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Introduction: 5-fluorouracil (5-FU) is 
the most widely used chemotherapeu-
tic drug in treating colorectal cancer. 
However, its toxicity to normal tissues 
and tumour resistance are the main 
hurdles to efficient cancer treatment. 
MiR27-a promotes the proliferation 
of colon cancer cells by stimulating 
the Wnt/β-catenin pathway. The pres-
ent study was conducted to examine 
whether quercetin (Q) combined with 
5-FU improves the anti-proliferative 
effect of 5-FU on HCT-116 and Caco-2 
cell lines through detection of the miR-
27a/Wnt/β-catenin signalling pathway. 
Material and methods: Cell viability in 
HCT-116 and Caco-2 cell lines following 
quercetin and 5-FU treatment alone 
and in combination for 48 hours was 
determined using the MTT assay. The 
flow cytometry, quantitative real-time 
polymerase chain reaction, and ELISA 
techniques were used. 
Results: Our results showed that com-
bination of quercetin and 5-FU exhib-
ited greater cytotoxic efficacy than 
did 5-FU alone. Co-administration  
of both drugs either in combination 1  
(1 : 1 Q: 5-FU) or in combination 2  
(1 : 0.5 Q: 5-FU) enhanced apoptosis 
in HCT-116 and Caco-2 cells compared 
with 5-FU alone and significantly in-
hibited the expression of miR-27a, 
leading to upregulation of secreted 
frizzled-related protein 1 and sup-
pression of Wnt/β-catenin signalling, 
which was confirmed by a significant 
decrease in cyclin D1 expression. 
Conclusions: Quercetin strongly en-
hanced 5-FU sensitivity via suppres-
sion of the miR-27a/Wnt/β-catenin 
signalling pathway in CRC, which ad-
vocates further research of this com-
bination with the lower dose of 5-FU.

Key words: colorectal cancer, 5-fluo-
rouracil, quercetin, miR-27a, Wnt/β- 
catenin.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related 
deaths and the third most common malignancy worldwide [1]. Currently, 
chemotherapy is the most widely used protocol for treating CRC patients [2]. 
However, its clinical applications are limited due to its toxic effect on normal 
cells, in addition to the emergence of drug resistance. 

It was shown that the Wnt/β-catenin pathway plays an important role 
in oncogenesis, tumour progression, and chemoresistance [3, 4]. Develop-
ment, tissue homeostasis, cell differentiation, and cell proliferation are all 
significantly influenced by the family of glycosylated lipid-modified proteins 
known as Wnt-secreted proteins [5]. Numerous types of human malignan-
cies, including CRC, have been linked to the pathophysiology of inappropri-
ate Wnt signalling pathway activation [6]. An intracellular transcriptional 
coactivator known as β-catenin is stabilized as a  result of a  complex sig-
nalling cascade that is started when Wnt proteins connect to frizzled 
transmembrane receptors. After β-catenin translocation into the nucleus, 
β-catenin is able to couple with T cell factor or lymphoid enhancing factor  
(TCF/LEF) transcription factors activating Wnt target gene transcription. Se-
creted frizzled-related proteins (SFRPs), a  class of secreted proteins, have 
recently been recognized as extracellular regulators of the Wnt signalling 
pathway [6]. SFRPs have a cysteine-rich domain homologous to the frizzled 
receptors. Recent studies have demonstrated down-regulation of secreted 
frizzled-related protein 1 (SFRP1) in CRC [7, 8]. Furthermore, deregulated 
β-catenin activation has been linked to the development of drug resistance 
to conventional chemotherapy [9, 10]. Several studies have shown that in-
hibiting or silencing Wnt/β-catenin signalling in drug-resistant cancer cells 
reduces p-glycoprotein levels and reverses microb drug resist to chemother-
apeutic agents [11–13].

MiRNAs are small, single-stranded, non-coding RNAs (18–22 nucleotides) 
that negatively regulate target gene expression by interfering with transcrip-
tion and translation [14]. They contribute to carcinogenesis as tumour sup-
pressors or oncogenes through the regulation of their target genes [15–18]. 

It was shown that miRNAs can exhibit crosstalk with key cellular signal-
ling networks including the Wnt/β-catenin cascade [19, 20]. For example, 
miR-27a, located on chromosome 19 [21], has been shown to function as an 
oncogene in several human cancers [22–25]. According to recent research, 
miR-27a can directly target SFRPs, a  tumour suppressor protein and Wnt 
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signalling pathway regulator, resulting in potentiation of 
epithelial-mesenchymal transition in oral squamous carci-
noma stem cells and the invasion of human osteosarcoma 
cells [26, 27]. It was shown that miR-27a induces chemore-
sistance to tamoxifen in human breast cancer cell lines [28]. 

Recently, there has been increased interest in the clinical 
utilization of herbal remedies and natural products as a safe, 
effective, and low-cost alternative to conventional therapeu-
tics [29–31]. 

Quercetin (Q) is a  bioactive component belonging to 
the flavonol subclass of flavonoids, which is ubiquitous 
in various foods [32, 33]. Quercetin exhibits a  variety  
of pharmacologic effects such as antiviral, antibacteri-
al, antioxidant, anticancer, and anti-inflammatory [34]. 
Several studies have demonstrated that the anticancer 
effects of Q are mediated through induction of cell cycle 
arrest, apoptosis, and suppression of proliferation in leu-
kaemia, melanoma, breast cancer, ovarian cancer, lung 
cancer, and colon cancer cell lines [35, 36]. Quercetin has 
been reported to inhibit cell growth through the inhibition 
of miR-27a in renal cancer cells [37] and colon cancer cells 
[38]. Moreover, miR-27a was shown to stimulate the pro-
liferation and invasiveness of HCT-116 colon cancer cells 
by targeting SFRP1 through the Wnt/β-catenin signalling 
pathway [39].

 The goal of this study was to examine whether Q com-
bined with 5-fluorouracil (5-FU) would improve the anti-
proliferative effects of chemotherapy in HCT-116 and Caco-
2 cells compared with 5-FU alone through the detection of 
the Wnt/β-catenin signalling pathway. In addition, in light 
of what was previously published about the effect of Q on 
oncogenic miR-27a, the present study further examined 
the potential effect of miR-27a targeting on enhancing the 
chemotherapeutic effect of 5-FU.

Material and methods

Chemicals and reagents

Quercetin (#SLBV2993), 5-FU (#MKBX3795V), foe-
tal bovine serum (FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5- 
diphenyltetrazolium bromide (MTT), and dimethyl sulfox-
ide (DMSO) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Trypsin, Dulbecco’s Modified Eagle’s Medium 
(DMEM), phosphate-buffered saline (PBS), and penicillin/
streptomycin antibiotics were obtained from GIBCO (New 
York, USA). L-glutamine (2%) was purchased from Invit-
rogen (New York, USA). Ethanol was obtained from the El 
Nasr Pharmaceutical Chemicals Co. (Cairo, Egypt).

Cell lines and cell culture

Two human colon cancer cell lines, HCT-116 and Caco-
2, were procured from the American Type Culture Collec-
tion (ATTC, Manassas, VA, USA). The cells were cultured 
in DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin and were incubated in a 5% carbon dioxide 
and 95% air atmosphere at 37°C (Thermo Electron Co., 
Waltham, Massachusetts, USA). Stock solutions of Q and 
5-FU were prepared by dissolving in DMSO and diluting 
with DMEM to the appropriate concentration [40]. Dul-

becco’s Modified Eagle’s Medium containing equivalent 
amounts of DMSO was used as a control for each cell line.

Cell viability by MTT assay

The effect of Q and/or 5-FU on cell viability was evalu-
ated by MTT assay as described by Van Meerloo et al. [41]. 
Cells were seeded in 96-well plates (1 × 104 cells/well) and 
maintained overnight at 37°C, old media was aspirated, 
and 100 µl of treatment media containing Q concentra-
tions (0, 3.125, 6.25, 12.5, 25, 50, and 100 μg/ml) and/or 
5-FU (0, 15.6, 31.25, 62.5, 125, 250, and 500 μg/ml) were 
added and incubated for 48 hours. The cells were then 
treated with MTT (5 mg/ml) for 4 hour, and the resulting 
formazan crystals were dissolved in 100 μl DMSO. The op-
tical density (OD) was recorded at 570 nm using a micro-
plate reader. Experiments were performed in triplicate in  
3 independent experiments [42–44]. The growth inhibition 
rate was expressed as: growth inhibition (%) = (1‑OD of 
treated/OD of control) × 100. The linear regression method 
was used to calculate the IC

50
 values of both Q and 5-FU.

Experimental design

Cells were divided into the following 5 groups: Group I 
(control group), cells were treated with 1% DMSO; Group II, 
cells were treated with 5-FU at its IC

50
 value; Group III, cells 

were treated with Q at its IC
50

 value; Group IV combination 1 
(QFH), cells were treated with a  combination of Q and 
5-FU at concentrations based on IC

50
 values (1 : 1 Q: 5-FU); 

and Group V combination 2 (QFL), cells were treated with 
a combination of Q and 5-FU at concentrations based on 
IC

50
 values (1 : 0.5 Q: 5-FU). Experiments were performed 

in triplicate in 3 independent experiments. All treatments 
were done using HCT-116 and Caco-2 cells at 70–80% con-
fluence. The cells were incubated in a  CO

2
 incubator for  

48 hours, trypsinized, and immediately prepared for mo-
lecular analysis. Supernatants were kept at –80ºC for cyclin 
D1 detection by ELISA.

Annexin V-FITC/PI double staining  
for flow-cytometric apoptosis detection 

Apoptotic cells were quantified using an Annexin 
V-FITC-propidium iodide (PI) double staining kit (Cat. No. 
556547 BD Pharmingen, San Jose, CA, USA) according to 
the manufacturer’s instructions. Each of the HCT-116 and 
Caco-2 cells was plated in a 24-well plate (5 ´ 105 cells/well) 
and then incubated for 24 hours for attachment, and then  
the cells were treated with Q and/or 5-FU, as in the ex-
perimental design, for 48 hours. After cell collection by 
trypsinization, HCT-116 and Caco-2 cells were washed with 
PBS and stained by annexin V/propidium (BD Biosciences) 
based on the manufacturer’s instructions for 25 minutes at 
room temperature in a dark place. The stained cells were 
analysed using an Attune flow cytometer (Applied Bio-sys-
tem, USA). Experiments were performed in triplicate.

Quantitative real-time polymerase chain reaction 

Total RNA was extracted from HCT-116 and Caco-2 cells 
using the miRNA Easy Kit (Cat. No. 217004 Qiagen Strasse, 
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Hilden, Germany), and the RNA concentration and puri-
ty were measured using a  NanoDrop 1000 Spectropho-
tometer (Thermo Fisher Scientific, Wilmington, DE, USA).  
The miScript miRNA assay system (Qiagen Strasse, Hilden, 
Germany) was used to measure miR-27a-3p expression with 
U6 snRNA as the internal control. For the measurement of 
WNT1, SFRP1, and β-catenin mRNA expression, RNA was re-
verse-transcribed into cDNA using the HiSenScript™ RH (–) 
cDNA Synthesis Kit (iNtRON Biotechnology, Inc., Korea), and 
quantitative real-time PCR analysis was done using TOPre-
al™ qPCR 2X PreMix (Cat. No. RT500S Enzynomics, Korea) 
along with specific primers (Thermo Fisher Scientific, UK), as 
shown in Table 1. Glyceraldehyde-3-phosphate dehydroge-
nase was used as an internal control. Calculation of relative 
expression was done as described by Livak et al. [45]. 

Detection of cyclin D1 by ELISA

The ELISA technique was used to determine the cy-
clin D1 levels. A  specific antibody for cyclin D1 (Cat. No.  
LS-F21523, LifeSpan BioSciences, Inc., USA) was precoated 
separately onto microplates. The standard and samples 
were then added to the wells to form an immobilized an-
tibody complex. Biotin-conjugated antibody was added, 
followed by avidin-conjugated horseradish peroxidase. 
A substrate solution was then added to the wells for colour 
development. A sulphuric acid stop solution was added to 
terminate colour development, and the OD was measured 
for each well at a  wavelength of 450 nm. The colour in-
tensity was measured relative to the quantity of cyclin D1.

Statistical analysis

Data are expressed as the mean ± standard deviation 
(SD). Results were analysed by a  one-way ANOVA test. 
A  post hoc Tukey’s multiple comparison test was used 
for multiple comparison analysis. Significant differences 
among the means were considered at p < 0.05. Statistical 
analysis and graphical presentation of the data were done 
using the Graph Pad Prism® software package version 
8.0.2 (GraphPad Software Inc., CA, USA).

The datasets used and/or analysed during the current 
study are available from the corresponding author on rea-
sonable request.

The study was conducted according to the guidelines 
of the Declaration of Helsinki and approved by the Insti-
tutional Review Board of the Faculty of Pharmacy’s Ethics 
Committee, Damanhour University.

Results

The effect of quercetin and 5-fluorouracil  
on HCT-116 and Caco-2 cell growth

Figure 1 shows the cell viability of HCT-116 and Caco-2 
cells treated with different concentrations of Q and/or 5-FU 
for 48 hours. Both Q and 5-FU decreased the viability of 
the 2 cell lines depending on the dosage when used alone. 
Q and 5-FU showed IC50 = 12.36 µg/ml and 125 µg/ml, 
respectively, on HCT-116, and showed IC50 = 15 µg/ml and 
133 µg/ml, respectively, on Caco-2 cells. Furthermore, the 
combination of Q and 5-FU showed higher antiprolifera-
tive activity compared with 5-FU alone in both cell lines. 

The effect of quercetin and 5-fluorouracil  
on apoptosis of HCT-116 and Caco-2 cells

As the pharmacodynamic endpoint of cancer therapy, 
an apoptosis assay was performed to investigate the Q 
enhancing effect on 5-FU-induced apoptosis. Figures 2 and  
3 show the apoptotic effects of the 5-FU, Q, QFH, and QFL. 
The percentages of total apoptosis (early apoptosis plus late 
apoptosis) following treatment with 5-FU, Q, QFH, and QFL, 
respectively, were 18.25%, 18.1%, 49%, and 52.9% on HCT-116 
cells. Compared to the 5-FU group, Q/5-FU combinations 
significantly (p < 0.001) increased apoptosis (Fig. 2). The 
Caco-2 cell apoptosis percentages using 5-FU, Q, QFH, and 
QFL application, respectively, were 21.12%, 42.26%, 44.44%, 
and 42.38%. Compared to the 5-FU group, Q/5-FU combina-
tions significantly (p < 0.001) increased apoptosis (Fig. 3).

Effect of quercetin and 5-fluorouracil on miR-27a 
expression

As shown in Figures 4A and B, treatment with Q result-
ed in a significant downregulation of miR-27a expression 
compared with the control group in both cell lines. Querce-
tin and 5-FU co-treatment (combinations 1 and 2) resulted 
in greater downregulation of miR-27a expression com-
pared with the 5-FU group in both cell lines.

The effect of quercetin and 5-fluorouracil  
on secreted frizzled-related protein 1 expression

Secreted frizzled-related protein 1 is a negative regula-
tor of Wnt/β-catenin signalling. Secreted frizzled-related 
protein 1 was significantly upregulated by Q in both cell 
lines compared with the control groups. Overexpression  

Table 1. Primers of MiR-27a-3p, U6, β-catenin, WNT1, secreted  
frizzled-related protein 1, and glyceraldehyde-3-phosphate dehydro-
genase were designed using the National Centre for Biotechnology 
Information reference sequence

Primer name Sequences

MiR-27a-3p

Tm = 60.73 F: 5′ TGCGGTTCACAGTGGCTAAG 3′

Tm = 59.31 R: 5′ CTCAACTGGTGTCGCTGGA 3′

U6

Tm = 59.29 F: 5′ CTCGCTTCGGCAGGCACA 3′

Tm = 60.07 R: 5′ AACGCTTCACGAATTTGCGT 3′

β-catenin

Tm = 60.39 F: 5′ GGGATCAAACCTGACAGCCA 3′

Tm = 58.13 R: 5′ GAAAACGCCATCACCACGTC 3′

WNT1	

Tm = 60.83 F: 5′ ATTGTCTGCGCCCCTAACC 3′

Tm = 59.01 R: 5′ CGGCACCGCCTCTTATAGTT 3′

SFRP1	

Tm = 59.11 F: 5′ CAGGAAGAACTAGAGGAACG 3′

Tm = 59.91 R: 5′ TACTGGCCGTTCTGACCTGT 3′

GAPDH

Tm = 68.03 F: 5′ AATGGGCAGCCGTTAGGAAA 3′

Tm = 59.21 R: 5′ GCCAATACGACCAATCAGAG 3′

GAPDH – glyceraldehyde-3-phosphate dehydrogenase, SFRP1 – secreted 
frizzled-related protein 1
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A

of SFRP1 was observed following combined treatment 
with Q and 5-FU (combination 1, 2) compared with the 
5-FU group in both cell lines (Figs. 5 A, B). 

The effect of quercetin and 5-fluorouracil  
on WNT1 and β-catenin expression

In HCT-116 cells, Q had no significant effect on WNT1 
and β-catenin gene expressions compared with the control 
group. Upon 5-FU treatment, there was a significant upreg-
ulation of WNT1 and β-catenin expression compared with 

the control group. Q and 5-FU co-treatment (combinations 
1 and 2) resulted in a significant downregulation of WNT1 
and β-catenin expression compared with the 5-FU group 
(Figs. 6A, B). In the Caco-2 cell line, the quantitative real-time 
polymerase chain reaction assay showed significant upreg-
ulation of β-catenin expression following treatment with Q 
and 5-FU alone compared with the control group. Q and 5-FU 
co-treatment (combinations 1 and 2) resulted in a significant 
downregulation of β-catenin expression compared with 5-FU 
alone (Fig. 6 C). In Caco-2 cells, Q demonstrated no signif-
icant effect on WNT1 expression compared with the con-
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Fig. 1. The effect of 5-fluorouracil (5-FU) (15.6–500 µg/ml) (A), Q (3.125–100 µg/ml) (B), and combinations of quercetin and 5-FU on HCT-116 
and Caco-2 cells for 48 hours (C)
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Fig. 2. The effect of 5-fluorouracil (5-FU) and quercetin (Q) on the apoptosis of HCT-116 cells for 48 hours. Dot-plots from flow cytometric 
illustrating apoptotic status in HCT-116 cells. Cells in the upper-left quadrant are necrotic, cells in the upper-right quadrant have late apop-
tosis, the lower-left quadrant shows normal living cells, and the cells in the lower-right quadrant are early apoptotic cells (A–E), the total 
percentage of apoptosis in HCT-116 cells treated with the indicated concentrations of 5-FU, Q, QFH, and QFL for 48 hours (F)

All data are expressed as the mean ±SD. Statistically significant differences between groups are designated as *p < 0.05 vs. control group, #p < 0.05 vs. 5-FU group 
and Ωp < 0.05 vs. Q group and ∆p < 0.05 vs. QFL group.

trol group. Following combined treatment with Q and 5-FU 
(combinations 1 and 2) there was significant downregulation  
of WNT1 expression compared with the 5-FU group (Fig. 6 D).

The effect of quercetin and 5-fluorouracil  
on cyclin D1 expression

The highest level of cyclin D1 was observed in the control 
groups in both HCT-116 and Caco-2 cell lines. There was a sig-
nificant reduction in cyclin D1 expression following treatment 
with Q and 5-FU alone compared with the control group in 
both cell lines. Significant inhibition of cyclin D1 was ob-
served in the groups treated with QFH and QFL compared 
with 5-FU alone in both cell lines (p < 0.01) (Figs. 7A, B).

Discussion

Colorectal cancer is one of the most frequently occur-
ring malignancies worldwide. 5-fluorouracil is the corner-
stone drug used for treating CRC; however, tumour cell 
resistance and cytotoxicity to normal cells are obstacles  

to successful treatment [46, 47]. Therefore, new therapeu-
tic strategies are needed to circumvent resistance, allevi-
ate adverse effects, and reduce the dose of chemotherapy 
[48]. Using natural products in combination with chemo-
therapy represents a fruitful strategy to increase the sensi-
tivity of cancer cells to chemotherapy (chemo-sensitizers) 
and reduce the negative effects of chemotherapy (chemo- 
protectors) [49, 50].

Quercetin either alone or in combination was shown to 
attenuate the progression of colon cancer through several 
mechanisms, including cell cycle arrest, decreased cell via-
bility, modulation of oncogenic signalling pathways, induc-
tion of apoptosis and autophagy, and inhibition of metas-
tasis. To the best of our knowledge, this is the first study 
to examine the effect of Q on enhancing the anti-prolifer-
ative effects of 5-FU concerning the Wnt/β-catenin signal-
ling pathway through miR-27a modulation in HCT-116 and 
Caco-2 cell lines. 

Our study revealed that a combination of Q ad 5-FU re-
sulted in a higher cytotoxic effect on HCT-116 and Caco-2 
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Fig. 3. The effect of 5-fluorouracil (5-FU) and quercetin (Q) on the apoptosis of Caco-2 cells for 48 hours. Dot-plots from flow cytometric  
illustrating apoptotic status in Caco-2 cells. Cells in the upper-left quadrant are necrotic, cells in the upper-right quadrant have late apoptosis,  
the lower-left quadrant shows normal living cells, and the cells in the lower-right quadrant are early apoptotic cells(A–E), the total per-
centage of apoptosis in Caco-2 cells treated with the indicated concentrations of 5-FU, Q, combination 1 (QFH), and combination 2 (QFL)  
for 48 hours (F) designated as *p < 0.05 vs. control group, #p < 0.05 vs. 5-FU group and Ωp < 0.05 vs. Q group and ∆p < 0.05 vs. QFL group

Fig. 4. The effect of quercetin (Q), 5-fluorouracil (5-FU), combination 1 (QFH) and combination 2 (QFL) on gene expression of miR-27a  
in HCT-116 cells (A) and Caco-2 cells (B)

Data are expressed as the mean ±SD of 3 samples each performed in triplicate. Data analysis was performed using Graph Pad Prism 8.0.2. Statistically significant 
differences between groups are designated as *p < 0.05 vs. control, #p < 0.05 vs. 5-FU group, and Ωp < 0.05 vs. Q group and ∆p < 0.05 vs. QFL group.
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Fig. 6. The effect of quercetin (Q), 5-fluorouracil (5-FU), combination 1( QFH), and combination 2 (QFL) on gene expression of β-catenin  
and WNT1 in HCT 116 and Caco-2 cells

Data are expressed as the mean ±SD of 3 samples each performed in triplicate. Data analysis was performed using Graph Pad Prism 8.0.2. Statistically significant 
differences between groups are designated as *p < 0.05 vs. control group, #p < 0.05 vs. 5-FU group and Ωp < 0.05 vs. Q group, and ∆p < 0.05 vs. QFL group. 

cells compared with 5-FU alone. This was shown by a high-
er apoptotic rate upon treatment with combination 1 and 
combination 2 compared with 5-FU alone. Our findings are 
consistent with previous studies. A recent study revealed 
that a combination of 5-FU and Q enhanced the cytotox-
ic and apoptotic effects of 5-FU on MCF-7 cells compared  
to 5-FU alone [51]. As previously reported, 5-FU in combina-
tion with Q and melatonin in human liver and colon cancer 

cells enhances its effect on apoptosis and growth suppres-
sion compared to 5-FU alone [52–54]. Curcumin combined 
with 5-FU stimulated apoptosis and decreased Bcl-2 pro-
tein levels in cancer cells [55].

 MiR-27a is located on chromosome 19 [21] and has been 
reported to function as a  tumour promoter in different 
types of human cancers, including breast cancer, gastric 
adenocarcinoma, HCC, and pancreatic cancer [22–25, 56]. 

Fig. 5. The effect of quercetin (Q), 5-fluorouracil (5-FU), combination 1 (QFH), and combination 2 (QFL) on gene expression of secreted  
frizzled-related protein 1 in HCT-116 (A) and Caco-2 (B) cells 

Data are expressed as the mean ±SD (standard deviation) of 3 samples each performed in triplicate. Data analysis was performed using Graph Pad Prism 8.0.2. 
Statistically significant differences between group are designated as *p < 0.05 vs. control group, #p < 0.05 vs. 5-FU group and Ωp < 0.05 vs. Q group, and ∆p < 0.05 
vs. QFL group. 
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Fig.7. The effect of quercetin (Q), 5-fluorouracil (5-FU), combination 1 (QFH), and combination 2 (QFL) on the cyclin D1 level in HCT-116 (A) 
and Caco-2 (B) cells

Data are expressed as the mean ±SEM (standard error of mean) of 3 samples each performed in triplicate. Data analysis was performed using Graph Pad Prism 
8.0.2. Statistically significant differences between groups are designated as *p < 0.05 vs. control group, #p < 0.05 vs. 5-FU group and Ωp < 0.05 vs. Q group,  
and ∆p < 0.05 vs. QFL group.

Our results indicated that combination 1 and combination 
2 resulted in more significant downregulation in the gene 
expression of miR-27a than either agent alone. Our findings 
are in line with previous research examining the effects of 
a  combination of resveratrol and Q (5–20 µg/ml) on cell 
growth inhibition via the miR-27a reduction in colon can-
cer cells [38]. Li et al. reported that the combination of Q 
and hyperoside 5 to 20 µg/ml inhibited miR-27a expression 
level in 786-O renal cancer cells [37]. 

 The Wnt/β-catenin signalling pathway is one of the 
main dysregulated pathways in CRC, and it potenti-
ates cell proliferation and drug resistance [57]. Secreted  
frizzled-related protein 1 is an antagonist of the frizzled 
receptors and Wnt pathway activation. Previous studies 
have demonstrated the downregulation of SFRP1 in CRC 
[7]. Moreover, according to recent research, miR-27a could 
directly target SFRP1 through Wnt/β-catenin signalling 
pathway in HCT-116 cells [39]. The present study showed 
that combinations 1 and 2 inhibited Wnt/β-catenin sig-
nalling by significantly upregulating SFRP1 that was a re-
sult of higher downregulation of miR-27a expression  
in both cell lines more than each drug alone. Consistent 
with previous reports, it was reported that Q increases 
chemotherapeutic drug sensitivity of K562 and K562R 
cells by suppressing the Wnt/β-catenin signalling path-
way [58]. Another study demonstrated that Q increased 
the sensitivity of human HCC cells to chemotherapeutic 
drugs through the FZD7/β-catenin signalling pathway 
[59]. Another study reported that cardamonin, a natural 
chalcone, enhanced the antiproliferative effect of 5-FU in 
gastric cancer cells by targeting the Wnt/β-catenin signal-
ling pathway [60].

 Cyclin D1, a target of the β-catenin pathway, is overex-
pressed in several tumour types and mediates cell cycle 
progression from the G1 to the S phase [61]. The syner-
gistic effect of combinations 1 and 2 of Q and 5-FU was 
confirmed by a more significant decline in cyclin D1 levels 
in both combination groups compared with 5-FU alone. 
This result is consistent with a previous study that demon-
strated that amla extract, which is rich in Q, inhibited 

human colon cancer stem cells (HCCSC) by targeting the 
Wnt/β-catenin signalling pathway, resulting in a decrease 
in cyclin D1 expression [62]. It was noted that the combi-
nation of 5-FU and chloroquine caused G1 arrest as well as 
CDK2 and cyclin D1 downregulation [63].

Conclusions

It was demonstrated that Q combined with 5-FU en-
hanced the antiproliferative effects of chemotherapy agents 
in HCT-116 and Caco-2 cells by targeting SFRP1 through  
the Wnt/β-catenin signalling pathway via miR-27a down-
regulation. Further studies are recommended for the use 
of this combination with a reduced dose of chemotherapy.

The authors declare no conflict of interest.
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