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Abstract

Purpose: We developed a model integrating multimodal quantitative imaging features from
tumor and nontumor regions, qualitative features, and clinical data to improve the risk stratifi-
cation of patients with resectable non-small cell lung cancer (NSCLC).

Approach: We retrospectively analyzed 135 patients [mean age, 69 years (43 to 87, range); 100
male patients and 35 female patients] with NSCLC who underwent upfront surgical resection
between 2008 and 2012. The tumor and peritumoral regions on both preoperative CT and FDG
PET-CT and the vertebral bodies L3 to L5 on FDG PET were segmented to assess the tumor and
bone marrow uptake, respectively. Radiomic features were extracted and combined with clinical and
CT qualitative features. A random survival forest model was developed using the top-performing
features to predict the time to recurrence/progression in the training cohort (n ¼ 101), validated in
the testing cohort (n ¼ 34) using the concordance, and compared with a stage-only model. Patients
were stratified into high- and low-risks of recurrence/progression using Kaplan–Meier analysis.

Results: The model, consisting of stage, three wavelet texture features, and three wavelet first-
order features, achieved a concordance of 0.78 and 0.76 in the training and testing cohorts, respec-
tively, significantly outperforming the baseline stage-only model results of 0.67 (p < 0.005) and
0.60 (p ¼ 0.008), respectively. Patients at high- and low-risks of recurrence/progression were
significantly stratified in both the training (p < 0.005) and the testing (p ¼ 0.03) cohorts.

Conclusions: Our radiomic model, consisting of stage and tumor, peritumoral, and bone marrow
features from CT and FDG PET-CT significantly stratified patients into low- and high-risk of
recurrence/progression.
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1 Introduction

Imaging modalities such as CT and 18F-fluoro-2-deoxy-D-glucose (FDG) PET-CT play
an important role in the diagnosis and staging of lung cancer. Traditional tumor, node, and
metastasis (TNM) staging is currently the gold standard for defining the extent of disease and
for predicting prognosis. However, even when lung cancers are diagnosed early, studies have
shown that 20% to 50% of patients will develop either a local or distant recurrence 5 years
posttreatment.1–3 Therefore, there remains an unmet need to discover biomarkers to identify
patients at a high risk of recurrence that may benefit from more aggressive or personalized
treatment.

Radiomics uses medical images to obtain quantitative imaging features for applications in
diagnosis, treatment selection, and response assessment in cancer patients.4–6 These radiomic
features allow for a noninvasive and comprehensive characterization of tumors. Studies using
radiomics for outcome prediction in non-small cell lung cancer (NSCLC) have mainly focused
on single modality models, with studies demonstrating the utility of both quantitative CT and
FDG PET imaging for predicting recurrence risk, disease-free survival, and overall survival in
NSCLC.7–10 Previous work from our group detailed the prognostic power of tumor and bone
marrow features from FDG PET in predicting recurrence in lung cancer patients. However, this
study only focused on features from FDG PET images and did not include CT features.11 With
promising results established using single modalities, more recent studies have aimed to combine
information from different modalities and areas outside the tumor in an attempt to improve over-
all model performance. Peritumoral regions on CT and FDG PET images have been shown to
have significant prognostic power when it comes to predicting outcomes.11,12 Additionally,
qualitative features that describe the location, geometry, and appearance of the tumor and lung
tissue have also been used to predict outcomes in lung cancer and have been shown to be com-
plementary to radiomic features.9

A study incorporating both tumor and nontumor features from CT and FDG PET, along with
clinical and qualitative features, has not yet been explored. Our study builds on prior work
analyzing the utility of FDG PET tumor, peritumoral, and bone marrow radiomics features for
recurrence prediction. We hypothesize that adding CT radiomic and qualitative features to FDG
PET and clinical features could stratify high-risk NSCLC patients beyond traditional TNM
staging alone.

2 Materials and Methods

2.1 Patient Selection

The dataset used in this study was de-identified and publicly available on The Cancer Imaging
Archive (TCIA).13–15 Local institutional review board approval (IRB) was obtained to conduct
this study.

The study included 136 NSCLC patients from the retrospective NSCLC-radiogenomics
cohort obtained from TCIA previously analyzed by Mattonen et al.11 Each patient was referred
for upfront surgical resection between 2008 and 2012. Patients had preoperative diagnostic CT
and FDG PET-CT scans acquired. Patients were excluded from the study if their diagnostic CT
scan was unavailable (n ¼ 1), which resulted in 135 patients being used in the analysis. A total of
six clinical features were collected and included in the dataset: age, sex, ethnicity, smoking his-
tory, pathological staging [American Joint Committee on Cancer (AJCC) seventh edition], and
tumor histology (adenocarcinoma, squamous cell carcinoma, or non-small cell cancer not oth-
erwise specified). Recurrence or progression was used as our outcome of interest. Recurrence
was defined as local, regional, or distant for curable lung cancer (stages I to IIIA). Progression
was the outcome of interest for patients with incurable lung cancer (stage IIIB or IV).
Additionally, patients received adjuvant treatment based on the standard clinical guidelines.
Time to recurrence/progression was defined as the time between the preoperative diagnostic
CT scan and date of the event or last known follow-up. We used a random number generator
to randomly split the dataset into training (75%, n ¼ 101) and testing (25%, n ¼ 34) cohorts. A
chi-square (χ2) test was used to examine differences in the categorical clinical features (i.e., sex,
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stage, ethnicity, smoking status, histology) between the training and the testing cohorts, and an
independent two-sample t-test was used to assess differences for continuous variables with a
normal distribution (i.e., age).

2.2 Imaging

Preoperative diagnostic CT scans were acquired at one of three medical centers as previously
described.14,15 Images were primarily acquired using one of three GE scanner types: GE
Discovery CT750HD, GE LightSpeed16, or GE LightSpeedVCT (GE Healthcare, Waukesha,
Wisconsin). Preoperative FDG PET-CT scans were acquired using one of four scanners:
Discovery LS PET/CT, Discovery VCT (GE Healthcare, Waukesha, Wisconsin); Biograph
mCT (Siemens Healthcare, Erlangen, Germany); or Allegro/Gemini TF PET/CT (Phillips
Healthcare, Cleveland, Ohio). CT and FDG PET images were generated using similar protocols
at one of three Stanford medical centers. The median time between CT and FDG PET-CT image
acquisition for the patients in the dataset was 18 days. Complete details on the imaging protocols
can be found in the Appendix.

2.3 Region of Interest Delineation

The segmentation was completed for the preoperative CT scans using our threshold-based semi-
automated segmentation algorithm developed in MATLAB R2021B (The MathWorks, Natick,
Massachusetts), which is publicly available on GitHub.16,17 The segmentation algorithm utilizes
Otsu’s thresholding and postprocessing to remove disconnected components, connected struc-
tures (e.g., chest wall or mediastinum), and surrounding vessels (Appendix). A 1 cm three-
dimensional (3D) peritumoral region extending outward from the tumor segmentation but within
the lung was also defined (Fig. 1). All segmentations were performed by a PhD student (J.R.C.)
with 2 years of image analysis experience after training, and visual verification was performed by
a resident in radiology (O.D.) with 5 years of experience.

The tumor volume and bone marrow segmentations on the preoperative FDG PET-CT images
were completed as part of a previous study.11 Vertebral bodies (L3 to L5) were segmented using a
manual threshold tool on the CT portion of the fused FDG PET-CT images to assess bone mar-
row uptake on the FDG PET. Metabolic tumor volume (MTV) segmentations were completed
using a semiautomatic gradient-based method (PET-edge) that is part of commercially available
software (MIM Software; version 6.6, Cleveland, Ohio). In addition to the MTV, a 1 cm 3D
peritumoral region extending outward from the surface of the MTV was generated to sample
the surrounding uptake (Fig. 2). In total, the regions of interest (ROIs) used in the study were the
tumor and peritumoral volumes from the diagnostic CT and the FDG PET-CT, along with the
MTV plus peritumoral region, and bone marrow uptake volumes from the FDG PET-CT.

A randomly chosen subset (n ¼ 33) of images was used to assess the inter- and intra-observer
variability of the CT segmentations. This number was determined using the power analysis
calculation shown by Bujang.18 The intraobserver variability consisted of segmentations per-
formed by a PhD student (J.R.C.) who resegmented the subset of images 6 months after the

Fig. 1 (a) One 1.25 mm slice of a preoperative diagnostic CT image of a patient with NSCLC.
(b) The tumor segmentation is shown in pink, and the peritumoral segmentation is shown in cyan.
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initial segmentations. Interobserver variability was assessed with segmentations performed by
S.A.M, an imaging scientist with 10 years of experience. The segmentation variability was
assessed using reproducibility metrics used to assess the spatial overlap and boundary similar-
ities between segmentations, including the Dice similarity coefficient, mean absolute boundary
deviation, and absolute volume difference between the contours.19 The FDG PET-CT segmen-
tation variability was previously assessed.11,20

2.4 Feature Extraction

An open-source package, Pyradiomics (version 3.0.1), was used to extract 5050 features from
the ROIs on both the CT and FDG PET images.21 Radiomic features were calculated on the
tumor and peritumoral regions on CT and the tumor, peritumoral, tumor plus peritumoral, and
bone marrow regions on FDG PET (Table 1). Features included first-order intensity statistics
(n ¼ 19), shape-based (n ¼ 16), gray level co-occurrence matrix (GLCM) (n ¼ 24), gray level
run length matrix (GLRLM) (n ¼ 16), gray level size zone matrix (GLSZM) (n ¼ 16), neigh-
boring gray-tone difference matrix (NGTDM) (n ¼ 5), and gray level dependence matrix
(GLDM) (n ¼ 14) on both the original and wavelet filtered images. The wavelet transformation
created eight images labeled as LLL, LLH, LHL, LHH, HLL, HLH, HHL, and HHH, where H
and L are the high- and low-frequency filters respectively that are applied on the X, Y, and Z axes
of the volume. Radiomic feature robustness was assessed for the CT segmentations using the
intraclass correlation coefficient (ICC) for the randomly chosen subset of images (n ¼ 33)

Fig. 2 (a) Transaxial and (b) sagittal preoperative diagnostic PET (left) and PET/CT fusion (right)
images of a patient with NSCLC. (a) The metabolic tumor volume (MTV) is shown in pink, and the
peritumoral segmentation is shown in blue. (b) The vertebral bodies L3 to L5 are shown seg-
mented in pink to sample bone marrow uptake. These regions of interest are used to extract the
local, regional, and distant PET imaging features.
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between the three segmentations. Robust features were defined as those with ICCs > 0.8.
Complete feature extraction details can be found in the Appendix. Additionally, 28 qualitative
features describing characteristics from the tumor and lung tissue on the CT image were included
(Table 5). These semantic assessments were assigned by two academic radiologists with exper-
tise in lung cancer imaging as previously described.15

2.5 Feature Selection and Model Development

The extracted radiomics features were standardized using z-score transformation of the training
data prior to model building, and this transformation was applied to the testing dataset. This
transformation was performed to ensure that all features were on a similar scale prior to feature
selection. The extracted features from each region were combined into one feature set. After
standardization, the optimal features for predicting time to recurrence/progression in the training
dataset were determined from the full feature set using the least absolute shrinkage and selection
operator (LASSO) with Python 3.7.4. The regularization parameter (λ), which controls the
strength of the LASSO regression, was selected using 10-fold cross-validation on the training
cohort. The λ that produced the highest concordance index in the training cohort was chosen.
We built and trained a random survival forest (RSF) model (scikit-survival 0.15.0;
RandomSurvivalForest) using these selected features in the training dataset.22 The parameters
of the RSF model were as follows: number of estimators – 1000, maximum depth – 25, minimum
samples per leaf – 25, minimum samples per split – 10. To summarize, feature selection and
model training was performed using the training cohort, and this model was then locked. The
locked model was then evaluated on the unseen testing cohort.

Statistical analysis was conducted using R, version 4.1.0.23 We used the concordance index
as our evaluation metric (survcomp 1.42.0; concordance.index). Kaplan–Meier survival analysis
was performed to separate high- and low-risk groups using the median risk score in the training
cohort. This model was also compared with a baseline clinical model with cancer stage only to
determine its incremental value in predicting time to recurrence/progression in NSCLC patients
(survcomp 1.42.0; cindex.comp). Statistical significance was determined by a p-value
of <0.05.

Table 1 Number of extracted features within each feature category.

Regions of
interest

Radiomic features (n ¼ 5050)

Other
(n ¼ 34)

Shape
(Orig)

Intensity
(Orig and
Wav)

GLCM
(Orig and
Wav)

GLDM
(Orig and
Wav)

GLRLM
(Orig and
Wav)

GLSZM
(Orig and
Wav)

NGTDM
(Orig and
Wav)

CT

Tumor 14 162 216 126 144 144 45

Peritumoral — 162 216 126 144 144 45

Qualitative — — — — — — — 28

PET

MTV 14 162 216 126 144 144 45

Peritumoral — 162 216 126 144 144 45

MTV with peritumoral — 162 216 126 144 144 45

Bone marrow — 162 216 126 144 144 45

Clinical — — — — — — — 6

Orig, Original; Wav, Wavelet; GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix;
GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone
difference matrix

Christie et al.: Predicting recurrence risks in lung cancer patients using multimodal radiomics. . .

Journal of Medical Imaging 066001-5 Nov∕Dec 2022 • Vol. 9(6)



3 Results

3.1 Patient Demographics

Table 2 summarizes the demographics of the 135 patients used in this study. The training cohort
consisted of 101 patients (mean age ± standard deviation, 69� 10 years; 75% male), and the
testing cohort consisted of 34 patients (mean age ± standard deviation, 69� 6 years; 71%
male). The patients in the training and testing cohorts were well-matched for all clinical variables

Table 2 Patient demographics and lesion characteristics.

Training cohort (n = 101) Testing cohort (n ¼ 34) p Value

Mean age [range] 69 [43–87] 69 [56–85] 0.77

Sex 0.59

Men 76 (75%) 24 (71%)

Women 25 (25%) 10 (29%)

Histology 0.74

Adenocarcinoma 80 (79%) 26 (76%)

Squamous cell 19 (19%) 8 (24%)

Not otherwise specified 2 (2%) 0 (0%)

Ethnicity 0.69

Caucasian 75 (74%) 26 (76%)

African American 6 (6%) 0 (0%)

Asian 15 (15%) 6 (18%)

Native Hawaiian/Pacific Islander 2 (2%) 1 (3%)

Hispanic/Latino 3 (3%) 1 (3%)

Smoking status 0.55

Former 66 (65%) 19 (56%)

Current 21 (21%) 8 (23%)

Nonsmoker 14 (14%) 7 (21%)

Pathological stage 0.35

0a 5 (5%) 1 (3%)

I 59 (58%) 19 (56%)

II 16 (16%) 10 (29%)

III 17 (17%) 4 (12%)

IV 4 (4%) 0 (0%)

Recurrence 0.85

Yes 28 (28%) 10 (29%)

No 73 (72%) 24 (71%)

aPathologic stage 0 disease is defined as a carcinoma in situ as per the American Joint Committee on Cancer
(AJCC) seventh edition (7th) staging system.
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as shown in Table 2. The event rate in the training and testing cohorts was 28% and 29% respec-
tively. Overall, the number of patients who experienced an event based on stage was as follows:
33% (2/6) of the stage 0 patients, 16% (13/78) of the stage I patients, 27% (7/26) of
the stage II patients, 57% (12/21) of the stage III patients, and 100% (4/4) of the stage IV
patients. The median time to recurrence/progression was 37 months in the training cohort and
40 months in the testing cohort. The median follow-up time for censored patients without an
event was 46 months in the training cohort and 45 months in the testing cohort.

3.2 Segmentation and Feature Robustness

The Dice similarity coefficient, mean absolute boundary deviation, and absolute volume differ-
ence between the three semiautomatic CT segmentations in the subset of 33 patients are shown in
Table 3. The CT segmentations achieved an average Dice of 0.92, boundary deviation of
0.50 mm, and volume difference of 0.54 mL. Table 4 shows the percentage of robust features
from each feature type. All feature types were found to be robust with >90% of the features in
each type, demonstrating an ICC > 0.8.

3.3 Feature Selection

The regularization strength chosen by 10-fold cross-validation was 0.12. Using this regulariza-
tion strength in the LASSO regression resulted in a total of seven features identified as the
top-performing features in predicting time to recurrence/progression. Six of the top features were
wavelet features with three being texture features [MTV plus peritumoral HHH GLCM maximal
correlation coefficient (MCC), CT tumor LHL GLCM maximum probability, and CT tumor
LHL GLDM large dependence high gray level emphasis) and three being first-order features

Table 3 CT semiautomatic segmentation inter- (1 versus 2) and intraobserver (1A versus 1B)
variability.

Observer
Dice similarity

coefficient (DSC)
Mean absolute boundary
deviation (MAD, mm)

Absolute volume
difference (mL)

1A versus 1B 0.92 (0.09) 0.46 (0.68) 0.61 (2.43)

1A versus 2 0.93 (0.11) 0.38 (0.37) 0.20 (1.42)

1B versus 2 0.90 (0.14) 0.53 (0.83) 0.80 (3.16)

All values represent the mean (standard deviation)

Table 4 Number of robust radiomic features for CT semiautomatic segmentation.

Feature type Total number of features (n ¼ 851) Number (%) of robust features (n ¼ 831)a

Shape 14 13 (93%)

Intensity 162 155 (96%)

GLCM 216 207 (96%)

GLDM 126 124 (98%)

GLRLM 144 143 (99%)

GLSZM 144 144 (100%)

NGTDM 45 45 (100%)

GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length
matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone difference matrix
aRobust features represented with ICC > 0.8
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(CT peritumoral HLH mean, MTV LHH kurtosis, and bone marrow HHL mean). These selected
features were deemed to be robust in the ICC analysis. The remaining feature was the clinical
feature of the cancer stage.

3.4 Radiomic Model Assessment for Recurrence Risk Stratification

The LASSO coefficients for the most predictive seven features are shown in Fig. 3. Stage was
the best predictor of recurrence/progression among the selected features. Five of the remaining
six features had positive coefficients, whereas CT peritumoral HLH first-order mean was the
only selected feature with a negative coefficient. Qualitatively, the high-risk patients had more
heterogenous textures in both the CT and FDG PET tumor and peritumoral regions as well as
the bone marrow compared with the low-risk patients.

The multivariate model was a significant predictor of time-to-event in the training cohort
(Concordance = 0.78 [95% CI: 0.70 to 0.86], p < 0.005). The locked multivariate model was
evaluated on the testing cohort and was shown to be a significant predictor in that cohort
(Concordance = 0.76 [95% CI: 0.59 to 0.87], p < 0.005).

We separated patients into low- and high-risk groups using the median risk score from the
RSF model in the training cohort (risk score of 4.84). Figure 4 shows the Kaplan–Meier time-to-
event curves for the multivariate model. The high- and low- risk groups in both the training and
testing cohorts were found to be significantly different (p < 0.005 and p ¼ 0.03, respectively).
The percentage of patients that had a recurrence at 5 years in the low-risk groups for the training
and testing cohorts were 16% and 19%, respectively, versus the high-risk groups with rates of
46% and 58%, respectively.

3.5 Clinical Model Assessment for Recurrence Risk Stratification and
Model Comparison

The clinical stage-only model achieved a concordance of 0.67 [95% CI: 0.58 to 0.76, p < 0.005]
in the training cohort and, when evaluated on the testing cohort, achieved a concordance of
0.60 [95% CI: 0.48 to 0.74, p ¼ 0.11]. The multivariate radiomic model significantly outper-
formed the clinical stage-only model in the training cohort (0.67 [95% CI: 0.58 to 0.76] versus

Fig. 3 Coefficients for the selected features using LASSO in the training cohort showing the direc-
tionality of the association of each feature in descending order of feature contribution. MTV, met-
abolic tumor volume.
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0.78 [95% CI: 0.70 to 0.86], p < 0.005) and testing cohort (0.60 [95% CI: 0.48 to 0.74] versus
0.76 [95% CI: 0.59 to 0.87], p ¼ 0.008).

4 Discussion

Our study investigated using the combination of local (tumor), regional (peritumoral), and
distant (bone marrow) preoperative CT and FDG PET features with clinical and qualitative
CT features to stratify NSCLC patients into low- and high-risks of recurrence/progression.
A study investigating this combination of features to predict time to recurrence/progression and
stratify patients based on their risk has not yet been presented in the literature. The results of this
study suggest that the cancer stage and radiomic features from tumor and nontumor areas on CT
and FDG PET can significantly stratify NSCLC patients into low- and high-risks of recurrence/
progression. In both the training and testing cohorts, the multimodality radiomic model signifi-
cantly outperformed stage alone. This implies that the radiomic features can augment the cancer
stage, the current clinical gold standard when predicting time to recurrence/progression. We did
not investigate a radiomics-only model as we wanted to determine if radiomics can significantly
improve on the current clinical standard of the cancer stage. Additionally, the ability of the model
to significantly separate patients into low- and high-risks of recurrence/progression demonstrates
the model’s ability to identify patients who may need more aggressive treatment plans.

Most previous radiomics studies have not used more than one imaging modality for outcome
prediction, and those that have only focused on tumor information.24 The features in our multi-
modality radiomic model that were discovered to be important in determining a patient’s risk of
recurrence/progression were found in many regions of interest: tumor and peritumoral regions
on FDG PET and CT, bone marrow on FDG PET, and the clinical feature stage. Our model
outperformed a model presented in the literature using only PET radiomic features on the same
dataset, suggesting that CT provides added value in predicting a patient’s risk of recurrence.11

Stage was the only clinical feature selected as prognostic in our model, despite other clinical
features such as age and smoking status demonstrating prognostic value in the literature.11,25

Qualitative CT features were not chosen as prognostic in our model. This suggests that radiomic
features may better capture these qualitative characterizations of the tumor. Additionally, quali-
tative features are subjective and only consist of limited categories; therefore, they may not cap-
ture the full range of appearances. Most of the selected radiomic features had a coefficient above
zero, indicating that an increase in that feature is associated with an increased risk of recurrence/
progression. With most of these features representing heterogeneity, this suggests that patients
with more heterogeneous textures in their tumor and peritumoral regions are more likely to recur.
For example, the feature MTV plus peritumoral HHH GLCM MCC measures the complexity of
the texture in the MTV region. An increase in this feature, and therefore a more complex texture
found in this region, was found to be associated with a higher risk of recurrence/progression.

Fig. 4 Kaplan–Meier curves for the multivariate model risk scores in the (a) training cohort
(n ¼ 101, p < 0.005) and (b) testing cohort (n ¼ 34, p ¼ 0.034). Patients were stratified using the
median risk score in the training cohort. The shaded regions show the 95% confidence intervals
(CI), and + indicates censored data.
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These results are in line with previous literature that has demonstrated tumor heterogeneity in CT
and PET to be associated with progression and treatment failure.11,26–29

The most common models used in radiomic studies for time-to-event analysis are the Cox
proportional hazards and RSF models. RSF models have been shown to provide comparable
results to Cox models and have been used to predict distant metastases and risk stratify lung
cancer patients.30–32 The RSF hyperparameters used in this study were chosen based on default
parameters used in a previous study using a random forest classification method on the same
dataset.33 Due to the high number of regions of interest and features used in this study as well as
the small dataset, hyperparameter tuning for the RSF was not conducted to avoid overfitting.

Our semiautomatic segmentation algorithms use commercial (MIM) and freely available
source code (The MathWorks, Natick, Massachusetts) for tumor delineation on both CT
and FDG PET imaging. This minimizes any interobserver variability that may arise from seg-
mentations performed by different users and proved to be highly reproducible and stable.16

Additionally, the extracted features were shown to be highly reproducible.11,16,20 Our
MATLAB CT segmentation algorithm requires minimal user interaction and only one 2D bound-
ing box, and it is time efficient, a key goal of segmentation.16,34

We chose to use radiomic features and traditional machine learning-based models because of
their interpretability and ease of implementation on smaller datasets; however, deep learning
techniques for outcome prediction in lung cancer have increased in popularity in recent years
and have produced promising results when analyzing preoperative images.35–37 They have also
shown that they can augment the performance of hand-crafted radiomic models.38 Therefore,
future work should include exploring deep learning techniques.

The main limitation of this study is its small sample size. We used one round of sampling,
determined by a random number generator, to train and evaluate our model. This may result in an
over- or under-estimation of results compared with additional rounds of sampling. Therefore, the
results of this study need to be validated with a larger external patient cohort to assess the reli-
ability of the model. A second limitation is the retrospective nature of the study. Our study inves-
tigated diagnostic CT and FDG PET-CT images from multiple scanners, acquisition and
reconstruction protocols, which can potentially introduce variability in the imaging data and
resulting radiomic features. Radiomic features are known to be impacted by the acquisition
parameters used such as the reconstruction kernel and slice thickness.39–41 However, the results
achieved using multiple scanners may demonstrate the generalizability of our model. Future
studies assessing the impact of different scanners and imaging acquisition parameters on the
radiomic features used in this study are required. Another limitation lies in the lack of infor-
mation on specific pathologic tumor markers in this dataset. In this era, histological subtypes
and immunomarkers are increasingly important in the management of patients, so these are rou-
tinely reported by pathologists as prognosis can be impacted. Future studies could perform a
subanalysis based on histopathology. Furthermore, the patients in this dataset were treated prior
to 2012 and were, therefore, staged with the AJCC seventh edition. However, the AJCC eighth
edition staging is now available, and future work should aim to investigate the impact of this
change in staging.

The novelty of our study arises from the use of local, regional, and distant areas of interest for
analysis. To the best of our knowledge, no study has combined both qualitative and quantitative
features from the tumor, surrounding peritumoral region, and bone marrow to assess patient
outcomes. We hypothesize that there may be other areas within the lungs or throughout the body
that may add prognostic value to machine learning models. Future studies should aim to expand
the number of regions that may provide prognostic information. Whole-body imaging for
machine learning applications is not currently incorporated into clinical decision-making; our
study represents a possible first step toward that goal.

5 Conclusion

We found that a multimodality radiomics model augmenting stage with quantitative features
from the tumor, peritumoral region, and bone marrow on CT and PET was able to significantly
stratify patients into low- and high-risk of recurrence/progression. This model can be useful in
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the identification of high-risk NSCLC patients to help clinicians provide more aggressive or
personalized treatment options.

6 Appendices

6.1 Imaging

The FDG dose for the FDG PET-CT scans was 138.9-572.3 MBq (mean: 309.3 MBq), and the
uptake time was 23.1 to 128.9 min (mean: 66.6 min). Each bed position consisted of 1 to 5 min
acquisition times depending on the weight of the subject. Routine coverage of base-of-skull to
midthigh was included in the image acquisition, with additional spot views when necessary.
Ordered subset expectation maximization (OSEM) reconstruction was used for CT-based attenu-
ation correction. Images were converted to SUV units normalized by the patient body weight.

The preoperative diagnostic CT scans were acquired with the following scanning parameters:
80 to 140 kVp (mean: 120 kVp), 124 to 699 mA (mean: 220 mA), and slice thickness 0.625 to
3 mm (median: 1.5 mm). Scans were acquired with subjects in the supine position with arms at
their sides, from the apex of the lung to the adrenal gland within a single breath-hold.

6.2 Region of Interest Delineation

The tumor volume on CT was segmented using intensity threshold levels automatically derived
by the algorithm for each patient, as previously described.16 Algorithm initialization requires the
user to identify the axial slice with the longest axial tumor diameter and define a bounding box
around it. The bounding box size is used to determine the number of slices required to capture
above and below the selected axial slice to create a bounding cube. The resulting cube is sep-
arated into four intensity levels, in which all intensities greater than the third level are defined as
tumor. The algorithm subsequently eliminates surrounding connected and disconnected struc-
tures (e.g., vessels). This is accomplished through two main processes: analysis of structure
extent and analysis of structure size progression from one slice to the next. Extent is defined
as the area of the structure divided by the area of the bounding box needed to encapsulate that
structure. This metric captures the elongation of the structure. Structures above a particular
extent were considered to be vessels. This analysis was accompanied by the structure size pro-
gression, which only allowed structures to be removed if they were less than a certain percentage
in size of the segmented tumor area in the axial slices adjacent to the slice being analyzed. The
algorithm also segments the lungs prior to segmenting the tumor to eliminate any mediastinum or
chest wall structure in the final result. These semiautomatic segmentations were able to be edited
at the user’s discretion. All segmentations used in this study were visually verified by a resident
in radiology. If discrepancies were determined, manual adjustment of the segmentation was
performed together. Edits were required in ∼20% of cases, and these typically were a result of
erroneously including vessels adjacent to the tumor.

6.3 Feature Extraction

The texture features were calculated in 3D with symmetrical matrices and a fixed bin size of 25
Hounsfield units (HU) on the CTand 0.2 SUVon the PET/CT. The CT images were resampled to
a size (mm) of [1,1,1.5], and the PET/CT images were resampled to a size (mm) of [4,4,4].
Additionally, CT images had a voxel array shift applied of 1000 to prevent negative values.
Shape features were not calculated within the bone marrow and peritumoral ROIs on either the
CT or PET-CT.

6.4 Qualitative Features

The qualitative CT features used in this study are presented in Table 5.
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