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Background: No biomarkers have been identified for the prognosis of lung squamous cell carcinoma 
(LUSC). Risk models based on m6A-lncRNAs help to predict survival in some cancers. However, very few 
studies have reported m6A-lncRNA risk models in LUSC. We aimed to construct a prognostic model based 
on m6A-lncRNAs in LUSC.
Methods: The clinical and RNA-sequencing information of 504 LUSC patients were downloaded from 
The Cancer Genome Atlas (TCGA) database. Prognostic m6A-lncRNAs were identified by a Pearson 
correlation analysis and univariate Cox regression analysis. The ConsensusClusterPlus algorithm was used 
to cluster the prognostic m6A-lncRNAs. The overall survival (OS) and clinicopathological characteristics of 
the 2 clusters were compared. A gene set enrichment analysis (GSEA) analysis was performed to analyze the 
genes enriched in the 2 clusters. A least absolute shrinkage and selection operator (LASSO) Cox regression 
analysis was used to construct the risk-score model. Two hundred and forty eight patients were randomly 
chosen from TCGA-LUSC cohort for the training set. The receiver operating characteristic (ROC) curve 
analysis was used to assess the predictive ability of the model. The clinical characteristics and OS in the high- 
and low-risk groups were compared. The independent prognostic value of the model was tested by Cox 
regression analyses.
Results: Thirteen m6A-lncRNAs were identified as prognostic lncRNAs and classified into cluster A and 
cluster B. The OS of patients in cluster A was better than that of patients in cluster B (P<0.001). Patients in 
cluster B had higher expressions of immune checkpoints. Immune score, stromal score, and ESTIMATE 
score were higher in cluster B (P<0.001). Seven of the 13 lncRNAs were used to construct the risk-score 
model. Patients in the high-risk group had a worse OS. ROC curves showed a under the curve (AUC) of 
0.639 in the training set and 0.624 in the validation set. A high risk was associated with cluster B, a high 
immune score, and stage III–IV disease. Patients in the high-risk group had increased expressions of immune 
checkpoints. The Cox regression analyses showed that the risk-score model had independent prognostic 
value for OS. The risk-score model retained its prognostic value in different subgroups.
Conclusions: The m6A-lncRNA risk-score model is an independent prognostic factor for OS in LUSC 
patients. However, the risk-score model need to be further tested clinically.
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Introduction

Lung cancer is the leading cause of death among all the 
cancers, and accounts for 23–24% of all cancer-related 
deaths (1,2). Small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC) are the 2 main pathological 
types of lung cancer. NSCLC accounts for 85% of all lung 
cancers and is mainly classified into lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) (3). 
The treatment of LUSC, which constitutes about 40% of 
NSCLCs, is still facing great challenges and the prognosis 
of LUSC patients remains poor (4). The prognostic value 
of the tumor node metastasis (TNM) stage system is widely 
used for LUSC, but is limited, as patients with the same 
TNM stage have been shown to have different survival 
outcomes (5,6). More and more gene mutations have been 
identified as biomarkers for the diagnosis and prognosis 
of LUAD patients (7), such as EGFR, ALK, and ROS1. 
However, to date, no biomarkers have been identified 
for the diagnosis and prognosis of LUSC (8).Therefore, 
biomarkers that can provide diagnostic and prognostic 
information of LUSC is warranted.

The N6-methylandenosine (m6A) modification is the 
most common methylated modification of messenger 
ribonucleic acid (mRNA). It plays a vital role in many 
biological processes, including mRNA processing, mRNA 
exporting, mRNA translation and the synthesis of long non-
coding RNA (lncRNA), and micro RNA (miRNA) (9,10). 
m6A modification is regulated by 3 types of regulators; 
that is, methyltransferases, signal transducers, and  
demethylases (11). There is increasing evidence that 
m6A has great effects on tumor development, including 
increasing the self-renewal of cancer stem cells, promoting 
cell proliferation, and increasing resistance to radiotherapy 
and chemotherapy (12-15). Research has shown that the 
knockdown of the m6A-related gene, FTO, inhibits the 
proliferation and invasion of LUSC (16).

The dysregulation of lncRNA appears to play an 
important role in the development of a number of cancers, 
including prostate cancer, breast cancer, liver cancer, 
and lung cancer (17). For example, lncRNA MALAT1 
is overexpressed in lung cancer, breast cancer, bladder 
carcinoma, and ovarian cancer and is a potential prognostic 
biomarker and therapeutic target (18,19). MALAT1 also 

promotes the proliferation of lung cancer and is associated 
with gefitinib resistance (20). It has been reported that risk 
models based on m6A-related lncRNAs help to predict 
survival in cancers, including colon cancer (21), pancreatic 
ductal adenocarcinoma (22), and osteosarcoma (23). A 31 m6A-
associated lncRNAs signature showed a strong predictive power 
for survival in colon cancer patients, with a area under the 
curve (AUC) of 0.855–0.883 (21). A six m6A-lncRNAs risk 
model showed a AUC of 0.787–0.816 for predicting survival 
in osteosarcoma (23). However, very few studies have reported 
m6A-related lncRNA risk models in LUSC. Though a four 
lncRNAs signature was reported to be a prognostic biomarker 
in non-small cell lung cancer, the signature was not validated 
independently in LUSC data set (24).

In the current study, we aimed to construct a m6A-
lncRNA related prognostic model for survival in LUSC. We 
identified 13 prognostic m6A-related lncRNAs in LUSC 
based on The Cancer Genome Atlas (TCGA) database. 
And 7 of these m6A-related lncRNAs showed to have 
independent prognostic value, and were used to construct a 
risk-score model using the bioinformatic method. and the 
prognostic value of the risk-score model for overall survival 
(OS) was validated. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-22-
1185/rc).

Methods

Data extraction and m6A-related gene identification

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The RNA-
sequencing data and clinical information of LUSC patients 
were downloaded from TCGA database (https://portal.
gdc.cancer.gov/) in July 2021. In total, 504 cases were 
downloaded in this study. The OS and other clinical 
characteristic parameters, including age, gender, T stage, 
N stage, M stage and clinical stage, were extracted. OS was 
defined as the time interval from diagnosis to death for any 
reason. Patients with no survival time data were excluded. 
The expression of 21 m6A-related genes were extracted, 
including the expression data of writers (METTL3, 
METTL14, METTL16, WTAP, VIRMA, ZC3H13, RBM15, 
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and RBM15B), readers (YTHDC1, YTHDC2, YTHDF1, 
YTHDF2, YTHDF3, HNRNPC, FMR1, HNRNPA2B1, 
IGFBP1, IGFBP2, and RBMX), and erasers (FTO and 
ALKBH5) (25). Next, the expression data of the m6A-
related lncRNAs were extracted.

Annotation of lncRNAs and identification of m6A-related 
lncRNAs

Genome Reference Consortium Human Build 38 
(GRCh38) was downloaded from GENCODE (https://
www.gencodegenes.org/human/) and used to annotate the 
lncRNAs in the data sets from TCGA. In total, 14,086 
lncRNAs were identified. A Pearson correlation analysis 
was performed to identify the m6A-related lncRNAs. A 
univariate Cox regression analysis was used to filter m6A-
related the lncRNAs with prognostic value. In total, 13 
prognostic m6A-related lncRNAs were identified.

Clustering of prognostic m6A-related lncRNAs

The ConsensusClusterPlus algorithm (26) was used 
to cluster the prognostic m6A-related lncRNAs. The 
prognostic lncRNAs were classified into 2 clusters. The 
survival, clinical characteristics, immune checkpoint genes, 
immune cell infiltration in the tumor microenvironment, 
immune scores, and stromal scores between the 2 clusters 
were compared. Patients with incomplete parameter 
information were excluded. A gene set enrichment analysis 
(GSEA) was performed to analyze the genes enriched in the 
2 clusters. 

Construction and validation of m6A-related lncRNA risk 
model

Half of the patients (totally 248 patients) from TCGA 
database were randomly chosen as the training set. The 
“glmnet” package of R software (R x64 v4.0.5, https://
www.r-project.org/) was used to perform the least absolute 
shrinkage and selection operator (LASSO) Cox regression 
analysis (27). Seven m6A-related lncRNAs were identified 
to have independent prognostic value to OS and these 
lncRNAs were used to construct a 7 m6A-related lncRNA 
prognostic risk-score model. The risk-score model was 
calculated using the following formula:

Risk score = 0.2996 × Exp (AP001189.3) – 0.2655 × Exp 
(AC254562.3) – 0.3442 × Exp (AC138035.1) – 0.1882 × Exp 
(AC010422.4) – 0.5289 × Exp (AL591686.1) + 0.4162 × Exp 

(WT1-AS) – 0.0858 × Exp (AP001469.3)
The risk scores of all the patients were calculated. 

Half of the patients were randomly chosen as the training 
set and were classified into high- and low-risk groups 
using the median risk score as cutoff value. The receiver 
operating characteristic (ROC) curves were plotted and 
the AUCs were calculated. The clinical characteristics, 
immune infiltration cell in the tumor environment, immune 
checkpoint genes, and survival in the high- and low-risk 
groups were compared. Patients with incomplete parameter 
information were excluded. The risk-score model was 
validated in the total TCGA data sets. The independent 
prognostic value of the risk model was tested by univariate 
and multivariate cox regression analyses.

Construction of ceRNA network

The target miRNAs of the prognostic m6A-related 
lncRNAs were predicted using the lncBase V.2 (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=lncbasev2%2Findex). The target miRNAs with the 
highest scores and that had at least 2 lncRNAs in common 
were included in the ceRNA network. The target mRNAs 
of these miRNAs were predicted by Tarbase V.8 (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=tarbasev8%2Findex). The mRNAs with the top 10 
highest predicted scores were included in the competing 
endogenous RNA (ceRNA) network. The “cytoscape” 
software (v 3.8.3) was used to plot the ceRNA network (28).  
The functional and pathway enrichment analyses of the 
target mRNAs included in the ceRNA network were 
performed using “Metascape” (https://metascape.org) (29).

Statistical analysis

Survival variations between the different groups were 
compared using Kaplan-Meier curves and tested by log-rank 
tests. The risk scores between different groups of clinical 
characteristics were compared and tested by the Wilcox 
test. A Pearson correlation analysis was used to examine the 
correlations between the lncRNAs and the m6A-related 
genes. A univariate and multivariate Cox regression analysis 
was used to validate the prognostic value of the m6A-related 
lncRNAs and the risk-score model. The prognostic ability 
of the risk-score model was examined by the ROC curves 
and the AUCs were calculated. R software (v4.0.5) was used 
to perform the statistical analysis. Results were considered 
to be statistically significant if P<0.05. 
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Results

Identification of prognostic m6A-related lncRNAs

The data of 504 LUSC patients with clinical and RNA-
sequencing information were downloaded from TCGA 

database. The data of 8 patients with no survival time data 
were excluded; thus, ultimately, 496 patients were included 
in the study. The patients’ characteristics are set out in 
Table 1. In total 14,086 lncRNAs were identified. Data on 
the expression of 21 m6A-related genes (i.e., METTL3, 
METTL14, METTL16, WTAP, VIRMA, ZC3H13, RBM15, 
RBM15B, YTHDC1, YTHDC2, YTHDF1, YTHDF2, 
YTHDF3, HNRNPC, FMR1, HNRNPA2B1, IGFBP1, 
IGFBP2, RBMX, FTO, and ALKBH5) were extracted 
(available at https://cdn.amegroups.cn/static/public/jtd-22-
1185-1.xls). A Pearson correlation analysis was performed 
to examine the correlations between the lncRNAs and the 
m6A-related genes. A total of 670 lncRNAs with a |Pearson 
R| value >0.35 and a P value <0.001 were identified as the 
m6A-related lncRNAs (see Figure 1A and available at https://
cdn.amegroups.cn/static/public/jtd-22-1185-2.xls). In total, 
13 m6A-related lncRNAs (i.e., AC243919.2, AC254562.3, 
AC138035.1, AC010422.4, AC107884.1, AL591686.1, 
HORMAD2-AS1 ,  DSCR9 ,  PRC1-AS1 ,  AP001189.3 , 
AL122125.1, and WT1-AS, AP001469.3) were identified 
as prognostic lncRNAs by the univariate Cox regression 
analysis. A forest plot and heatmap were used to visualize the 
hazard ratios and expression patterns of the prognostic m6A-
related lncRNAs, respectively (see Figure 1B,1C).

M6A-related lncRNA cluster analysis and the correlation 
to clinical characteristics

An unsupervised cluster analysis of the prognostic 
m6A-re la ted  lncRNAs was  per formed us ing  the 
ConsensusClusterPlus algorithm (26). The patients were 
classified into 2 clusters. The clinical characteristics and 
m6A-related lncRNA expressions of the 2 clusters of patients 
were analyzed. A heatmap was used to visualize the results 
(see Figure 2A). The survival analysis showed that the OS 
of patients in cluster A was significantly better than that 
of patients in cluster B (P<0.001; see Figure 2B). We also 
compared the expression of programmed death-ligand 1 
(PD-L1), programmed death-ligand 2 (PD-L2), and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4) between the 
2 clusters. Patients in cluster B had higher expressions 
of PD-L1, PD-L2, and CTLA4 (for PD-L1, P<0.01; for  
PD-L2, P<0.001; for CTLA4, P<0.001; see Figure 2C-2E). 
The correlations between PD-L1, PD-L2, and CTLA4 and 
the prognostic m6A-related lncRNAs were also explored. 
PD-L1 was positively correlated with AL591686.1 and 
DSCR9, and negatively correlated with AC254562.3. PD-L2 
was positively correlated with AP001189.3, and negatively 

Table 1 Patient characteristics

Characteristics N (%)

Age (years)

≤65 190 (37.70)

>65 305 (60.52)

Unknown 9 (1.78)

Gender

Female 131 (25.99)

Male 373 (74.01)

T

1 114 (22.62)

2 295 (58.53)

3 71 (14.09)

4 24 (4.76)

N

0 320 (63.49)

1 133 (26.39)

2 40 (7.94)

3 5 (0.99)

Unknown 6 (1.19)

M

0 414 (82.14)

1 7 (1.39)

Unknown 83 (16.47)

Stage

I 245 (48.61)

II 163 (32.34)

III 85 (16.87)

IV 7 (1.39)

Unknown 4 (0.79)

Total 504 (100.00)

T, tumor; N, node; M, metastasis.
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Figure 1 Identification of prognostic m6A-related lncRNAs. (A) 670 lncRNAs were identified as m6A-related lncRNAs. (B,C) 13 lncRNAs 
were identified as prognostic m6A-related lncRNAs: (B) a forest plot of the 13 lncRNAs; (C) a heatmap of the 13 lncRNAs. *, P<0.05;  
**, P<0.01; ***, P<0.001. m6A, N6-methylandenosine; lncRNA, long non-coding RNA.

correlated with AC243919.2, AC254562.3, AC138035.1, 
PRC1-AS1, AL122125.1, and AP001469.3. CTLA4 was 
positively correlated with AC010422.4, AC107884.1, 
HORMAD2-AS1, and AP001189.3, and negatively correlated 
with AL122125.1 and AP001469.3 (see Figure 2F).

Correlation between the m6A-related lncRNA clusters and 
the tumor microenvironment

The immune cell infiltration of the tumor microenvironment 

was analyzed. In comparison with cluster A, cluster B had 
a higher infiltration level of resting memory cluster of 
differentiation (CD)4 T cells (P<0.001), M2 macrophages 
(P=0.008), resting mast cells (P=0.05), and neutrophils 
(P<0.001), and a lower infiltration level of follicular helper 
T cells (P<0.001) (see Figure 2G). The Estimation of 
Stromal and Immune cells in Malignant Tumor tissues 
using Expression data (ESTIMATE) (30) algorithm was 
used to calculate the immune and stomal scores. It was 
shown that immune score, stromal score and ESTIMATE 
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Figure 2 Correlations between the prognostic m6A-related lncRNAs and the clinical characteristics. (A) Clinical characteristics and m6A-
related lncRNA expression patterns of patients in the 2 clusters. (B) Kaplan-Meier curves of patients in cluster A and cluster B. PD-L1, 
PD-L2, and CTLA4 expressions in cluster A and cluster B. (C) PD-L1. (D) PD-L2. (E) CTLA4. (F) The correlations between PD-L1, 
PD-L2, and CTLA4 with prognostic m6A-related lncRNAs. (G) Immune cell infiltration in cluster A and cluster B. (H) Immune score in 
cluster A and cluster B. (I) Stromal score in cluster A and cluster B. (J) ESTIMATE score in cluster A and cluster B. **, P<0.01; ***, P<0.001.  
N, node; M, metastasis; T, tumor; m6A, N6-methylandenosine; lncRNA, long non-coding RNA; PD-L1, programmed death-ligand 1; PD-
L2, programmed death-ligand 2; CTLA4, cytotoxic T-lymphocyte-associated protein 4.
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score were higher in cluster B than cluster A (P<0.001; see  
Figure 2H-2J).

Prognostic m6A-related lncRNA associated pathways 
identified by the GSEA

A GSEA was performed to identify the signaling pathways 
associated with the m6A-related lncRNAs. It was shown 
that 62 gene sets were significantly enriched in cluster B 
and 34 gene sets were significantly enriched in cluster A. 
Of the enriched pathways in cluster A and cluster B, 10 are 
shown in Figure 3A,3B. The signaling pathways enriched 
in cluster B included the cytokine-cytokine receptor 
interaction, leukocyte transendothelial migration, the 
JAK_STAT signaling pathway, ECM receptor interaction, 
natural killer mediated cytotoxicity, chemokine signaling 

pathway, the Toll-like receptor signaling pathway, antigen 
processing and presentation, intestinal immune network 
for immunoglobulin A (IgA) production, and the MAPK 
signaling pathway. The signaling pathways enriched in 
cluster A included the homologous recombination, oxidative 
phosphorylation, RNA polymerase, mismatch repair, 
pyrimidine metabolism, basal transcription factors, cell 
cycle, glutathione metabolism, proteasome, and aminoacyl 
transfer RNA biosynthesis pathways. The enrichment score 
of each pathway is shown in Table 2.

Construction of the m6A-related lncRNA risk-score model 
in the training set

In total, 248 patients were randomly chosen for the training 
set (23). In the database, 106 patients in the training set 
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Figure 3 Signaling pathways enriched in the 2 clusters. (A) Cluster A. (B) Cluster B.
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Table 2 Pathways enriched in cluster A and cluster B

Pathways ES NES NOM P value FDR q value

Pathway enriched in cluster B

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.71 2.56 0 0

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.7 2.45 0 0

KEGG_JAK_STAT_SIGNALING_PATHWAY 0.6 2.32 0 0

KEGG_ECM_RECEPTOR_INTERACTION 0.79 2.31 0 0

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.64 2.31 0 0

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.63 2.23 0 0

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.59 2.18 0.002 0.001

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0.68 2.16 0.002 0.001

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.86 2.15 0 0.001

KEGG_MAPK_SIGNALING_PATHWAY 0.44 1.8 0 0.022

Pathway enriched in cluster A

KEGG_HOMOLOGOUS_RECOMBINATION –0.83 –2.21 0 0.001

KEGG_OXIDATIVE_PHOSPHORYLATION –0.7 –2.14 0.002 0.004

KEGG_RNA_POLYMERASE –0.72 –2.11 0 0.004

KEGG_MISMATCH_REPAIR –0.81 –2.1 0.002 0.003

KEGG_PYRIMIDINE_METABOLISM –0.58 –2.02 0 0.006

KEGG_BASAL_TRANSCRIPTION_FACTORS –0.64 –2.02 0.004 0.006

KEGG_CELL_CYCLE –0.57 –1.86 0.027 0.022

KEGG_GLUTATHIONE_METABOLISM –0.54 –1.76 0.022 0.039

KEGG_PROTEASOME –0.67 –1.89 0.014 0.019

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS –0.64 –1.88 0.016 0.018

ES, Enrichment Score; NES, Normalized Enrichment Score; NOM, Nominal; FDR, false discovery rate.

were recorded as dead. Based on the 13 m6A-related 
prognostic lncRNAs, LASSO Cox regression was performed 
to construct the m6A-related lncRNA prognostic risk 
model for the training set patients. In total, 7 m6A-related 
lncRNAs (i.e., AP001189.3, AC254562.3, AC138035.1, 
AC010422.4, AL591686.1, WT1-AS, and AP001469.3) 
and the corresponding coefficients were generated (see  
Figure 4A-4C). Patients in the training set were divided into 
high- and low-risk groups using the median risk score as the 
cut-off value. Kaplan-Meier survival curves of the low- and 
high-risk groups were plotted, and showed that patients in 
the high-risk group had a worse prognosis than patients in 
the low-risk group (log-rank test, P<0.001; see Figure 4D). 
The ROC curve of the training showed that the risk-score 
model had an ability to predict 1-year OS in the training set 

with an AUC of 0.639 (see Figure 4E). The heatmap of the 7 
m6A-related lncRNAs, risk score, and survival distributions 
of the training set are shown in Figure 4F-4H.

Validation of the m6A-related lncRNA risk-score model

The prognostic value of the m6A-related lncRNA risk-
score model was validated in the whole TCGA-LUSC data 
set. The LUSC patients were classified into low- and high-
risk groups according to their risk scores. Patients in the 
high-risk group had worse survival than patients in the low-
risk group (log-rank test, P<0.001; see Figure 4I). The ROC 
curve of TCGA-LUSC data set indicated that the risk-
score model had prognostic value with an AUC of 0.624 (see 
Figure 4J). The heatmap of the 7 m6A-related lncRNAs, 
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Figure 4 Construction and validation of the m6A-related lncRNA risk-score model. (A,B) The minimum criteria calculated by the LASSO 
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risk score, and the survival distributions of TCGA-LUSC 
data set are shown in Figure 4K-4M. We also validated 
the prognostic value of each lncRNA included in the risk-
score model. The results showed that patients with higher 
expressions of AC010422.4, AC138035.1, AC254562.3, and 
AP001469.3 had better survival, and patients with higher 
expressions of AP001189.3 and WT1-AS had worse survival 
(see Figure 5A-5F). These results indicated that AC010422.4, 
AC138035.1, AC254562.3, and AC001469.3 were predictors 
of favorable survival outcomes while AP001189.3 and WT1-
AS were predictors of poor survival outcomes.

Correlations between the m6A-related lncRNA risk-score 
model and the clinicopathological characteristics

We analyzed whether the m6A-related lncRNA risk-
score model was related to any of the clinicopathological 
characteristics. A heatmap was used to visualize the 
expression of the 7 m6A-related lncRNAs and the 
clinicopathological characteristics (see Figure 6A). The 
results showed that the patients in cluster B, with high 
immune scores and stage III–IV disease had higher risk 

scores than patients in cluster A, with lower immune scores 
and stage I−II disease (see Figure 6B-6D). However, risk 
scores were not related to age, gender, T stage, lymph node 
invasion, or metastasis (see Figure S1). Patients in the high-
risk group also had increased expressions of PD-L1, PD-L2,  
and CTLA4 (see Figure 6E-6G). We also analyzed the 
relationship between risk scores and different immune 
cells. The results showed that risk scores were positively 
correlated with M2 macrophages, neutrophils, active 
memory CD4 T cells, resting memory CD4 T cells, and γδ 
T cells. Naïve B cells, active natural killer cells, follicular 
helper T cells were negatively correlated with risk scores (see 
Figure 6H-6O).

Prognostic analysis of the m6A-related lncRNA risk-score 
model

Univariate and multivariate Cox regression analyses of the 
training set showed that the risk score had independent 
prognostic value for OS [for the univariate analysis, hazard 
ratio =3.140 (1.822−5.412), P<0.001; for the multivariate 
analysis, hazard ratio =3.053 (1.781−5.233), P<0.001; see 
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Figure 7A,7B]. The validation of the prognostic value in 
TCGA-LUSC data set showed consistent results, with 
a hazard ratio of 1.975 (1.386−2.813) (P<0.001) in the 
univariate Cox regression analysis and a hazard ratio of 2.059 
(1.421−2.982) (P<0.001) in the multivariate Cox regression 
analysis (see Figure 7C,7D). To better assess the prognostic 
value of the risk-score model, a stratification analysis was 
performed to confirm whether the risk-score model retained 
its independent prognostic value in different subgroups. 
Compared to low-risk patients, high-risk patients had worse 
OS in both the ≤65 and >65 years subgroups, and female 
and male subgroups (see Figure 7E-7H). The risk-score 
model retained its independent prognostic value for patients 
with or without lymph node invasion, patients with T1–2 
stage or with T3–4 stage disease, and stage I–II or stage 
III–IV disease (see Figure 7I-7N). These results indicated 
that the m6A-related lncRNA risk-score model was an 
independent prognostic factor for OS in LUSC patients.

CeRNA network construction and functional enrichment 
analysis

A ceRNA network was constructed to analyze how the m6A-
related lncRNAs sponge miRNAs and regulate mRNA 
expression. In total, 22 miRNAs were predicted by lncBase 
V.2, and 162 target mRNAs of the miRNAs were predicted 
by Tarbase V.8. A total of 228 interaction pairs were 
identified. All the above lncRNAs, miRNAs, and mRNAs 
were included in the ceRNA network (see Figure 8A). The 
target mRNAs were input in the functional enrichment 

analysis using the Metascape tool. The results showed 
that these target genes were enriched in the pathways of 
regulation of translation, negative regulation of protein 
modification process, regulation of cellular protein catabolic 
process, cell division, G1/S transition of mitotic cell cycle, 
protein-containing complex localization, RNA localization, 
negative regulation of growth, the PID RB1 pathway, and 
response to endoplasmic reticulum stress (see Figure 8B-8D).

Discussion

In the current study, 13 m6A-related lncRNAs were 
found to have prognostic value in LUSC patients from 
TCGA database. Next, 7 of these lncRNAs, which had 
independent prognostic value for survival, were used to 
construct the prognostic model for OS of LUSC patients. 
A high-risk score was associated with worse survival. We 
also explored the correlations between the risk model and 
the clinicopathological characteristics and established the 
ceRNA network of 6 m6A-related lncRNAs, 22 miRNAs, 
and 162 target mRNAs.

There is increasing evidence that m6A modification 
has a dual role in the initiation and progression of tumors. 
The downregulation of the m6A level is related to the 
development of cancers, including hepatocellular carcinoma 
(HCC), breast cancer, endometrial cancer, pancreatic 
cancer, and lung cancer (31-35). However, some research 
has indicated that increased m6A modification promotes 
tumor development in some types of cancers. Specifically, 
increased m6A modification on SP1, BCL2, MYB, MYC, 

Figure 6 Correlations between the m6A-related lncRNA risk-score model and the clinicopathological characteristics. (A) The heatmap of 
m6A-related lncRNA expression and the clinicopathological characteristics. Patients in cluster B (B), with a high immune score (C) and with 
stage III–IV disease (D) had a higher risk score. Patients with a high-risk score had increased expressions of PD-L1 (E), PD-L2 (F) and CTLA4 
(G). *, P<0.05; **, P<0.01, ***, P<0.001. Risk scores were positively related to M2 macrophages (H), neutrophils (I), active memory CD4 T 
cells (J), resting memory CD4 T cells (K) and γδ T cells (L). Naïve B cells (M), active natural killer cells (N), and follicular helper T cells 
(O) were negatively related to risk scores. N, node; M, metastasis; T, tumor; m6A, N6-methylandenosine; lncRNA, long non-coding RNA;  
PD-L1, programmed death-ligand 1; PD-L2, programmed death-ligand 2; CTLA4, cytotoxic T-lymphocyte-associated protein 4.
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Figure 7 Prognostic analysis of the m6A-related lncRNA risk-score model. (A,B) Univariate and multivariate Cox regression analysis of the 
training set: (A) univariate analysis; (B) multivariate analysis. (C,D) Univariate and multivariate Cox regression analyses of TCGA-LUSC 
data set: (C) univariate analysis; (D) multivariate analysis. A stratification analysis was performed to confirm whether the risk-score model 
retained its predictive value in different subgroups. (E) Patients ≤65 years. (F) Patients >65 years. (G) Female patients. (H) Male patients. (I) 
Patients with T1–2 disease. (J) Patients with T3–4 disease. (K) Patients without lymph node invasion. (L) Patients with lymph node invasion. 
(M) Patients with stage I–II disease. (N) Patients with stage III–IV disease. T, tumor; M, metastasis; N, node; m6A, N6-methylandenosine; 
lncRNA, long non-coding RNA; TCGA, The Cancer Genome Atlas; LUSC, lung squamous cell carcinoma.
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Figure 8 CeRNA network and functional enrichment analysis. (A) CeRNA network of the m6A-related lncRNAs and the predicted 
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according to cluster ID (C) and P value (D). ceRNA, competing endogenous RNA; m6A, N6-methylandenosine; lncRNA, long non-coding 
RNA.
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and PTEN was found to be related to the development of 
acute myeloid leukemia (AML) (36,37). The upregulation 
of the m6A level of SOCS2 promotes the progression of 
HCC (38).

The role of m6A methylation in lung cancer and how it 
relates to prognosis has been reported (31,39,40). However, 
little is known about the lncRNA-dependent way in which 
the m6A modification acts during lung cancer progression. 
In liver cancer, VIRMA increases the m6A methylation of 
lncRNA GATA3 and promotes tumor progression (41). 
YTHDF3 suppresses colorectal progression by negatively 
regulating the m6A modification of lncRNA GAS5 and 
causing YAP degradation (42). METTL14 inhibits colon 
cancer progression by decreasing the m6A methylation 
of lncRNA XIST (43). The above research revealed that 
the m6A methylation of lncRNAs plays a vital role in the 
initiation and progression of cancer. Thus, we directed 
our attention to the interactions between lncRNA and 
m6A methylation and tried to discover its prognostic value  
in LSUC.

We identified 13 prognostic m6A-related lncRNAs and 
7 of these lncRNAs, which had independent prognostic 
value, were used to establish the risk-score model; that 
is, AC254562.3, AC138035.1, AC010422.4, AL591686.1, 
AP001189.3, WT1-AS and AP001469.3, with the respective 
coefficients of –0.2655, –0.3442, –0.1882, –0.5289, 0.2996, 
0.4162, and –0.0858. The coefficients indicated that WT1-
AS and AP001189.3, which increased the risk score, were 
associated with poor survival. The other 5 lncRNAs, which 
decreased the risk score, were favorably associated with 
survival. Similarly, higher expressions of AC010422.4, 
AC138035.1, AC254562.3, and AC001469.3 were associated 
with favorable survival outcomes, and higher expressions of 
AC001189.3 and WT1-AS were associated with unfavorable 
survival outcomes. Patients with advanced stage disease, 
who usually had a worse prognosis, had higher risk scores, 
which supports the prognostic values of the risk model. It 
should be noticed that in the current study, the AUC of 
the 7 m6A-related lncRNAs prognostic model was 0.639. 
Commonly, the model was considered to have a mild 
predictive value if the AUC is between 0.5 and 0.7, and 
moderate predictive value if it is between 0.7 and 0.85, and 
if the AUC was larger than 0.85, the model was considered 
to have a strong predictive value. Though the 7 m6A-related 
lncRNAs prognostic model in the current study only have 
mile predictive value to OS, it was an independent prognostic 
factor and can help to judge the prognosis to a certain extent.

A ceRNA network was constructed to explore the 
interaction of lncRNAs, miRNAs, and the target mRNAs. 
Next, an enrichment analysis of the target mRNA was 
performed, and we found that the target mRNAs were 
enriched in pathways involved in the regulation of 
mRNA translation, protein modification, cell cycle, cell 
growth, etc. These results may provide some clues for 
further explorations of the underlying mechanism of m6A 
methylation of lncRNAs.

We also analyzed the correlations between risk scores 
and immune checkpoint expression and the immune 
environment. We found that patients with high risk scores 
had higher expressions of PD-L1, PD-L2, and CTLA4. Our 
risk-score model may help to predict patients’ responses to 
immune therapy; however, it needs to be validated clinically.

Recently, several m6A-related risk models have been 
reported for lung cancer. A risk model based on 18 m6A-
related lncRNAs was constructed in NSCLC and the model 
was shown to be an independent prognostic factor for OS 
in NSCLC (44). A m6A-related lncRNA model in LUAD 
was shown to be correlated with survival and the tumor 
immune microenvironment (45). Yu et al. (46) constructed 
a prognostic model for LUSC based on 7 m6A-related 
autophagy genes. The risk model had a strong power 
to predict prognosis in LUSC. However, no prognostic 
risk model based on m6A-related lncRNAs in LUSC had 
previously been reported. Thus, we constructed a risk 
model based on m6A-related lncRNAs in the current study 
and validated its prognostic value for OS in LUSC.

This study had a number of limitations. First, the risk 
model was constructed based on cases randomly chosen 
from TCGA database and validated by the whole TCGA-
LUSC cohort. However, the risk-score model should be 
validated in more LUSC cohorts clinically. Second, the 
expression of m6A-related lncRNAs was not validated 
experimentally and clinically, and the interactions between 
the lncRNAs and m6A modification need to be confirmed 
by in vivo and in vitro experiments. Third, the patients used 
to construct the risk model were mostly from the United 
States of America and thus do not represent patients from 
other regions. 

Conclusions

The 7 m6A-related lncRNA risk model may serve as a 
potential prognostic biomarker in LUSC, but need to be 
validated in more LUSC cohorts clinically. 
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