, including very
large diagnosis records and genotype data originating from multiple
countries (US, UK, and Japan), RNA-sequencing profiles (laboratory
measurement), and a suite of health-related phenotypicmeasures (see
Table 1 and Supplementary Fig. 5 for a brief summary of all the used
datasets); (ii) The workflow andmethodologies proposed in this study
are a showcase for the benefits from the integration of these multi-
dimensional information, and can work as machinery that has general
applicability towards the investigation of other complex diseases.

The ever-increasing availability of large-scale administrative
medical records has allowed us to find emerging comorbid conditions
among asthma patients77–85 and should allow the investigation of their
adverse effects, including asthma exacerbation86, lower quality of
life87,88, and increased risk of morbidity and mortality89. Here, we refer
to a comorbidity pattern as a specific distribution of diseases that co-
occur with asthma, and hypothesize that such comorbidity patterns, if
analyzed systematically from country-scale diagnosis records, can be
very informative in dissecting hidden heterogeneity of asthma and
guiding asthma endotyping. The rationale for this approach is rooted
in the hypothetical deep connection between comorbidity patterns
and asthma endotypes. First, genetic factors can predispose an indi-
vidual to different asthma endotypes as well as to themanifestation of
many other co-occurring diseases, in other words, genetic origins are
shared. Studies have shown that trait-associated SNPs discovered by
previous GWASs are largely pleiotropic, and tend to influence general
biological functions contributing to numerous traits90. Second, dif-
ferent asthma endotypes and comorbid conditions can also share
environmental exposures or even possibly cause one another, pro-
moting the convergence of certain comorbidities. For these reasons,
we suggest that comorbidities are effectively working surrogates for
gene-environment landscapes that lead todifferent asthmaendotypes,
and that different comorbidity subgroups may harbor unique asthma
risk loci. In other words, it seemed likely that the additional risk factors
for asthma to arise in one gene-environment landscape (as prevails in

Fig. 3 | Summary of genome-wide significant loci and differential gene
expression. a A summary of the significant loci in a Venn diagram. The association
analysis by comparing asthma cases and non-asthma controls in the any-CDs group
identified 103 independent loci at genome-wide significance level. Similar asso-
ciation analyses within each of the eleven asthma subgroups discovered 20 sig-
nificant loci, of which 14 were also seen in the any-CDs group, and, interestingly, six
more loci were specific to one subgroup only. Altogether there were 109 inde-
pendent loci identified. b Association results for significant loci. The forest plot on
the left side summarizes the association results seen in the any-CDs group for the
109 loci, at which the lead SNPs are listed in the first column. Squares denote the
effect sizes, i.e., natural logarithm of odds ratios or ln(OR), and horizontal lines are
the 95% confidence intervals. From top to bottom, the effect sizes are in ascending
order, from negative (in blue) to positive values (in red). The wave-like plot on the
right side displays a series of effect sizes seen in the eleven subgroups that can be
found in UK Biobank for each of the 109 SNPs. The subgroup names are labeled
along thehorizontal axis,while for eachof the 109 SNPs that aredisplayed along the
vertical axis, its effect size is represented as a peak in the red shade if it is positive,
and as a trough in blue shade if negative. The absolute value of the effect size is
proportional to the height (or depth) of the peak (or trough), and is also color-
coded. All the genome-wide significant associations between SNPs and subgroups
are marked with green asterisks, and in particular, the six SNPs that are specific to
one subgroup only are highlighted in green in the first name column. In addition,
the heterogeneity of per-locus effect sizes across the eleven subgroups was
assessed through a Cochran’s Q test, finding nine loci with evidence of significant
heterogeneity in effect sizes (indicated with # symbols in red after the respective
SNP names in the first column). See Supplementary Data 6 for the association

results in detail and Supplementary Fig. 5 for the numbers of allocated cases and
controls in each subgroup. c Differential gene expression. For three of the
subgroup-specific SNPs, we confirmed the differential expression of their nearby
genes (i.e.,OSTF1,COX10, and FAM129B), using an independentdataset ofbronchial
epithelial transcriptome profiles. The gene OSTF1, for example, has significantly
lower expression among asthma cases in subgroup 5 “Musculoskeletal”, compared
to non-asthma controls and asthma cases in other subgroups (see the x axis labels
and respective sample sizes in parentheses). The y-axis shows the normalized
transcript count on a log2 scale, i.e., log2[(transcript count+0.5)/size factor]; the
minimum, the first quartile, the median, the third quartile, and the maximum of
OSTF1 for non-asthma controls are 9.17, 9.42, 9.54, 9.67, and 9.93, for asthma cases
in subgroup 5 are 8.91, 9.24, 9.31, 9.34, and 9.43, and for asthma cases in other
subgroups are 9.20, 9.34, 9.45, 9.59, and 9.97; these values of COX10 for non-
asthma controls are 7.80, 7.97, 8.03, 8.12, and 8.30, for asthma cases in subgroup 5
are 8.14, 8.26, 8.26, 8.33, and 8.35, and for asthma cases in other subgroups are 7.15,
7.86, 8.00, 8.09, and 8.33; these values of FAM129B for non-asthma controls are
12.41, 12.71, 12.85, 13.01, and 13.44, for asthma cases in subgroup 3 are 12.91, 13.06,
13.15, 13.23, and 13.35, and for asthma cases in other subgroups are 12.28, 12.62,
12.73, 13.04, and 13.64). The mean log2 fold changes (L2FC) ofOSTF1 in subgroup 5
of asthma cases were−0.30 (two-sidedWald statistic p value = 0.0019) and −0.25 (p
value = 0.011), when compared to non-asthma controls and asthma cases in other
subgroups, respectively. The other comparisons show that bronchial epithelial cell
expression of COX10 in subgroup 5 “Musculoskeletal” and FAM129B in subgroup 3
“GI” are significantly higher, compared to non-asthma controls and their respective
asthma cases in other subgroups.
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one comorbidity subgroup) are different from the additional risk fac-
tors that make asthma more likely to arise in a different gene-
environment landscape (e.g., as prevails in a second comorbidity
subgroup). In this study, we tested and confirmed this possibility. Our
approach of using comorbid patterns to derive homogeneous endo-
types resonates with the previous studies that identified novel disease
subtypes and genetic loci through non-random ascertainment of
covariates informed by multiple traits and genetics91,92. However, this
ascertainment could conceivably induce unintended, biased

associations93–95. In aneffort to restrain them,we replicated the genetic
risk loci in multiple ethnic cohorts and aggregated the genetic, gene
expression, and phenotypic associations that collectively may suggest
the heterogeneity existing in asthma.

The subgroup-specific variants that were found significant in
GWASs here may point to different pathogenetic mechanisms in
asthma endotypes. For example, we identified an association specific
to asthma subgroup 5 “Musculoskeletal.” The lead variant was near
osteoclast-stimulating factor 1 (OSTF1), a gene that interacts with fatty

a

Posterior mean and CI of slope estimate 

b

R
et

ic
ul

oc
yt

e 
co

un
t

−2.6 2.4 7.4 12.4 17.4

1
2

6

9
8

11 R
et

ic
ul

oc
yt

e 
%

−1.3 3.7 13.7 23.7

1
2

6

9
8

11 H
ig

h 
lig

ht
 s

ca
tte

r 
re

tic
ul

oc
yt

e 
co

un
t

2 6 10 14

2

6
8

11

6

H
ig

h 
lig

ht
 s

ca
tte

r r
et

ic
ul

oc
yt

e 
%

10.7 30.7 50.7 90.7

1
2

3

7

10

4
5

9
8

11

R
BC

 (e
ry

th
ro

cy
te

) c
ou

nt

−1.2 0.8 2.8

1

6
7

8

11

H
em

at
oc

rit
 %

−1.1 0.9 2.9 4.9

1

67

4

8

11

H
em

og
lo

bi
n 

co
nc

en
tra

tio
n

−1.6 0.4 2.4

1

6
7

8

11

Pl
at

el
et

 c
ou

nt

0.2 2.2 4.2 6.2

6
7

10

4
5

9
11

Pl
at

el
et

 c
rit

−0.3 1.7 3.7 5.7

6
7

10

4
5

9

M
on

oc
yt

e 
co

un
t

2.2 12.2 32.2

1
2

6
7

10

4
5

N
eu

tro
ph

il 
%

0 21

1
2

6
7

10

4
5

9
8

6

W
BC

 (l
eu

ko
cy

te
) c

ou
nt

2 12 17 22 32

1
2

3

7

10

4
5

9

Eo
si

no
ph

il 
co

un
t

12.3 18.3 26.324.3

1
2

3

6
7

4

9
8

11 Eo
si

no
ph

il 
%

9 13 17

1
2

3

6
7

4

9
8

11N
eu

tro
ph

il 
co

un
t

3.5 7.5 11.5

1

6
7

10

4
5

9
11

N
at

ur
al

 e
nv

iro
nm

en
t %

 
bu

ffe
r 1

00
0m

−0.6 −0.4 −0.2 0

1

G
re

en
sp

ac
e 

%
 b

uf
fe

r 3
00

m

−0.6 −0.4 0−0.1

1

N
itr

og
en

 d
io

xi
de

 a
ir 

po
llu

tio
n 

20
10

0.3 0.8 1.8

1

Pa
rti

cu
la

te
 m

at
te

r a
ir 

po
llu

tio
n 

(p
m

2.
5)

; 2
01

0

0.4 0.9 1.9

1

Sa
lt 

ad
de

d 
to

 fo
od

0.2 0.3 0.5

1
3

7
5

8

N
o.

 o
f d

ay
s/

w
ee

k 
of

 m
od

er
at

e 
ph

ys
ic

al
 a

ct
iv

ity
 1

0+
 m

in

−0.4 −0.2

1

N
o.

 o
f d

ay
s/

w
ee

ks
 o

f v
ig

or
ou

s 
ph

ys
ic

al
 a

ct
iv

ity
 1

0+
 m

in

−0.5 −0.1−0.2

1
2

3

6
7

5

Fr
eq

ue
nc

y 
of

 s
ta

ir 
cl

im
bi

ng
 in

 la
st

 4
 w

ee
ks

−0.6 −0.1−0.3

1
3

7
5

U
su

al
 w

al
ki

ng
 p

ac
e

−1.4 −0.8 −0.6

1
2

3

6
7

10

4
5

N
ap

 d
ur

in
g 

da
y

0.3 0.5 0.70.4

1

Physical activity

Local environment Diet

Blood count

1. Diabetes 2. Autoimmune 3. GI 4. Lymphoma 5. Musculoskeletal Lung 7. Heart 8. Cardiovascular 9. Brain 10. Thyroid 11. Psychiatric

Fig. 4 | Differential asthma associations with health-related phenotypes across
subgroups. A total of 10 different categories of health-related phenotypes (140
different measurements in total) were subjected to phenotype association analysis
(see Methods for technical details and Supplementary Data 11 for the numbers of
allocated cases and controls in each subgroup). We first computed phenotypes’
slope estimates of asthma associations within each subgroup and in the any-CDs
group. The direction and strength of the association are characterized by the sign
and absolute value of the slope, respectively. a Heterogeneous slope estimates
related to blood count. We assessed the heterogeneity in these slope estimates
across subgroups for eachphenotype, andbenchmarked against the slope value for
that phenotype in the any-CDs group. Each phenotype is presented as a meta-plot,
which shows the posterior means (as squares) and 95 percent confidence intervals
(as error bars) of the slopes from subgroups 1 to 11 that were also discovered in UK

Biobank (displayed from top to bottom). Slope estimates that are significantly less
positive than the any-CDs group benchmark (marked by a vertical dashed line) are
shown in blue, while those that are significantlymore positive are shown in red; the
respective subgroup numbers are also shown for significantly different subgroups.
For example, subgroup 6 “Lung” exhibits many red-blood-cell-related pheno-
types that are in significantly stronger associations with asthma likelihood than
appear for the general population in the any-CDs group. b Heterogeneous slope
estimates related to the local environment, diet, and physical activity. In the same
fashion as shown ina, wedisplay themeta-plots of thephenotypes in the categories
of the local environment, diet, and physical activity. A distinct pattern of these
phenotypes distinguishes subgroup 1 “Diabetes,” in which stronger associations of
greenspace, air quality, salt intake, and exercise are evident.
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acid binding protein 4 (FABP4)96, which in turn regulates airway
inflammation in experimental asthma97,98. OSTF1 also regulates cell
motility99, which could be important in bronchial epithelial repair and
inflammatory cell trafficking. Another nearby gene specific to sub-
group 5, cytochrome C oxidase assembly homolog 10 (COX10), reg-
ulates T-cell activation and differentiation100–102, and so could regulate
asthmatic airway inflammation in some way particularly important for
this subgroup. Family with Sequence Similarity 129 Member B
(FAM129B), selective for subgroup 3 “GI,” regulates glycolysis, Ras
activation, oxidative stress, apoptosis103–106, and more generalized cell
processes whose contributions to asthma pathogenesis could take
multiple forms. Experimental studies will be required to identify the
exact mechanism(s) by which these genes contribute to asthma in a
subgroup-specific fashion.

Similarly, unique phenotypic associations also characterize some
asthma subgroups. For example, we were struck by the strong positive
slope relationships among multiple measures of red blood cell (RBC)
production and accumulation in subgroup 6 “Lung,” including reticu-
locytes, erythrocytes, hematocrit, and hemoglobin (Fig. 4a). Increased
RBC production could reflect higher erythropoietin elaboration or
sensitivity. Erythropoietin is known to reduce airway remodeling in
experimental murine allergic asthma107, perhaps inducing the activa-
tion of regulatory T cells108 through stimulation with TGF-β released
from M2 macrophages. However, TGF-β is well known to promote
airway smooth muscle differentiation and accumulation109–112, and
erythropoietin-induced TGF-β secretion could conceivably represent
the key pathogenetic contributor that promotes the emergence of
asthma in patients with the comorbidity background of subgroup 6, in
which COPD is the most frequent comorbid disease. Consistent with
this notion, the association between asthma and blood eosinophil
count or percentage is significantly weaker in subgroup 6 than in the
larger group with any comorbidities, suggesting that Th2-type
inflammation may be relatively less important for the development
of asthma in this subgroup.

As another example (Fig. 4b), greater likelihood of asthma in
subgroup 1 “Diabetes” is related to less greenspace, higher air pollu-
tion, higher salt intake, and lower physical activity. Indeed, both
greenspace113 and air pollution114 have been previously linked to
asthma prevalence or severity, and these effects are mirrored in the
observed slopes for the whole UKB samples analyzed here as well.
Greenspace reduces the incidence of elevated interleukin-8 (IL8) in
serum115, while both NO2

116 and particulate matter air pollution117,118

induce IL8 expression in human airway epithelium. High-intensity
interval exercise reduces circulating IL8 in both lean and overweight-
obese individuals119, and while eating higher salt diets, individuals with
exercise-induced asthma experienced worsened post-exercise airflow
obstruction and had greater induced sputum IL8 concentrations than
when eating a low-salt diet120. Importantly, IL8 is particularly elevated
in the lung secretions of severe asthmatics121. In all, the known role of
IL8 in asthma and the phenotypic peculiarities of subgroup 1 asth-
matics suggest that their asthma may be especially driven by
IL8 secretion. Each of these potential subgroup-specific endotypic
mechanisms should be explored experimentally. In total, out of the
tested 140 health-related phenotypes, there are 44 showing significant
heterogeneity across our subgroups of asthma (see Supplementary
Fig. 7 for the other significant phenotypes); these might also contain
clues about endotypic mechanisms.

Additionally, 182 asthma-associated loci (at the suggestive
threshold, p < 10−5) had significantly larger effect sizes in specific sub-
groups than in the initial larger GWAS, although these associations did
not reach genome-wide significance. Another 73 independent genome
regions had similar effect sizes in one ormore subgroups as well as the
larger group with any comorbidities (see Supplementary Note 2 for
details). Understanding these genetic specificities and commonalities,
which collectively mapped the genomic landscapes of asthma

subgroups, can be critical in discovering new asthma endotypes and in
elucidating their distinct or shared molecular etiologies.

Admittedly, disentangling genetic and environmental hetero-
geneity of asthma is difficult because (i) sample size diminishes quickly
in the process of subdividing asthma cases into subgroups; and (ii)
asthma-associated polymorphisms tend to have small effect sizes122–125.
Although a subsampling method (see Supplementary Note 1 and
Methods) alleviates these problems to some extent, the detection of
genome-wide significant signals was still restricted to several relatively
large subgroups. Extending our current work in the future, it may be
possible to represent asthma groupings by multi-dimensional, quan-
titative risk scores: genotypic, phenotypic, or both. Advantages are
two-fold: (i) Continuous risk scores would be assigned to asthma cases
instead of binary classifications, allowing the samples to be usedmore
effectively and thus providing gains in statistical power, while the
central challenge in this regard is how to best incorporate into these
analyses the collection of SNPs and genes, and; (ii) Such scores could
predict one’s asthma subgroup before the actual onset of the score-
predicted comorbidities, and so could lead to a better understanding
of their endotype at an earlier age. Another possible extension of our
current approach is to allow the intake of dynamic data about disease
trajectories or progressions. This extension will likely be valuable,
considering that previous studies have shown that the exact timing of
specific environmental exposures during critical developmental win-
dows could influence risk trajectories that ultimately trigger asthma126,
and only the exposures occurring in early life may leave observable
signatures127. To this end, longitudinal data with a reasonably long
period of coverage will be required.

Methods
All relevant ethical regulations have been followed. This study was
approved by the University of Chicago Institutional Review Board, and
informed consent was obtained from all research subjects to the work
involving transcriptome data of BECs. The study design and conduct
complied with all relevant regulations regarding the use of human
study participants and was conducted in accordance with the criteria
set by the Declaration of Helsinki.

The US MarketScan Commercial database and topic modeling
for asthma subgroup identification
The US MarketScan databases, owned by IBM Watson Health, are a
suite of administrative claims-based databases that include inpatient
and outpatient claims, medical procedure claims, prescription claims,
clinical utilization records, and healthcare expenditures. These data
were collected from employers, managed care organizations, health
plan providers, and state Medicaid agencies. The covered patient
population is mainly composed of relatively more affluent, privately-
insured segments of US society37,128. Distinct strengths that lie in the
MarketScan databases include: (i) comprehensive and high-quality
coding of diagnoses, procedures, and drug prescriptions, (ii) large
collection of samples that cover over half of the US population, (iii)
longitudinal tracking at the individual level, and (iv) full integration of
inpatient and outpatient care events, emergency care services and
outpatient pharmaceutical data. More than 900 peer-reviewed
research articles have been published since the launch of these data-
bases in 1995, and the number of related publications has increased
even more rapidly in recent years129,130.

In order to identify asthma subgroups in this study, we used one
of the US MarketScan databases—the US MarketScan Commercial
Claims and Encounters database (US MarketScan data). The US Mar-
ketScan data contain the US country-scale collection of diagnosis
records for over 151 million unique individuals who were enrolled in
the database during the years between 2003 and 2013. We selected
those individuals who were aged between 15 and 70, and carried an
asthma code with at least one comorbid disease (in addition to
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asthma). Here, we used 493.00–493.99 (for ICD-9-CM) and
J45.0–J45.998 (for ICD-10-CM) as asthma codes. The resulting popu-
lation was 6,048,247, and we used their diagnosis records to identify
comorbidity-based asthma subgroups. Asthma classification based on
diagnosis records was pursued using a topic modeling approach, by
analogy with Word documents.

In topic modeling, a document can be viewed as a mixture of
topics, where a topic is defined as a distribution over a fixed vocabu-
lary, then a topic model describes a probabilistic generative process
for the document in two stages: first, to specify the topic proportions,
and second, for the generationof eachword in thedocument, to assign
a topic according to its specified proportion and draw a word from the
corresponding distribution28–33.

On the basis of our diagnosis records consisting of International
Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) codes,
we only took into account unique ICD codes per day (only keeping
unique ICD codes on each day) and then grouped these ICD codes into
567 major groups of disease diagnoses on the basis of their clinical
manifestations38,39. These 567 disease groups constituted the basic
“vocabulary”, which all the records were built on. An asthma subgroup
can be analogously defined as a distribution of diseases (other than
asthma) that reflects an existing common comorbidity pattern among
asthma patients.

After terminology conversion from “document–topic–word” to
“diagnosis record–asthma subgroup–diagnosis”, the probabilistic
generative process for a diagnosis record (equivalent to a word
document in document modeling) also involves two stages: first, to
assign subgroup proportions, and second, for the generation of each
diagnosis in the record, to choose a subgroup (equivalent to a topic)
and to draw a diagnosis (equivalent to a word) within accordingly. In
reality, we are dealing with a statistical inference problem: only diag-
nosis records canbeobserved, and the goal is to extract theunderlying
subgroups that are most likely to have generated these data. For this
purpose, a Hierarchical Dirichlet Process (HDP) model35 was applied,
and its C++ implementation is publicly available at the Github reposi-
tory at https://github.com/blei-lab/hdp36. We set the hyperparameter
“max_iter” (maximal number of iterations) to be 500, which is large
enough for themodeling process to converge (based on our initial test
runs). Supplementary Fig. 4a shows its basic design: Shaded and
unshaded nodes indicate observed and latent variables, respectively;
Arrows denote conditional dependencies between variables, and plate
notations are used to illustrate repeated sampling steps. For example,
the inner plate over Zd,n and Wd,n denotes the repeated sampling of
asthma subgroup assignments and diagnoses until Nd diagnoses are
generated for diagnosis recordd. The plate overΘd,k demonstrates the
repeated sampling of a distribution over subgroups for each diagnosis
record d for a collection of D records, and the plate surrounding Φk,n

illustrates the sampling of diagnosis distributions for each subgroup k
until the total number K is reached. Hyperparameters α and β define
the HDPs which are the distributions over a set of random probability
measures over Θd,k and Φk,n, respectively. Therefore, given the
observedWd,n, statistical inference aims to estimateΘd,k andΦk,n

34. A
nonparametric Bayesian approach was implemented to infer these
parameters, and the optimal number of subgroups can alsobe learnt in
the process instead of being fixed a priori.

In our implementation of HDP modeling (see the flowchart in
Fig. 1a), we randomly selectedonemillion out of the sixmillion records
of asthma patients as input each time, and repeated the HDPmodeling
process 100 times, gathering a large collection of clusters. Some
clusters had similar profiles, while others did not (partially due to the
stochastic nature of HDP modeling). We measured the inter-cluster
dissimilarity by Jensen-Shannondivergence and considering all the 567
disease dimensions, and applied HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise)40–42, discovering
22 stable subgroups of recurring clusters as well as their hierarchies. A

subgroup was deemed to be stable if it harbored more than 50 cluster
points. The number of cluster points enclosed in these 22 subgroups
are 103, 103, 112, 93, 93, 125, 70, 87, 65, 104, 126, 67, 78, 79, 98, 107, 56,
74, 142, 68, 182, and 100, respectively. In particular, if we only look at
the eleven subgroups that can be replicated in other cohort settings,
their number of belonging cluster points are 103, 93, 125, 70, 126, 78,
79, 98, 56, 74, and 100, respectively.We understood that the threshold
number of cluster points for claiming a stable subgroup was an
important hyperparameter. Therefore, at the very beginning, we tes-
ted different numbers, for example, 25, 50, and 100, yielding 29, 22,
and two subgroup partitions, respectively. We found that 50 was the
optimal thresholdnumber, leading to the 22 subgroups that suggested
a reasonable nosology, as judged by physicians in our team. While the
comorbidity patterns seen in the 29 subgroups (if the threshold
number of cluster points for claiming a stable subgroup is set to be 25)
appeared to be scattered and trivial, and the comorbidity patterns
seen in the two subgroups (if the threshold number of cluster points
for claiming a stable subgroup is set to be 100) would be too coarse.
We additionally justified the hyperparameter selection of 50 cluster
points using the elbow method. In detail, we tried different threshold
numbersof cluster points for claiming a stable subgroup, and compute
their mean stability scores41 of all the resulting subgroups after spe-
cifying a threshold number. We then plot these mean stability scores
against the threshold numbers of cluster points (see Supplementary
Fig. 1a). The location in the plot at which the increase of the mean
stability scores switches from fast to slow (the elbow location) is
regarded as the indicator of the optimal threshold number. In this
work, the optimal number is 50 (indicated by a dashed line in the plot).

The occurring frequency of a given disease in the subgroup canbe
precisely quantified by the median value as well as the minimum, the
first quartile, the third quartile, and maximum of the frequency values
of the disease in the enclosed clusters collectively (see Supplementary
Data 1 for the subgroup profiles in detail). Just for visualization pur-
poses, we show the t-SNE two-dimensional projection of the identified
asthma subgroups in Supplementary Fig. 1b.

Furthermore, we examined the sensitivity of modeling results
towards four different cohort settings, including (i) the 3,152,519
individuals in the US MarketScan data who were aged between 15 and
70, but carried at least two asthma codes (as opposed to one asthma
code used in the original configuration), (ii) the 3,401,250 individuals
in the US MarketScan data who carried at least one asthma code, but
were aged between 40 (as opposed to 15 used in the original config-
uration) and 70, (iii) the 3,687,965 individuals in the US MarketScan
data who not only were aged between 15 and 70 and carried at least
one asthma code, but also had at least one type of asthma drug pre-
scriptions (the asthma drug prescriptions that are documented in the
database include antibody inhibitor, inhaled corticosteroids, inhaled
steroid combinations with long-acting beta agonists, leukotriene
modifiers, mast cell stabilizers, methylxanthines, short-acting inhaled
beta-2 agonists, and systemic corticosteroids), and (iv) the 66,448
individuals enrolled in UK Biobank who carried at least one asthma
code and were aged between 39 and 72. Note that UK Biobank, dif-
ferent from MarketScan’s administrative claims-based database, is a
national health registry dataset andmore skewed towards anolder and
white-ancestry population (see Table 1 and Supplementary Table 4 for
comparison details). By repeating the exact same procedure as
described above (see the flowchart in Fig. 1a), we successfully repli-
cated 21, 20, 22, and eleven subgroups, respectively, out of the original
22 (see Supplementary Data 2–5 for the subgroup profiles). In order to
assess whether any of the subgroups generated based on the cohorts
for sensitivity analyses can be claimed as successful replications of the
subgroups discovered based on the discovery cohort, we computed
their Pearson’s correlations based on themedian frequency profiles of
comorbid diseases in the respective subgroups. We only claim a suc-
cessful replication if the respective correlation is determined to be
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significant. The common set of the successful replications of the dis-
covered subgroups using all four different cohort settings comprised
eleven subgroups (see Supplementary Table 2), and we specifically
termed them “asthma subgroups”. For easier reference, each asthma
subgroup is named after the broader category to which several most
frequently-occurring diseases belonged, although it is the distribution
of 567 disease groups that completely define the subgroup (see Sup-
plementary Fig. 1c). As a summary, we analyzed independent large
asthma cohorts and found that the identified asthma subgroups were
largely consistent. Using the two largest datasets, US Marketscan and
UK Biobank, we identified eleven stable topics/subgroups. Note that
we aimed at arriving a not necessarily exhaustive but necessarily stable
set of topics/subgroups across at least two datasets.

In next, considering that databases, such as US MarketScan used
here, contain diagnosis information about individuals in different
abundance and for different durations, we wanted to examine the
extent to which the discovered subgroups were proxies of diagnosis
code counts or observation times, or in other words, to find out
whether the eleven subgroups end up with similar diagnosis counts
and observation times. Therefore, we reported the summary statistics
of individuals’ diagnosis code counts in each of the eleven subgroups
and all of them combined based on US MarketScan data (see Supple-
mentary Table 11 for their minimum, the first quartile, the median, the
mean, the third quartile, and maximum values). Given the individuals’
diagnosis code counts of any two subgroups or all the eleven sub-
groups combined, we can assess their distribution similarity by esti-
mating the overlapping area of their kernel density estimations131. In
total, we examined66 comparisonsof subgrouppairs by exhausting all
the possible pair combinations of the eleven asthma subgroups and all
of them combined, i.e., 12

2

� �
=66 (see Supplementary Table 12). The

distribution similarity metric is equal to 1 for two identical distribu-
tions and 0 for two completely dissimilar ones. We found that the
median and mean similarity values were 0.731 and 0.714, respectively.
In addition, we compared enrollment patterns (visibility of patients in
claims) of patients in all putative asthma subgroups and them com-
bined. We computed (a) the total enrollment time (the duration when
an individual stays enrolled) and (b) total diagnosis recording time (the
duration from the time of the individual’s first diagnosis record to the
timeof the last diagnosis record). Supplementary Table 13 summarizes
the summary statistics of these duration values in a subgroup-specific
manner, and Supplementary Table 14 reports their distribution simi-
larity values for any two subgroup (or all the eleven subgroups com-
bined) pairs out of 66 possible comparisons. The results show that
distributions of observation times across subgroups (or combined
subgroups) are very similar: (a) for the enrollment durations, the
median and mean similarity values are 0.820 and 0.814, respectively;
(b) for the recording durations, themedian andmean similarity values
are even higher, 0.835 and 0.840, respectively. Altogether, these large
similarity values suggest that there exists no systemic difference
between subgroups and between single subgroups and combined
subgroups in terms of diagnosis code counts or observation times. In
rare cases, “GI” and “Lymphoma” subgroups have relatively low simi-
larity value (0.4119) in the distribution comparison of their code
counts, but still the similarity between the distributions of their
enrollment or recording durations is high (~0.7).

Lastly, in order to check whether subgroup assignment to indi-
viduals solely depended on the single, most frequently occurring dis-
ease or not, we computed two types of assignment fraction values
based on the diagnosis records of asthma patients. Taking the “Psy-
chiatric” subgroup (the most frequently occurring disease is “Depres-
sion”) as an example, we computed (i) the fraction of patients who are
in the “Psychiatric” subgroup indeed carry the “Depression” code, and
(ii) the fraction of patients who carry the “Depression” code are
eventually assigned to the “Psychiatric” subgroup. As a result, for
the “Psychiatric” subgroup, the fraction i is 0.902, indicating a large

majority of patients in the subgroup do carry the top code (interest-
ingly, the remaining 10% of patients do not have to carry the top code
in order to be assigned to the subgroup). The fraction ii is as low as
0.208, suggesting that having the top code alone is far from guaran-
teeing one to be assigned to the respective subgroup and other codes
as well as their occurring frequencies play a role in such subgroup
assignment process. Similar phenomena can also be observed in the
other ten subgroups (Supplementary Table 15).

Asthma subgroup assignment
After stable asthma subgroups are identified, the next task is to find an
appropriate subgroup label for each individual that can best describe
her/his comorbidity pattern, and to do this assignment for both asth-
matic and non-asthmatic individuals. In fact, we purposely intended to
use the subgroups discovered in asthma patients to classify non-
asthma patients as well, so that we could compare asthma and non-
asthma individualswho fell into the same subgroup (or in other words,
shared the same comorbidity pattern), for example, in genome-wide
association analysis.

From the perspective of matrix factorization, the statistical
inference process described in Methods above can be expressed as
finding a low-dimensional representation for the record-diagnosis
(document-word) co-occurrence matrix of Wd,n by decomposing it
into thematrix of subgroup (topic) proportionsΘd,k and thematrix of
subgroups (topics)Φk,n (see Supplementary Fig. 4b, and its notations
are the same as those used in Supplementary Fig. 4a). Given Wd,n

(observed) and Φk,n (identified by HDP modeling), we can estimate
Θd,k by minimizing the least-square errors between the left- and right-
hand sides of the equation. Finally, we labeled the individuald with the
subgroup of which the respective proportion value was the highest
among Θd,1, � � � ,Θd,k

� �
. In other words, given the distribution of

diagnosis counts shown in an individual’s record, we tried to express it
as a linear combination of the distributions of diagnosis counts as
defined in the asthma subgroups, and then suggested that the sub-
group with the largest assigned coefficient could represent the indi-
vidual’s record best. It is worth emphasizing that the subgroup
assignment accounts for (i) not a few dominant diseases in one’s
diagnosis record but the complete collection of diseases therein, and
(ii) not just the diseases’ presence but their frequencies of appearance
in records.

This subgroup assignment process was applied to all the partici-
pating cohorts prior to the analyses of genome-wide associations,
replications, differential gene expression, and phenotypic associations
(see Supplementary Fig. 5 for the allocations of these cohorts to the
asthma subgroups).

UK Biobank (UKB) database and GWAS
The UKB database is a National Health Service registry database in the
United Kingdom, including around 500,000 participants who were
aged 40–69 years and recruited between 2006 and 201045. This data-
basewasmainly used to find genotypes andphenotypes that appear to
be significantly different between asthma cases and non-asthma con-
trols in each of the eleven asthma subgroups that have been identified
using the US MarketScan data. We selected the individuals who had
diagnosis records plus genotype and/or phenotype data available.
Diagnosis records were retrieved from both self-reports and medical
assessments during regular visits, and this information was used in
assigning participants to the identified asthma subgroups.

First of all, we checked whether there was some skew towards
certain ancestry admixture for the eleven different asthma subgroups
by examining the first (PC1) and the second (PC2) genetic principal
components. We report the summary of PC1 and PC2 in the asthma
case and non-asthma control pair in each of the eleven subgroups.
Supplementary Table 10 summarizes the minimum, the first quartile,
themedian value, themean value, the thirdquartile, and themaximum
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of PC1 and of PC2. Given the PC1 or PC2 values of two subgroups
(either case or control), we can assess their distribution similarity by
estimating the overlapping area of their kernel density estimations131.
In total, we examine 231 comparisons of subgroup pairs by exhausting
all the possible pair combinations of the 22 subgroups that include the
eleven case subgroups and the eleven respective control subgroups,
i.e., 0ex222ð Þ= 231. The distribution similarity metric is equal to 1 for
two identical distributions and 0 for two completely dissimilar ones.
For PC1, the minimum, the first quartile, the median value, the mean
value, the third quartile, and themaximum similarity values are as high
as 0.874, 0.918, 0.947, 0.940, 0.962, and 0.980, respectively. For PC2,
the minimum, the first quartile, the median value, the mean value, the
third quartile, and the maximum similarity values are also very high,
0.848, 0.925, 0.943, 0.940, 0.958, and 0.985, respectively. These
results suggest that none of the eleven asthma subgroups are enriched
due to a particular ancestry admixture.

Within each subgroup, association analyses were performed to
discover asthma-associated genetic variants and various phenotypes
(see Methods “Associating with health-related phenotypes based on
UKB phenotypic data”). In UKB, a total of around 96 million genetic
variants, including genotyped and imputed variants, were eligible for
genome-wide association analysis45. We chose the unrelated partici-
pants within the white British ancestry subset who were paired with
high-quality genotype data and diagnosis records for the analysis, and
the sample size was 305,098 (including 44,383 asthma cases who also
had at least one comorbid disease). Furthermore, we imposed the
following quality control thresholds: SNP call rate >0.95, minor allele
frequency >0.01 and Hardy–Weinberg equilibrium p > 10−6.

We used a logistic-regressionmodel to test statistical associations
between additive SNP effects (i.e., 0, 1, 2 allele dosage coding) and
asthma46, within the group of individuals with any comorbid diseases
(the any-CDs group) or within each of the identified subgroups. It is
worth noting that the asthma cases were always compared against the
corresponding non-asthma controls that shared the same comorbidity
pattern as defined in the respective subgroup. The covariates include
sex, age of enrollment, and the first ten genetic principal components.

We considered an association to be suggestive and worthy of
further investigation if its p < 10−5, and to be genome-wide significant if
its p < 5 × 10−8132. The lead SNPs that met the suggestive threshold were
subject to further statistical test on whether their effects were indeed
significantly stronger than those found in the any-CDs group (see
Methods “Stronger risk loci identification using a subsampling
method”). Importantly, we identified 103 genome-wide significant loci
in the any-CDs group and 20 in asthma subgroups (14 loci overlapped
or 109 loci in union). To control the false discovery rate (FDR), we
subjected all the GWAS results out of the twelve GWASs (in eleven
subgroups and in a general asthma population) to multiple testing
corrections using the Benjamini–Hochberg procedure. All the
genome-wide significant loci we reported in Supplementary Data 7
were still significant after multiple testing corrections, with all FDR
values <0.001. Out of these loci identified in any-CDs group and in
asthma subgroups, 49 and 10 loci, respectively, were reproducible in a
follow-up multi-ancestry meta-analysis across two different ethnicity
subsets of UKBiobank, BioVU, andBBJ. In particular, therewere six loci
that conferred asthma risk to one asthma subgroup only but not to
others (see Methods for technical details, Supplementary Table 1 for
summary statistics, and Supplementary Fig. 2 for selected GWAS
plots). We also checked whether our identified risk loci were in linkage
disequilibrium (LD) with any previously reported loci in the NHGRI-EBI
GWAS catalog database47, and only claimed a novel finding if the LD
measured by r2 was smaller than 0.05 (based on 1000 Genomes
reference panel that is specific to British in England and Scotland). As a
result, 18 out of the 109 identified loci were novel, including five
subgroup-specific ones (see Supplementary Data 7).

In addition, we assessed the heterogeneity of per-locus effect
sizes, i.e., ln(OR) estimates, across all subgroups by applyingCochran’s
Q test48. As a result, nine out of the 109 identified loci showed evidence
of significant heterogeneity in effect sizes across asthma subgroups
(see Supplementary Data 6).

Replicating genome-wide significant associations in multi-
ancestry meta-analysis
To replicate the genome-wide significant associations discovered
using the white British subset in UKB, we leveraged another four
independent cohorts. Two were taken from other ethnic subsets in
UKB, and specifically, we selected the unrelated individuals with high-
quality genotyping: (i) 22,600 individuals of white Irish and any other
white background (including 3186 asthma cases who also had at least
one comorbid disease), and (ii) 6833 individuals of African, Caribbean
and any other black background (including 998 asthma cases who also
had at least one comorbid disease).

As for the third cohort, we introduced another database—BioVU, a
de-identified DNA databank from the Vanderbilt University Medical
Center54. DNA samples were collected from routine clinical testing that
would otherwise be discarded, and were linked to phenotypic data
derived from electronic medical records (EMR) system. The clinical
information in EMRs is updated every 1–3 months. The DNA samples
underwent genome-wide genotyping with arrays including the Multi-
Ethnic Global array, and then genotypes were imputed according to
theHRC reference panel133 using theMichigan imputation server134. For
replication analysis, we selected 16,060 individuals of European des-
cent (determined by principal component analysis), which included
1,668 asthma cases with at least one comorbid disease.

The fourth cohort was the East Asian ethnic group from BBJ
project, which was launched in 2003 to implement personalized
medicine and is being conducted in three 5-year periods. The BBJ is a
patient-based registry of around 200,000 participants who are of
East Asian descent and diagnosed with any of 47 target common
diseases. These target diseases, covering 15 broad categories, were
selected owing to their clinical importance related to morbidity or
mortality in Japan. Through the cooperation of 12 medical institutes,
consisting of 66 hospitals, clinical information was collected and
DNA samples were sequenced for genomic analyses58. Details about
genotyping and imputation can be found in reference56. Previous
analyses and comparisons against other Japanese databases using
BBJ revealed largely consistent trends in common clinical variables,
indicating that BBJ can represent the general patient population in
Japan57. For the replication analysis, we selected a total of 194,413
individuals who had both diagnostic records and high-quality geno-
typing data, in which there were 3,368 asthma patients with at least
one comorbid disease.

Based on these four independent cohorts, we performed a multi-
ancestry meta-analysis in the following three steps. First, as described
inMethods “Asthma subgroup assignment”, we assigned asthma cases
and non-asthma controls to the identified asthma comorbidity sub-
groups (see Supplementary Fig. 5 for the numbers of allocated cases
and controls). Second, focusing one cohort at a time, we conducted a
multivariate logistic-regression analysis using sex, age, and the first ten
genetic principal components as covariates, except for BioVU data, in
which the covariates included sex, age, the first three genetic principal
components of ancestry, and genotyping array type/batch. In the case
of BBJ, several target SNPs were neither genotyped nor imputed, we
used the SNPs in the highest LD with respect to the target SNPs if
available (LD measured by r2, according to 1000 Genomes East Asian
reference panel, March 2012 release; see Supplementary Fig. 3 for
details). The final step was to merge these individual summary statis-
tics, and we performed a meta-analysis by assuming a fixed effects
model with inverse variance weighting49–51. The merged effect size can
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be calculated as the weighted average of all individual effect sizes:

β̂F =
w1β̂1 +w2β̂2 +w3β̂3 +w4β̂4

w1 +w2 +w3 +w4

ð1Þ

and the merged variance is

var β̂F

� �
=

1
w1 +w2 +w3 +w4

ð2Þ

where β̂1, β̂2, β̂3, and β̂4 are effect sizes (i.e., logarithm of odds ratios)
using the white Irish and black subsets of UKB, the European-descent
subset of BioVU, and the East Asian group of BBJ, respectively;w1, w2,
w3, and w4 are their associated weights (i.e., the reciprocal of the
respective squared standard errors)52,53. Since an association replicates
only if the sign of effect sizes matches between the discovery and
replication analyses, we used a one-sided p value to test replication,
with an expected association direction based on the discovery
analysis135,136. Out of the 128 discovered associations (involving 109
independent loci), 127 associations (involving 108 loci) were eligible
for replication, and the only one exceptionwasdue to the small sample
size (i.e., none of the four cohorts had more than 100 asthma cases
allocated to the subgroup). After controlling the FDR using
Benjamini–Hochberg procedure137,138, we successfully replicated 61
associations (involving 52 loci, FDR <0.10). The detailed results are
summarized in Supplementary Data 7. Among the 61 associations that
were successfully replicated at an overall meta-analysis FDR of 0.1,
there are ten associations that have FDR values right around 0.05
(from 0.05 to 0.06) and another ten associations that have FDR values
greater than 0.06. By carefully examining these 20 replication results
for which FDR values fall between 0.05 and 0.1, we find different
degrees of inconsistency in the direction of SNP effects found in the
four replication cohorts: Compared to the effect direction found in the
discovery cohort (UKB British white group), there are one, three, six,
and one replication showing effects of opposite directions inUKB Irish
and other white groups; UKB African, Caribbean, and other black
group; BioVU European-descent group; and BBJ (only nine out of 20
associations have enough samples for replication attempts in the first
place), respectively. Such inconsistency in effect directions would be
greater for the other 66 associations that were not replicated
(FDR >0.1), particularly in the UKB black and BioVU groups which
show 34 and 26 cases with inconsistent directions, respectively.

Differential gene expression analysis
Wewanted to test for differential expression of the genes to which the
six subgroup-specific SNPs were mapped. Thus, we introduced an
independent dataset, containing transcriptome profiles of bronchial
epithelial cells (BECs) in 42 asthma cases and 28 non-asthma controls
enrolled in the University of Chicago hospitals19. The involved cDNA
libraries were constructed using the TruSeq RNA Sample Preparation
v2 Guide (Illumina) and run on the Illumina HiSEquation 2000 plat-
form. Reads were mapped to the transcriptome using BWA (Burrows-
Wheeler Aligner)139. BEDTools was used to determine the sequences
that would overlap with protein-coding regions140. The mapped reads
per individual ranged from 10,100,000 to 51,150,000, with median
value to be 19,210,000. The reads were adjusted for gene length and
variation in sample read depth, and then normalized using upper
quartile normalization.

Using diagnosis history information, we first assigned the 42
asthma patients to the five subgroups that the six SNPs (meeting
genome-wide significance threshold) related to. Only two subgroups
involving three SNPs had five or more individuals: subgroup 5 “Mus-
culoskeletal” had five cases and subgroup 3 “GI” had seven cases. The
three SNPs, including rs11144271, rs113757163, and rs2249851, closest to
genesOSTF1,COX10, and FAM129B, respectively, whichwere subject to

differential gene expression analysis. Two types of control groups
were compared against: (i) the 28 non-asthmatic individuals, and (ii)
the remaining asthma cases that were assigned to the subgroups other
than the one to be tested.

In this analysis, we first normalized the raw gene transcript counts
by size factors to account for sequencing depth differences, estimated
gene-wise dispersions, and then modeled the counts using a general-
ized linear model of the negative binomial family60. The confounding
factors considered in the model included age, sex, and ethnicity. The
significance of the test associations between gene counts and asthma
subgroups were determined using the two-sided Wald test. In sub-
group 11 (joint disorder), OSTF1 was significantly lower expressed,
while COX10 was higher expressed, if compared with the respective
expression levels in controls (i) and (ii). In subgroup 3 “GI,”
the expression of FAM129B was significantly higher than those in the
controls (Fig. 3c).

Associating with health-related phenotypes based on UKB phe-
notypic data
To examine heterogeneity in phenotypic associations across the
asthma subgroups, we made use of the phenotypic data in the UKB
resource45 by focusing on a collection of 140 phenotypes that mea-
sured ten general categories related to health, including spirometry,
blood count, bloodbiochemistry, urine biochemistry, early life factors,
anthropometry, addictions, diet, physical activity, and local environ-
ment. Spirometry, in particular, includes pulmonary function mea-
sures on FVC, FEV1, FEV1/FVC, and PEF. After computing their
respective predicted values using the prediction equations for Cau-
casian male and female adults developed from the third US National
Health and Nutrition Examination Survey141, we further derived their
percentage predicted values by normalizing the measured against the
predicted values. Finally, min-max normalization was applied to all the
phenotypicmeasures, so that their values all varied from0 to 1 and the
slope estimates of their associations could be compared to eachother.

This analysis was based on the same samples as used in GWAS
discovery, i.e., the unrelated individuals who had diagnosis records
available and were in the white British ethnic group of UKB, including
about 44,383 asthma cases and 260,715 non-asthma controls. The
analysis consists of four steps:
(1) Find appropriate subgroup assignment for all the samples,with or

without asthma.
(2) In a given subgroup i, pick a phenotypic measure and associate it

with asthma diagnosis (yes or no) in a multivariate logistic-
regression analysis using sex, age of enrollment, and the first ten
genetic principal components as covariates (height is also
included, if the phenotypic measure relates to spirometry). The
resulting slope estimate of the phenotype (βi) characterizes how
asthma likelihood associates with the phenotype: a positive (or
negative) value indicates a positive (or negative) association;
greater the absolute value is, stronger the association is.

(3) Repeat step 2 for all the 140 phenotypic measures and for all the
eleven asthma subgroups as well as the any-CDs group. The false
discovery rate was controlled via Benjamini–Hochberg
procedure137,138. Particularly, the slope (β0) from the any-CDs
group would serve as a benchmark value to be used in the next
step. The detailed results generated in this step can be found in
Supplementary Data 11 (the raw slope estimates before bench-
marking against any-CDs group).

(4) Estimate the deviation of βi from β0 and test its statistical sig-
nificance, allowing for a quantitative assessment of heterogeneity
in βi across different subgroups by comparing to the common
benchmark β0. To this end, we implemented a multivariate
adaptive shrinkage (mash)method, which took the βi estimates as
well as their standard errors as inputs and adopted an empirical
Bayes procedure63. Out of the 140 phenotypes, 44 showed
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significant heterogeneity in βi across asthma subgroups. The final
results are summarized in Fig. 4, Supplementary Fig. 7, and Sup-
plementary Data 12 (the estimates of the slope differences after
benchmarking against any-CDs group).

Stronger risk loci identification using a subsampling method
Here, we asked among the asthmaassociations found in the subgroups
that had passed the suggestive threshold (p < 10−5), howmany of them
were indeed significantly stronger than those found in the any-CDs
group. To make a fair comparison of GWAS statistics, however, we
needed to equate their statistical detection powers first.

As statistical power is largely influenced by sample size, detecting
an association within an asthma subgroup, which is a subset of the
undivided general population, is relatively less powered. This can be
demonstrated using the mathematical formula for Z score, written as
below:

Z =
β̂
σ̂β̂

=
β̂

σ̂=
ffiffiffi
n

p ð3Þ

where β̂ is a SNP effect size (i.e., the logarithm of the odds ratio), σ̂β̂ is
the standard error, and σ̂ is the sample standard deviation. n denotes
(effective) sample size and can be approximated via 1= 1

ncase
+ 1

nctrl

� �
,

where ncase and nctrl are the numbers of asthma cases and non-asthma
controls, respectively. Here, Z score is preferred over p value, in order
to encodenot only the significance level (reflectedby themagnitudeof
Z score) but also the direction of SNP effect (reflected by the sign).
Detecting a SNP-asthma association, although its actual β̂ and σ̂ remain
unchanged, would yield different Z scores if cohorts with different
sample sizes n were used. Therefore, for an association in the any-CDs
group (based on the general population who may have any comorbid
diseases, ng

case cases and ng
ctrl controls), we should re-estimate what its

Zg score would have been if it had been based on the cases and
controls of the same sizes (ns

case and ns
ctrl , respectively) as a subgroup

had (we called it the projected Zg here), in order to make a fair
comparison against the subgroup-based Zs score.

In this analysis, we inferred the projected Zg empirically using a
stratified subsampling algorithm. From each subgroup of cases (or
controls), we randomly drew a number of samples, and this number
was proportional to the original size of the cases’ (or controls’) sub-
group; the total number of cases (or controls) we drew from all the
subgroups should equal to ns

case (or n
s
ctrl). In other words, the original

ng
case and ng

ctrl seen in the any-CDs group were shrunk to ns
case and ns

ctrl ,
respectively, with their respective compositions of subgroups pro-
portionally unchanged. Then, based on the newly generated sub-
samples, we performed the logistic-regression analysis as described in
Methods “UK Biobank (UKB) database and GWAS” to compute the
empirical estimates of the projected Zg . But thiswas just one empirical
estimate based on one possible set of subsamples. In practice, we
repeated this subsampling process followed by the regression analysis
for 20,000 times, thus generating a collection of 20,000 projected Zg

scores.
Finally, we can test the null hypothesis: the subgroup-based Zs

score followed the same distribution as defined by the projected
scores collected above. Assuming this hypothesis was true, we com-
puted an empirical two-tailed p value, which suggested the probability
of getting the test statistic at least as extreme as Zs. In this manner, we
computed p values for all the possible associations between the lead
SNPs of interest and asthma subgroups. Then we controlled the FDR
andadjusted thep valuesusingBenjamini–Hochbergprocedure137,138. If
an FDR was <0.05, then we would reject the null hypothesis about the
respective association, declaring that in fact the association had an
extremer-than-expected Z score, and was significantly stronger in the
subgroup and in the any-CDs group. Altogether, there were 182

associations of this kind (involving 182 loci) identified (see Supple-
mentary Data 8 for a detailed summary).

Identifying genomic regions that share influences on asthma
First, the 22 autosomes were divided into 1703, approximately inde-
pendent regions based on patterns of LD that were derived from the
European population in 1000 Genomes reference panel142, and on
average each region contained 3054 SNPs. We wanted to know whe-
ther there existed genomic regions that shared asthma-associated
influences (i) between asthma subgroups and the any-CDs group, and
(ii) between the subgroups. For this purpose, by comparing GWAS
summary statistics, we implemented an established hierarchical
Bayesian model to estimate the probability that a genomic region
contained at least one variant that influenced asthma susceptibility in
(i) or (ii)143. More specifically, we performed a scan for genomic
regions, computed a regional Bayes factor that measured the support
for an association in a given genomic region, and inferred the posterior
probability by maximizing a log-likelihood function. At a threshold of
the posterior probability greater than 0.9 (i.e., at an FDR of 0.10), 73
unique genomic regions were identified for the pairs in (i) (Supple-
mentary Data 9), and 21 unique genomic regions for the pairs in (ii)
(Supplementary Data 10 and see Supplementary Fig. 6 for most con-
served genomic regions that were shared by the any-CDs group and at
least four subgroups).

Pathway enrichment analysis based on GWAS summary
statistics
Here, we aimed to find out unique biological pathways that were
enriched in an asthma subgroup-specific manner. In each subgroup,
we selected the lead SNPs that surpassed the suggestive threshold
(p < 10−5), and mapped these SNPs to genes using positional, eQTL,
and chromatin interaction information. In order to find possible
overrepresentation of biological pathways and agreement with
GWAS catalog, these mapped genes were tested against “back-
ground” gene sets obtained from MSigDB (i.e., hallmark gene sets,
positional gene sets, curated gene sets, motif gene sets, computa-
tional gene sets, GO gene sets, oncogenic signatures, and immuno-
logic signatures), WikiPathways (19,283 protein-coding genes), and
GWAS catalog genes. Hypergeometric test was used and the resulting
p values per category (i.e., canonical pathways, GO biological pro-
cesses, and GWAS catalog, separately) were further adjusted via
Benjamini–Hochberg correction144. Finally, we reported significant
findings (Benjamini–Hochberg adjusted p value <0.05) in Supple-
mentary Table 3.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The license of MarketScan databases is available to purchase by Fed-
eral, nonprofit, academic, pharmaceutical, and other researchers.
Access to the data is contingent on completing a data use agreement
and purchasing the needed license. More information about licensing
the MarketScan databases can be found at https://www.ibm.com/us-
en/marketplace/marketscan-research-databases. The phenotypic and
genetic datasets of UK Biobank used in this study are available via the
UK Biobank data access process, and the application for data access
includes six steps and takes 21 weeks on average for the year 2020 (see
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access);
detailed information about the data can be found at http://www.
ukbiobank.ac.uk/scientists-3/genetic-data/ and http://biobank.ctsu.ox.
ac.uk/crystal/label.cgi?id=100314. Access to the phenotypic and
genetic datasets of BioVU can be requested after a study proposal is
received, approved by the BioVU Review Committee and a user
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agreement is signed. More information can be found at https://victr.
vumc.org/how-to-use-biovu/. The transcriptome data of BECs were
deposited in the GEO (https://www.ncbi.nlm.nih.gov/geo/) under
accession GSE201955. The availability of the phenotypic and genetic
datasets of BBJ is described at https://biobankjp.org/english/index.
html, and more information can be found at https://humandbs.
biosciencedbc.jp/en/hum0014-v21. The other data supporting the
findings from this study are available within the manuscript and its
supplementary information. Source data are provided with this paper.

Code availability
The Hierarchical Dirichlet Process modeling was done by using a
publicly available Github repository at https://github.com/blei-lab/
hdp35,36. Genome-wide association analyses were performed using
PLINK software version 2.0, which was downloaded at https://www.
cog-genomics.org/plink/2.0/ and the name of software zip file was
plink2_linux_x86_64_20180107.zip. Statistical analyses and plotting
were done using RStudio version 1.2.5033.
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