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An extracellular exopolysaccharide (slime) is produced by Vibrio cholerae O139 MO10 in response to nutrient
starvation. The presence of this slime layer on the cell surface and its subsequent release have been shown to
be associated with biofilm formation and the change from a normal smooth colony morphology to a rugose one.
An immunoelectron microscopic examination demonstrated that there is an epitope common to the exopo-
lysaccharide antigen of V. cholerae O1 and that of O139 MO10.

Vibrio cholerae is the causative agent of cholera, which in its
most severe form is characterized by profuse diarrhea, vomit-
ing, and muscle cramps. V. cholerae strains have been divided
into two groups, O1 and non-O1, based on their ability to cause
cholera epidemics. To date, there have been seven recorded
pandemics of this severe dehydrating diarrheal disease caused
by V. cholerae strains of serotype O1, and it was therefore
assumed that only this serotype has epidemic potential. The
new serogroup, designated O139 synonym Bengal, is the first
recorded serogroup other than O1 to cause epidemic cholera.
V. cholerae O139 closely resembles V. cholerae O1 biotype El
Tor strains of the seventh pandemic (5, 12, 21, 40). The major
differences between V. cholerae O139 and O1 are the compo-
sition and lengths of the O side chains of the cell wall lipo-
polysaccharide (LPS) and the presence of a capsular polysac-
charide (CPS) in O139 strains that is not found in V. cholerae
O1 strains (7, 15, 20). Serological and genetic studies suggested
that CPS of O139 V. cholerae has the same repeating unit as
the O antigen (8, 39).

V. cholerae strains are natural inhabitants of brackish water
and estuarine systems (6). As a response to nutrient depletion,
copiotrophic (32) heterotrophic bacteria may undergo consid-
erable morphological, physiological, and chemical changes (11,
22, 23, 26, 27, 29). In fact, to survive energy- and nutrient-
deprived conditions, non-spore-forming, heterotrophic bacte-
ria are known to undergo an active adaptation program (29).
Wai et al. (38) reported that V. cholerae O1 TSI-4 can shift to
a rugose colony morphology associated with the expression of
an amorphous exopolysaccharide (EPS) that promotes biofilm
formation, and they also indicated that rugose strains displayed
resistance to osmotic and oxidative stress.

Many microorganisms produce EPSs which are located out-
side the cell wall, either attached to it in the form of capsules
or secreted into the extracellular environment in the form of
slime. Extracellular polysaccharide excretion (slime or cap-
sule) is a common phenomenon for many bacteria following
the exhaustion of the nitrogen supply under otherwise nutri-
ent-sufficient conditions (28). Bacterial cells initiate the pro-
cess of irreversible adhesion by binding to the surface by using
EPSs, glycocalyx polymers, and the development of biofilms. A
biofilm is a functional consortium of microorganisms orga-
nized within an extensive exopolymer matrix comprised mainly

of hydrated polysaccharides (43). Biofilms are produced by a
wide variety of environmentally and medically important mi-
croorganisms, including Staphylococcus, Pseudomonas, Desul-
fovibrio, Thermococcus, and Methanosarcina (4, 9, 10, 18, 35,
36). The production of biofilm may enhance the survival of
cells in dynamic environments by allowing the formation of
colonies containing thousands of cells.

This study demonstrates that V. cholerae O139 MO10 is able
to shift to a phenotype having a rugose colony morphology
associated with the excretion of slime in response to starvation.
This form promotes biofilm formation. Interestingly, the anti-
serum against V. cholerae O1 TSI-4 EPS (38) is reactive with
the slime produced by V. cholerae O139 rugose strains. It may
support the hypothesis that V. cholerae O139 arose from an O1
El Tor strain.

Isolation of the rugose strain of V. cholerae O139 MO10.
V. cholerae O139 opaque encapsulated MO10 (40) was used in
this study. The original isolate of strain MO10 had a smooth
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FIG. 1. Photomicrograph of V. cholerae O139 MO10/SPR (arrow) and
MO10/NSPS (arrow head) colonies. Bacteria were incubated on an L agar plate
at 37°C for 18 h.
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FIG. 2. Thin sections of V. cholerae O139 stained with polycationic ferritin showing a thick, electron-dense slime layer in addition to a thin electron-dense layer of
capsule surrounding MO10/SPR cells (A and B) and no slime layer surrounding MO10/NSPS (C). Bars, 0.5 mm.
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colony morphology. Cells of MO10 were routinely grown at
37°C with shaking or in a static condition in Luria (L) broth
(25). MO10 cells were incubated to mid-log phase, which cor-
responded to an A600 of 0.4. The cells were then harvested by
centrifugation (13,000 3 g for 10 min), washed three times with
cold M9 salts (37), resuspended in starvation medium (M9
salts) to give a final concentration of approximately 5 3 107

cells per ml, and incubated at 4°C without shaking. Strain
MO10 exhibits a shift of colony morphology to the rugose form
under starvation conditions at 2 weeks after inoculation. To
establish the criteria for slime production and rugose colony
morphology, V. cholerae O139 MO10 strains have been classi-
fied as either slime-producing rugose type (MO10/SPR) or
non-slime-producing smooth type (MO10/NSPS). MO10/SPR
grown overnight with shaking in L broth produced MO10/
NSPS colonies at a frequency of 1.5 3 1025. Colony counts for
rugose strains represent the number of particles not the num-
ber of cells (34). This makes the determination of a frequency
of phase variation difficult. Two distinct colony morphologies
are shown in Fig. 1. The larger size of the smooth colonies is
due to the difference of the growth rates of smooth and rugose
colonies. Both colony types were tested for agglutination with
anti-O139 Bengal sera (Denka, Seiken, Co. Ltd., Tokyo, Japan)
and showed positive reactions. The antiserum against V. chol-
erae O1 TSI-4 EPS (38) agglutinated MO10/SPR, whereas it
did not agglutinate MO10/NSPS.

Like the O1 TSI-4 rugose strain (38), V. cholerae MO10/SPR
was much more resistant to osmotic, oxidative, and acidic
stress than MO10/NSPS (data not shown).

Thin-section electron microscopy. To determine the nature
of the colony morphology differences, bacterial pellets were
stained with polycationic ferritin, and thin sections were ob-
served by electron microscopy as described previously (38).
Both strains were surrounded by relatively thin electron-dense
capsule (Fig. 2). Slime materials released by MO10/SPR were
recognized as a heavy, electron-dense ferritin-stained layer
surrounding the cell in addition to a thin electron-dense layer
of capsule (Fig. 2A and B), but MO10/NSPS did not appear to
have this slime layer surrounding its cells (Fig. 2C).

Immunoelectron microscopy. Immunoelectron microscopy
was performed with anti-EPS serum of the rugose form of
V. cholerae O1 TSI-4 as described previously (38). The anti-
serum against V. cholerae O1 TSI-4 EPS (38) was reactive only
with V. cholerae O139 MO10/SPR and not with MO10/NSPS
(Fig. 3A and B). The gold particles were specifically bound to
the slime layer surrounding MO10/SPR cells and at the inter-
cellular spaces (Fig. 3A).

Outer membrane and LPS profiles. The outer membrane
was prepared from a broth culture of V. cholerae O139 MO10/
NSPS or MO10/SPR according to the method of Filip et al.
(13). LPS was prepared from 1 ml of an overnight culture (11).
LPS and outer membrane samples were electrophoresed and
detected by silver staining as previously described (16). No
outer membrane protein or LPS differences between cell types
were detected (data not shown).

Biofilm growth of V. cholerae O139 MO10/SPR and scanning
electron microscopy. V. cholerae O139 MO10/SPR was cul-
tured overnight in L broth at 37°C without shaking. The bio-
films growing on the upper surface of the L broth and on the
wall of a culture tube were sampled and prepared for scanning
electron microscopy as described previously (38). The speci-
mens were examined with a scanning image-observing device
(ASID) equipped with a JEOL JEM 2000EX electron micro-
scope. Figure 4 shows a biofilm examined by scanning electron
microscopy; the surface of the film was completely covered
with a layer of rod cells, rounded cells, and filamentous cells

embedded within a polymeric matrix. Throughout the biofilm,
cells were interconnected by a finger-like glycocalyx matrix that
extended from the substratum to the outer boundaries of the
biofilm. Interestingly, some of the surface of the biofilm was
covered by a twisting long filamentous growth of bacteria.

The rugose form of V. cholerae was first described in 1938 by
Bruce White, who recognized that it might be a survival form
of the organism (42). Rice et al. (33, 34) suggested that the
V. cholerae rugose phenotype represents a fully virulent sur-
vival form of the organism that can persist in the presence of
free chlorine and that this phenotype may limit the usefulness
of chlorination in blocking the endemic and epidemic spread of
cholera. Morris et al. (30) have supported and confirmed that
rugose strains appear to produce an EPS that promotes cell
aggregation and causes human disease. Recently, Wai et al.
(38) reported that V. cholerae O1 TSI-4 can shift to a rugose
colony morphology from its normal translucent colony mor-
phology in response to nutrient starvation. They also observed
that EPS material on the surface of the V. cholerae O1 TSI-4
rugose strain promoted biofilm formation and resistance to the
effects of osmotic and oxidative stress, as in the case of the
O139 rugose strain. These observations suggest that the per-
sistence of this type of setting may, in turn, contribute to the
further spread of the infection in human populations. It is
suggested that an improved understanding of starvation sur-
vival and nongrowth biology is an essential goal in microbiol-

FIG. 3. Immunoelectron micrographs of the surface labeling of V. cholerae
O139 MO10/SPR (A) and MO10/NSPS (B) with antiserum against EPS of
rugose V. cholerae O1 TSI-4. Bars, 0.5 mm.
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FIG. 4. Scanning electron micrographs of biofilm formation by V. cholerae O139 MO10/SPR. (A) Most of the surface has been colonized by rod cells, rounded cells,
and twisting filamentous cells, and finger-like projections of extracellular polymeric material are present. Bar, 1 mm. (B) High magnification shows extracellular poly-
meric materials on the surface of bacterial cells and long twisting filamentous cells. Bar, 1 mm.
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ogy, with far-reaching implications for bacterial physiology and
ecology, as well as for applied bacteriology and biotechnology.

V. cholerae O139 is replacing O1 strains in some areas, and
it has been suggested that the O139 strain may cause the eighth
cholera pandemic (14, 19). V. cholerae O139 Bengal is the
second most common etiologic agent of cholera, and the dis-
ease caused by this organism has now become endemic in the
Indian subcontinent and neighboring countries (1). Prior in-
fection with V. cholerae O1, the traditional causative agent of
cholera, does not cross-protect against infection with V. chol-
erae O139 (2, 3), since the LPS antigens of the two vibrios are
different (15). In addition, unlike V. cholerae O1, V. cholerae
O139 possesses a CPS (20, 21, 39, 41), and it is likely that this
CPS can potentially mask certain critical surface antigens, with
a resulting decrease in the host immune response (31). Effec-
tive vaccines against O1 strains have been developed and are
being tested in field trials (17, 24), and they do not cross-
protect against V. cholerae O139 infection.

To facilitate the development of vaccines effective against
both V. cholerae O1 and O139, many researchers have been
studying the genes encoding O antigen and capsular synthesis
in O1 and O139 strains. In our study, interestingly, antiserum
against the EPS of V. cholerae O1 TSI-4 showed a cross-reac-
tion with EPS materials on the surface of rugose V. cholerae
O139 MO10. We suggest that the study of the genes encoding
the EPS (slime) in V. cholerae O1 and O139 may facilitate the
development of vaccines effective against both V. cholerae O1
and O139.
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