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Abstract
The essential amino acid tryptophan (Trp) is metabolized by gut commensals, yielding in compounds that affect innate 
immune cell functions directly, but also acting on the aryl hydrocarbon receptor (AHR), thus regulating the maintenance of 
group 3 innate lymphoid cells (ILCs), promoting T helper 17 (TH17) cell differentiation, and interleukin-22 production. In 
addition, microbiota-derived Trp metabolites have direct effects on the vascular endothelium, thus influencing the develop-
ment of vascular inflammatory phenotypes. Indoxyl sulfate was demonstrated to promote vascular inflammation, whereas 
indole-3-propionic acid and indole-3-aldehyde had protective roles. Furthermore, there is increasing evidence for a con-
tributory role of microbiota-derived indole-derivatives in blood pressure regulation and hypertension. Interestingly, there 
are indications for a role of the kynurenine pathway in atherosclerotic lesion development. Here, we provide an overview 
on the emerging role of gut commensals in the modulation of Trp metabolism and its influence in cardiovascular disease 
development.
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Introduction

The gut microbiota is the assemblage of microbial communi-
ties colonizing the intestinal habitat, with the great major-
ity belonging to the bacterial kingdom, but also comprising 
fungi, archaea, protists, and viruses (Bäckhed et al. 2012). 
By influencing nutrient availability, through recognition 

of conserved microbial patterns via a repertoire of innate 
immune receptors (i.e., Toll-like receptors, nucleotide-
binding oligomerization-like receptors, or retinoic acid-
inducible gene-I-like receptors), the regulation of a myriad 
of host metabolic pathways, but foremost all by the uptake 
of microbiota-derived metabolites, this microbial ecosys-
tem has evolved into a mutualistic relationship with its host, 
impacting many traits of host physiology (Turnbaugh et al. 
2006; Hooper et al. 2012; Koh and Bäckhed 2020; Bäckhed 
et al. 2005; Schroeder and Bäckhed 2016). For this reason, 
organisms have to be viewed as holobionts, including their 
microbiota affecting many organ systems (Meyer-Albich 
1950; Margulis and Fester 1991). This is not only exempli-
fied by the evoked adaptive changes in gut morphology or by 
recent studies on the gut-liver or gut-brain axis (Bayer et al. 
2021; de Vadder et al. 2018; Formes et al. 2021; Aswendt 
et al. 2021), but also by the role of microbiota and its derived 
metabolites in cardiovascular disease (Karbach et al. 2016).

The pathophysiology of cardiovascular diseases like 
hypertension and atherosclerosis is closely linked to vascular 
inflammation (Daiber et al. 2017; Wenzel et al. 2011). Aryl 
hydrocarbon receptor (AHR)-signaling is well recognized to 
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contribute to those cardiovascular pathologies by inducing 
expression of pro-inflammatory interleukin (IL)-1β, IL-8, 
tumor necrosis factor-alpha (TNF-α) and consecutive foam 
cell formation (Dahlem et al. 2020; Vogel et al. 2004). The 
various effects of AHR signaling can be conveyed by many 
different ligands (Safe et  al. 2020). Microbiota-derived 
L-tryptophan (Trp)-metabolites being among them, path-
ways involved in their generation and signaling deserve 
attention (Zelante et al. 2013).

In the intestine, the bulk of nutritional Trp, an essential 
amino acid that cannot be synthesized de novo by the mam-
malian host, is metabolized via the kynurenine pathway in 
immune cells and intestinal epithelial cells, which is initiated 
by the enzyme indolamine-2,3-dioxygenase-1 (IDO1), con-
verting Trp to N-formyl-L-kynurenine (Taleb 2019) (Fig. 1). 
Furthermore, in enterochromaffin cells, the enzyme Trp 
hydroxylase 1 (TpH1) converts a small part of the nutrition-
derived Trp into serotonin (5-hydroxytryptamine, 5-HT). A 
significant proportion of nutritional Trp enters the indole 
pathway and is metabolized to tryptamine and signaling-
active indole metabolites, involving tryptophanase and 
decarboxylase enzymes of colonizing gut bacteria (Zelante 
et al. 2013). Metabolomics analyses demonstrated reduced 
serum levels of Trp and N-acetyltryptophan in convention-
ally raised (CONV-R) mice relative to germ-free control 

mice lacking colonization with a gut microbiota, which is 
due to bacterial tryptophanase activity, the enzyme catalys-
ing the reaction of Trp to indole, pyruvate, and ammonia 
(Wikoff et al. 2009). In line, the abundance of tryptamine 
in the feces of CONV-R mice was shown to be increased by 
200% as compared to GF controls (Marcobal et al. 2013). In 
addition, CONV-R mice displayed elevated serotonin serum 
levels and the indole-metabolites indoxyl sulfate and indole-
3-propionic acid could only be detected in CONV-R mice, 
indicating that the metabolic capacity of the microbiota acts 
on nutritional Trp, thus interfering with its availability and 
functional utilization by the host (Wikoff et al. 2009).

The gut microbiota as a modifier 
of tryptophan metabolism—implications 
for intestinal immune function 
and pathophysiology

Several bacterial species of the gut microbiota were identi-
fied that influence Trp metabolism (Table 1). The synthesis 
of the monoamine tryptamine is catalysed by tryptophan 
decarboxylase (TrpD), expressed by gut bacterial species, 
such as members of the genus Clostridia and Lactobacillus 
(Agus et al. 2018; Williams et al. 2014). Tryptamine is then 

Fig. 1   Metabolic pathways of tryptophan. A Kynurenine pathway in 
host immune cells and intestinal epithelial cells. B Indole pyruvate 
pathway performed by gut microbiota. C Serotonin pathway per-
formed by enteroendocrine cells. Key enzymes of the pathways are 

displayed in green: ArAT aromatic amino acid transaminase, IDO1 
indolamine-2,3-dioxygenase-1, TNA tryptophanase, TpH1 tryptophan 
hydroxylase 1, TrpD tryptophan dehydrogenase
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Table 1   Microbiota-derived tryptophan metabolites

Tryptophan metabolite Enzyme Gut microbes Reference

Phylum level Species level

Indole Tryptophanase (TNA) Bacteroides
Clostridium
Desulfovibrio
Enterococcus
Escherichia
Fusobacterium
Haemophilus
Peptostreptococcus

Bac. thetaiotaomicron
Bac. ovatus
Clo. bifermentans
Clo. ghoni
Clo. lentoputrescens
Clo. limosum
Clo. malenomenatum
Clo. sordellii
Clo. tetani
Clo. tetanomorphum
Des. vulgaris
Ent. faecalis
Esc. coli
Fus. nucleatum
Hae. influenza
Pep. asscharolyticus

Devlin et al. (2016)
Elsden et al. (1976)
Lee and Lee (2010)
Smith et al. (1996)

3-Methyl-
indole
(Skatole)

Indoleacetate decarboxylase 
(IAD)

Bacteroides
Butyrivibrio
Clostridium
Eubacterium
Lactobacillus
Megamonas
Parabacteroides

Bac. thetaiotaomicron
But. fibrisolvens
Clo. bartlettii
Clo. scatologenes
Clo. drakei
Eub. cylindroides
Eub. rectale
Lac. spp.
Meg. hypermegale
Par. distasonis

Honeyfield et al. (1990)
Russell et al. (2013)
Whitehead et al. (2008)
Liu et al. (2018)

Indole-3- acetic acid
(IAA)

Bacterial Tryptophan 
Monooxygenase

Bacteroides
Bifidobacterium
Clostridium
Escherichia
Eubacterium
Parabacteroides
Peptostreptococcus

Bac. thetaiotaomicron
Bac. eggerthii
Bac. ovatus
Bac. fragilis
Bif. adolescentis
Bif. longum subsp. longum
Bif. pseudolongum
Clo. bartlettii
Clo. difficile
Clo. lituseburense
Clo. paraputrificum
Clo. perfringens
Clo. putrefaciens
Clo. saccharolyticum
Clo. sticklandii
Clo. subterminale
Esc. coli
Eub. hallii
Eub. cylindroides
Par. distasonis
Pep. asscharolyticus

Elsden et al. (1976)
Russell et al. (2013)
Smith et al. (1996)

3-Indole- acrylic acid (IA) Phenyllactate dehydratase 
(fldBC)

Clostridium
Peptostreptococcus

Clo. sporogenes
Pep. russellii
Pep. anaerobius
Pep. stomatis

Dodd et al. (2017)
Wlodarska et al. (2017)

Indole-3- aldehyde (IAld) Tryptophanase (TNA) Lactobacillus Lac. acidophilus
Lac. murinus
Lac. reuteri

Cervantes-Barragan et al. 
(2017)

Wilck et al. (2017)
Zelante et al. (2013)
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further processed by tryptophan-2-monooxygenase (TMO) 
into indole-3-acetamide, which is converted into indole-
3-acetic acid (IAA) and subsequently into indole-3-aldehyde 
(IAld). In an additional sequence of reactions, the bacterial 
tryptophanase (TNA), which is expressed by many gram-
negative and gram-positive bacteria such as Escherichia 
coli, Clostridium sp., and Bacteroides sp., converts Trp into 
indole and its derivatives IAld, IAA, and indole-3-propionic 
acid (IPA). In the aromatic amino acid aminotransferase and 
indolelactic acid dehydrogenase–dependent pathway, the 
enzyme aromatic amino acid transaminase (ArAT) converts 
Trp into indole-3-pyruvate (IP), which is further metabolized 
into indole-3-lactic acid (ILA) through the enzyme indole-
lactic acid dehydrogenase (ILDH). Through the phenyl lac-
tate dehydratase gene cluster (fldAIBC), ILA can further 
be converted into 3-indoleacrylic acid (IA), which is finally 
converted into indole-3-propionic acid (IPA) (Williams et al. 

2014; Wlodarska et al. 2017). Of note, IPA was revealed to 
increase blood pressure via cardiac and vascular mechanisms 
but was negatively associated with advanced atherosclero-
sis (Konopelski et al. 2021; Cason et al. 2017). Interest-
ingly, it has been demonstrated that this metabolite acts on 
mitochondrial respiration, with chronic exposure resulting 
in mitochondrial dysfunction in cardiomyocytes but also in 
hepatic and endothelial cells (Gesper et al. 2021).

In recent years, it has become evident that the gut 
microbiota is an important modifier of host physiology 
and a driver of various organ pathologies (Schroeder and 
Bäckhed 2016). Based on germ-free mouse models, recent 
metabolomics analyses identified a myriad of microbiota-
derived metabolites that are readily taken up into the 
bloodstream and impact on remote organ functions (Wu 
et al. 2019; Lai et al. 2021). Trp was demonstrated to affect 
both epithelial immunity as well as gut microbial ecology 

Table 1   (continued)

Tryptophan metabolite Enzyme Gut microbes Reference

Phylum level Species level

Indole-3- lactic acid (ILA) Indole-3-lactic acid dehydro-
genase (ILDHase)

Anaerostipes
Bacteroides
Bifidobacterium
Clostridium
Escherichia
Eubacterium
Faecalibacterium
Lactobacillus
Megamonas
Parabacteroides
Peptostreptococcus

Ana. hadrus
Ana. caccae
Bac. thetaiotaomicron
Bac. eggerthii
Bac. ovatus
Bac. fragilis
Bif. adolescentis
Bif. bifidum
Bif. longum subsp. infantis
Bif. longum subsp. longum
Bif. pseudolongum
Clo. bartlettii
Clo. perfringens
Clo. sporogenes
Clo. saccharolyticum
Esc. coli
Eub. rectale
Eub. cylindroides
Fae. prausnitzii
Lac. murinus
Lac. paracasei
Lac. reuteri
Meg. hypermegale
Par. distasonis
Pep. asscharolyticus

Aragozzini et al. (1979)
Dodd et al. (2017)
Honoré et al. (2016)
Russell et al. (2013)
Smith et al. (1996)
Wilck et al. (2017)
Williams et al. (2014)
Wlodarska et al. (2017)

Indole-3- propionic acid (IPA) Acyl-CoA dehydrogenase 
(ACD)

Phenyllactate dehydratase 
gene cluster (fldAIBC)

Clostridium
Peptostreptococcus

Clo. botulinum
Clo. caloritolerans
Clo. paraputrificum
Clo. sporogenes
Clo. cadvareris
Pep. asscharolyticus
Pep. russellii
Pep. anaerobius
Pep. stomatis

Dodd et al. (2017)
Elsden et al. (1976)
Wikoff et al. (2009)
Williams et al. (2014)
Wlodarska et al. (2017)

Tryptamine Tryptophan Decarboxylase
(TrpD)

Clostridium
Ruminococcus

Clo. sporogenes
Rum. gnavus

Williams et al. (2014)
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(Hashimoto et al. 2012). Microbiota-derived Trp metabo-
lites interfere with multiple aspects of host physiology. 
For instance, microbiota-derived indole modulates the 
secretion of the incretin hormone glucagon-like peptide-1 
(GLP-1) from L-cells of the colonic epithelium (Chimerel 
et al. 2014).

The indole metabolite indoxyl sulfate is generated in the 
liver, where it enters the circulation as an albumin-bound 
serum molecule. Indoxyl sulfate is known to be harmful to 
various cell types, such as vascular endothelial cells (Hung 
et al. 2016). Furthermore, it has been reported that dys-
biosis of the intestinal microbiota towards a higher abun-
dance of aerobic indole-producing bacteria (e.g. E. coli) 
is associated with the accumulation of the nephrotoxin 
indoxyl sulfate in the serum of uremic patients, which 
is due to impaired renal secretion (Deguchi et al. 2002; 
Takayama et al. 2003). The studies by Takayama et al. 
showed a significant reduction of indoxyl sulfate serum 
levels in hemodialysis patients orally treated with non-
indole-producing bacteria (e.g. Bifidobacterium) by cor-
recting the composition of the gut microbiota (Takayama 
et al. 2003). In addition, in the gut mucosa, indole metabo-
lites act on the gut epithelial AHR, important to warrant 
mucosal type 3 innate lymphoid cells (ILC3) and T helper 
17 (TH17) immunity (Cella et al. 2009; Kiss et al. 2011; 
Schiering et al. 2017). While this aspect of mucosal immu-
nity is beneficial to protect from infection, the induction of 
immunity by Trp metabolites comes with the downside of 
an enhanced susceptibility to autoimmunity (Sonner et al. 
2019; Choi et al. 2020).

Inflammatory bowel disease (IBD) is one example of an 
autoimmune disease that has been linked to changed Trp 
metabolism (Roager and Licht 2018). It was found that Trp 
serum levels are significantly decreased in IBD patients, 
compared to healthy controls, while Crohn’s disease patients 
have a more severe reduction compared to ulcerative coli-
tis patients (Nikolaus et al. 2017). Also, IAA was shown 
to be reduced in fecal samples of IBD patients (Lamas 
et al. 2016). Furthermore, serum concentration of IPA is 
reduced in patients suffering from active colitis as compared 
to healthy individuals (Alexeev et al. 2018). Lastly, orally 
administered indole or IPA was shown to ameliorate colonic 
inflammation in mice (Alexeev et al. 2018; Whitfield-Cargile 
et al. 2016). Furthermore, Trp and its metabolites stimulate 
AHR activity and induce tumor cell proliferation and tumor 
escape in colorectal cancer (Venkateswaran et al. 2019; 
Brandacher et al. 2006).

Microbiota-derived metabolites were demonstrated to 
protect from autoimmune disease development (Rosser 
et al. 2020). Interestingly, in the mouse experimental auto-
immune encephalomyelitis (EAE) model of multiple scle-
rosis, it was recently demonstrated that the susceptibility 
to the induction of central nervous system inflammation in 

IL-17A/F-deficient mice was dependent on the impact that 
IL-17A exerts on the composition of the gut microbiota 
(Regen et al. 2021). This highlights the need for a more 
detailed understanding of how gut commensals interfere 
with nutritional factors and host metabolism to impact on 
autoimmune-related disease phenotypes.

In addition to the gut and the nervous system, the vas-
culature and its endothelial lining are prone to microbiota-
dependent inflammatory processes (Karbach et al. 2016; 
Kiouptsi et al. 2019). Since Trp metabolism is an important 
determinant of atherogenesis (Metghalchi et al. 2015; Kap-
pel et al. 2020), it is important to understand how the gut 
microbiota, a known regulator of Trp/indole metabolism, 
affects vascular inflammatory phenotypes, hypertension, and 
the development of atherosclerosis.

Microbiota‑derived tryptophan metabolites 
impacting immune mechanisms

Interestingly, some indole metabolites, such as indole-3-pro-
pionic acid (IPA), have direct anti-inflammatory effects on 
immune cells (Fig. 2) (Wlodarska et al. 2017; Venkatesh 
et al. 2014). For instance, IPA and 3-Indole-acrylic acid 
(IA) enhance the production of anti-inflammatory interleu-
kin-10 (IL-10) by macrophages. In addition, IPA reduces 
the production of pro-inflammatory tumor necrosis factor 
(TNF) (Wlodarska et al. 2017). Furthermore, IA exerts anti-
inflammatory effects by suppressing the expression of the 
cytokines IL-1β and IL-6 by peripheral blood mononuclear 
cells (PBMCs) (Fig. 2, left).

However, Trp/indole metabolites also impact immune 
phenotypes via indirect signaling mechanisms, predomi-
nantly mediated through the AHR (Fig. 2, right). The AHR 
is a transcription factor, which is especially recognized for its 
role in xenobiotic metabolism (Hubbard et al. 2015a, b). The 
AHR is expressed on the surface of group 3 innate lymphoid 
cells (ILC3s) (Cella et al. 2009; Kiss et al. 2011). AHR acti-
vation induces IL-22 production (Fig. 2), which also involves 
TLR2 signaling (Zelante et al. 2013; Crellin et al. 2010). 
The cytokine IL-22 regulates intestinal mucosal homeostasis 
and provides resistance to the fungus Candida albicans and 
to rotavirus infection (Zelante et al. 2013; Hernandez et al. 
2015). The disturbance of the gut microbiota’s ability to gen-
erate AHR ligands was associated with the development of 
IBD (Lamas et al. 2016). Of note, the AHR can be activated 
by a wealth of different ligands including Trp/indole metabo-
lites. Upon ligand binding, the AHR undergoes conforma-
tional changes to enable its transport from the cytosol into the 
nucleus (Ikuta et al. 1998). In the nucleus, the aryl hydrocar-
bon receptor nuclear translocator (ARNT) induces the disso-
ciation of the cytoplasmic complex from the AHR leaving the 
functional heterodimeric transcription factor complex of AHR/
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ARNT (Reyes et al. 1992). The AHR/ARNT complex subse-
quently binds to its target sequence in the DNA and recruits 
further coactivators to remodel the chromatin and transcribe 
target genes. The AHR can be activated both, by ligands pro-
vided through the kynurenine pathway (therefore by the host), 
and by microbiota-derived ligands originating from the meta-
bolic Trp pathway. Moreover, the AHR can be activated by 
dietary constituents or by pollutants. Interestingly, activation 
of the AHR can either have pro- or anti-inflammatory effects, 
depending on the ligand or the target cell (Gutierrez-Vazquez 
and Quintana 2018). Indole metabolites (indole, IPA, IAA, and 
tryptamine) produced by gut microbiota are known to be AHR 
activators (Zelante et al. 2014).

The AHR interferes with the immune system by induc-
ing IL-22 production, a cytokine of the IL-10 family that 
stimulates mucosal defence via the induction of antimicro-
bial peptides (AMPs) (Taleb 2019; Zelante et al. 2013). IL-22 
regulates epithelial cell proliferation and production of antimi-
crobial peptides (AMPs), decreasing the inflammatory poten-
tial of commensal bacteria, which has been shown in meta-
bolic syndrome and atherosclerosis (Fatkhullina et al. 2018; 
Taleb 2019; Wang et al. 2014). In addition to the regulation of 
mucosal immune responses, the AHR regulates organogen-
esis, mucosal barrier function, and cell cycle (Kiss et al. 2011; 
Hubbard et al. 2015a, b; Gronke et al. 2019). AHR-ligands 
are cleared and detoxified by cytochrome P450 1 (CYP1) 
enzymes, having a role in feedback regulation. The in vivo 

relevance of CYP1 enzymes was demonstrated by the constitu-
tive and restricted expression of Cyp1a1 in intestinal epithelial 
cells, which resulted in the loss of ILC3s and T helper 17 
(TH17) cells (Schiering et al. 2017). Hence, gut commensal-
derived Trp metabolites interfere with immune regulatory 
AHR signaling at multiple levels.

Microbiota‑derived tryptophan metabolites 
in vascular inflammation

Endothelial dysfunction precedes atherosclerosis, one of 
the most severe forms of vascular inflammation. Analy-
sis of vascular dysfunction in germ-free mouse mod-
els indicated that the gut microbiota promotes vascular 
inflammation and oxidative stress (Karbach et al. 2014). 
Vascular inflammation is frequently associated with auto-
immune diseases such as type 2 diabetes (Steven et al. 
2019). Notably, gnotobiotic mouse atherosclerosis mod-
els and clinical metagenomic shotgun sequencing studies 
have firmly established the gut microbiota as a relevant 
modifier of vascular inflammation and atherosclerosis, 
the primary cause of myocardial infarction (Karbach et al. 
2016; Lindskog et al. 2018; Kiouptsi et al. 2019; Jie et al. 
2017; Pontarollo et al. 2020). Interestingly, in a rat model, 
treatment with different antibiotics resulted in shifts of 
microbial composition and could ameliorate myocardial 

Fig. 2   Effects of Trp metabo-
lites on immune cells. Direct 
(blue box) and indirect effects 
(red box) of Trp metabolites on 
immune cells are highlighted. 
Promoting effects are marked 
with a green + , repressing 
effects with a red  – . AHR aryl 
hydrocarbon receptor, IAA 
indole-3-acetic acid, IA indolea-
crylic acid, IPA indolepropionic 
acid, ILC3s innate lymphoid 
cells group 3, IL Interleukin, 
PBMCs peripheral blood mono-
nuclear cells, Trp tryptophan, 
TNF tumor necrosis factor



1345Microbiota‑derived tryptophan metabolites in vascular inflammation and cardiovascular…

1 3

infarction, which was paralleled by decreased levels of 
Trp metabolites like kynurenine, indole acetate, indole 
propionate, and 3-indoxyl sulfate. At the same time, van-
comycin treatment increased serotonin levels (Lam et al. 
2016). In recent years, several studies demonstrated that 
the microbiota’s influence on Trp metabolism can impact 
on vascular inflammation.

Importantly, the indole pathway promotes the develop-
ment of vascular inflammatory phenotypes. In vitro experi-
ments with endothelial cells demonstrated that indoxyl sul-
fate can induce oxidative stress and decrease NO production 
(Dou et al. 2007; Stinghen et al. 2014; Yu et al. 2011). Fur-
thermore, indoxyl sulfate-treatment led to enhanced pro-
coagulant properties of endothelial cells since it increased 
the expression of the coagulation initiator tissue factor in 
human umbilical vein endothelial cells (HUVECs) along 
with elevated tissue factor procoagulant activity on their 
extracellular vesicles (Gondouin et al. 2013). In addition, 
indoxyl sulfate was demonstrated to inhibit proliferation 
and wound healing (Dou et al. 2004). Moreover, in vas-
cular smooth muscle cells, this metabolite was shown to 
induce proliferation (Yamamoto et al. 2006), tissue factor 
expression and activity (Chitalia et al. 2013), as well as 
IL-6 expression (Adelibieke et al. 2014), involving AHR 
signaling. Importantly, these findings also translated into 
in vivo studies, where indoxyl sulfate enhanced leukocyte 
recruitment to the vascular wall and enhanced the release 
of endothelial microparticles (Ito et al. 2016; Faure et al. 
2006). In chronic kidney disease patients, elevated levels 
of serum indoxyl sulfate correlated with aortic calcification 
(Barreto et al. 2009). However, recent work suggests that 
indoxyl sulfate may not be the major contributor to vascular 
dysfunction associated with ischemic acute kidney injury 
(Nakagawa et al. 2022).

In contrast to indoxyl sulfate, protective effects were 
described for indole-3-propionic acid (IPA). IPA could 
induce pregnane-X-receptor (PXR) expression in the aorta 
of mice and diminished endothelial-dependent vasodilator 
responsiveness (Venu et al. 2019). In the context of intestinal 
inflammation, IPA increased IL-10 receptor (IL-10R) levels 
in intestinal epithelial cells (Alexeev et al. 2018) and showed 
an anti-inflammatory effect in murine bone marrow-derived 
macrophages (Wlodarska et al. 2017). Although IPA admin-
istration alone does not seem to be sufficient to protect West-
ern diet-fed mice from detrimental cardiometabolic effects 
on liver and vasculature (Lee et al. 2020), other in vivo stud-
ies suggest that IPA can reduce inflammation (Zhao et al. 
2019; Du et al. 2021).

Similar to IPA, the Trp metabolite IAld was also capable 
of increasing IL-10R expression in vitro and serum levels of 
both compounds are reduced in mice with active inflamma-
tion (Alexeev et al. 2018). In mouse models, IAld treatment 
resulted in a reduction of the type I interferon response, as 

shown for graft-versus-host disease and CNS inflammation 
(Langan, et al. 2021; Swimm et al. 2018; Rothhammer et al. 
2016). These observed effects led to the discussion of IAld 
as a potential treatment option for pulmonary infections with 
an inflammatory component like aspergillosis (Puccetti et al. 
2021). Of note, IAA, another Trp metabolite of the indole 
pathway produced in bacteria like Clostridium (Elsden et al. 
1976), exerted anti-angiogenic effects in HUVECs treated 
with vascular endothelial growth factor (VEGF) via AHR-
signaling (Langan et al. 2021) and was able to inhibit VEGF 
receptor-2 (VEGFR2) and endothelial nitric oxide synthase 
(eNOS) phosphorylation in HUVEC cultures (Cerezo 
et al. 2019). Furthermore, IAA, together with tryptamine, 
decreased the expression of pro-inflammatory cytokines in 
cultured macrophages and reduced inflammatory effects of 
TNF-α in hepatocytes (Krishnan et al. 2018). When mice 
were fed with a HFD, IDO1 knockout mice had less white 
adipose tissue, showed lower adiposity, and had lower 
plasma leptin and LPS levels than WT mice on the same 
diet (Laurans et al. 2018). Additionally, their livers weighed 
less, accumulated less lipids and showed lower macrophage 
infiltration. Overall, this resulted in a lower inflammatory 
status in the adipose tissue, which was paralleled by higher 
levels of IAA and lower levels of kynurenine in the intes-
tines of IDO1 knockout mice. Mechanistically, elevations in 
IAA levels in those mice correlated with elevated IL-22 and 
IL-17 levels, which led to the hypothesis of IDO1 deletion 
having a protective function in obesity, insulin sensitivity, 
and intestinal permeability.

Interestingly, the Indole pathway, through the production 
of tryptamine by the genera Lactobacillus and Clostridium, 
was observed to induce serotonin release from enterochro-
maffin cells in the gut and potentiate inhibitory effects of 
serotonin on cells in the brain (Takaki et al. 1985; Zucchi 
et al. 2006). Importantly, the strains Lactococcus lactis 
subsp. cremoris (MG 1363), Lactococcus lactis subsp. lac-
tis (IL1403), Lactobacillus plantarum (FI8595), Strepto-
coccus thermophilus (NCFB2392), Escherichia coli K-12, 
Morganella morganii (NCIMB, 10,466), Klebsiella pneu-
moniae (NCIMB, 673) and Hafnia alvei (NCIMB, 11,999) 
were described to produce serotonin directly (O’Mahony 
et al. 2015). Moreover, the presence of spore-forming gut 
bacteria was shown to elevate host serotonin levels (Yano 
et al. 2015). Accordingly, in the study by Wikoff et al. it 
was reported that germ-free mice had a 2.8-fold decrease 
in plasma serotonin as well as elevated tryptophan levels 
as compared to conventionalized mice (Wikoff et al. 2009). 
As serotonin was reported to induce neutrophil degranula-
tion, thus worsening thromboinflammation, the connection 
between microbiota derived metabolites and serotonin might 
also be implicated in vascular inflammation (Mauler et al. 
2019). Moreover, serotonin is important for central cardio-
vascular regulation (Ramage and Villalón 2008) and the 



1346	 N. Paeslack et al.

1 3

microbiota was identified to modulate serotonin levels in 
the brain (Clarke et al. 2013). The ability of Trp metabolites 
such as IAA and IPA to cross the blood brain barrier might 
also indicate a central role for those metabolites (Gao et al. 
2020).

The presented literature outlines various roles for Trp 
metabolites in vascular inflammation (Fig. 3). Indoxyl sul-
fate was shown to promote a procoagulant state in vitro 
as well as endothelial dysfunction in vivo. IPA, IAld and 
IAA on the other hand are predominantly reported to exert 
anti-inflammatory responses. Serotonin release also seems 
to be modulated by the microbiota-derived Trp metabolite 

Tryptamine, which might affect cardiovascular disease 
development. Yet, conclusive mechanisms by which these 
metabolites operate remain to be elucidated and would be 
highly beneficial for their further characterization. This 
is also highlighted by conflicting reports on the role of 
IDO1 in these pathologies, as not only direct effects of its 
substrates have to be considered, but also their absence 
and shifts in other regulatory pathways. Nevertheless, Trp 
metabolites impact on vascular inflammation, which has 
been firmly linked to hypertension (Wenzel et al. 2011).

Fig. 3   Gut microbiota-derived tryptophan metabolites regulate vascu-
lar physiology and disease. Dietary Trp can be converted into various 
metabolites by the gut microbiota. Indoxyl sulfate induces oxidative 
stress and inhibits wound healing of the endothelium. Tryptamine ini-
tiates the production of serotonin from enterochromaffin cells. Local 
effects of serotonin include the degranulation of neutrophils, which 
exacerbates thromboinflammation. Indoxyl sulfate and indole may 
regulate blood pressure via the serotonin signaling pathway, which 
acts either through central or peripheral mechanisms. Anti-inflamma-
tory effects are evoked via IPA and lAld following IL‑10 production, 

or via IAA and tryptamine resulting in a decreased release of pro-
inflammatory cytokines from macrophages. Blood pressure is regu-
lated by a variety of AHR ligands that influence intestinal immune 
cells. Dysbalance of AHR ligands such as IAA or ILA can act on 
ILCs or TH17 cells to alter the blood pressure and promote hyper-
tension. Abbreviations IAA indole-3-acetic acid, AHR aryl hydrocar-
bon receptor, ILA indole-3-lactic acid, IPA indole-3-propionic acid, 
IAld indole-3-aldehyde, ILC innate lymphoid cell, IL interleukin, TH 
T-helper cell, Trp tryptophan
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Microbiota‑derived tryptophan metabolites 
in hypertension

Hypertension is a common and serious medical condition 
that can lead to cardiovascular disease. Elevated blood 
pressure significantly increases the risks of several organ 
pathologies in heart, brain, or kidney, leading to major 
complications such as congestive heart failure, cerebral 
haemorrhage, and renal failure (Doyle 1991; Price and 
Kasner 2014). Approximately 1.28 billion adults world-
wide are affected by hypertension, with an estimated 46% 
of all affected individuals being unaware of their condition 
(World Health Organization 2021; https://​www.​who.​int/​
news-​room/​fact-​sheets/​detail/​hyper​tensi​on).

High blood pressure can be caused by several factors: 
The non-influenceable risk factors, such as genetic predis-
position, age or pre-existing diseases like diabetes or kidney 
diseases, and the influenceable risk factors, which can be 
affected by lifestyle and environment (Oliveras and La Sierra 
2014; Ondimu et al. 2019). In particular physical inactivity, 
high alcohol and tobacco consumption, stress, obesity, and 
unhealthy diets, such as the Western diet (including high salt 
and sugar intake, hyper‑consumption of saturated fats and 
trans-fats and low levels of nutrition-dense foods like fruits 
and vegetables), increase the risk of high blood pressure 
(Narkiewicz 2006; Ondimu et al. 2019; Ruivo and Alcântara 
2012; Ozemek et al. 2018). Hypertension is thus related to 
food intake, which in turn is closely linked to microbiota 
(Derer et al. 2017; Rothschild et al. 2018). For example, 
high salt intake affects the gut microbiome by depleting par-
ticular bacterial species such as Lactobacillus murinus. The 
presence of Lactobacillus has been shown to prevent the 
formation of TH17 cells and consequently reduce hyperten-
sion in mice. Lactobacillus depletion due to increased salt 
intake was accompanied by decrease in the Trp metabolites 
IAA and ILA, suggesting a link between Trp metabolites 
and cardiovascular health (Wilck et al. 2017). Furthermore, 
gut microbiota drives hypertension via the blood pressure 
hormone angiotensin‑II by promoting vascular inflammatory 
processes mediated by monocyte chemoattractant protein‑1 
(MCP-1, CCL2) and IL‑17 (Karbach et al. 2016). In this 
study, germ-free housing conditions resulted in the protec-
tion against angiotensin II-induced hypertension and associ-
ated organ damage.

Since diet is known to influence the composition of the 
gut microbiome (Derer et al. 2017), it is not surprising that 
recent mechanistic studies linked the microbiota to hyper-
tension. Most interestingly, hypertension was found to be 
transferable by fecal microbiota transplant (FMT) into the 
germ-free mouse model (Li et al. 2017), demonstrating a 
causal role of the microbiota. The presence or absence of dif-
ferent gut microbes was associated with high blood pressure. 

For instance, the absence of gram-negative bacteria such as 
Klebsiella, Parabacteroides, Desulfovibrio, and Prevotella 
has been linked to elevated blood pressure (Verhaar et al. 
2020). Moreover, people affected by hypertension were 
reported to have a reduced abundance of the genus Oscil-
libacter and Lactobacillus (Dan et al. 2019), microbes asso-
ciated with Trp metabolism (Roager and Licht 2018; Chen 
et al. 2019). Therefore, microbiota-derived Trp metabolites 
seem to play a role in blood pressure regulation.

The effects of cardiac pressure overload on gut dysbio-
sis were studied in a transverse aortic constriction (TAC)-
model. Within this study, elevated blood pressure was found 
to decrease Lactobacillus species involved in gut homeo-
stasis and Trp metabolism (Carrillo-Salinas et al. 2020; 
Larigot et al. 2018). Moreover, during the TAC-induced car-
diac pressure overload a reduction in the cardiac expression 
of the AHR, a known receptor for Trp ligands, was found 
in CONV-R mice but not in mice lacking the microbiome 
(Carrillo-Salinas et al. 2020). This supports the conclusion 
that hypertension is influenced by microbiota-derived Trp 
metabolites. Besides that, diet-derived AHR ligands promote 
the production of the inflammatory mediator IL-22 in the 
gastrointestinal tract (Lee et al. 2012), which in turn leads 
to increased blood pressure and endothelial dysfunction (Ye 
et al. 2017). This indicates the importance of the local activ-
ity of certain Trp metabolites.

In the small intestine, the essential amino acid Trp is 
converted into indole and its related derivatives such as 
IAA, IPA and ILA by various intestinal bacteria (listed in 
Table 1) (DeMoss and Moser 1969; Donia and Fischbach 
2015; Konopelski and Ufnal 2018). Several studies indicate 
an effect of indole and other Trp-derived indole-compounds 
on gastrointestinal and circulatory system function, includ-
ing conditions such as hypertension (Hubbard et al. 2015a, 
b; Huć et al. 2018). In rats, colonic indole has been reported 
to increase portal blood pressure, thereby affecting processes 
of intestinal inflammation and hemostasis, most likely via 
influencing the function of the gut-vascular barrier (Huć 
et al. 2018; Jaworska et al. 2017). The gut-vascular barrier 
was described as a permeable barrier for small molecules 
whose permeability can be influenced by microbiota such as 
Salmonella typhimurium (Spadoni et al. 2015). According 
to this, portal hypertension increases the permeability of the 
microbiota-derived indoles from the intestine into the blood 
circulation (Huć et al. 2018).

Targeting the gut-vascular barrier is only one possible 
way how Trp metabolites can influence the circulatory 
system. The regulation of blood pressure underlies a vari-
ety of mechanisms mediated peripheral and central by the 
brain (Dampney et al. 2002; Guyton et al. 1972), in which 
microbiota-derived metabolites may also play a role (Tomas-
ova et al. 2016; Verhaar et al. 2020). For instance, the Trp 
metabolites indole and indole sulfate are able to influence 

https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.who.int/news-room/fact-sheets/detail/hypertension
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blood pressure via both pathways. Huć et al. discovered the 
effect of the two metabolites on the circulatory system in rats 
(Huć et al. 2018). Therefore, indole and indole sulfate were 
administered intravenously and into the cerebroventricular 
system at different concentrations to investigate their central 
and peripheral effects on heart rate and blood pressure. Upon 
intravenous administration, both indole and indoxyl sulfate 
increased mean arterial blood pressure at different concen-
trations. However, significant changes in heart rate occurred 
with indoxyl sulfate treatment. During cerebroventricular 
administration of the two metabolites, a significant decrease 
in mean arterial blood pressure as well as a decrease in 
heart rate were observed with indole treatment but not 
with indoxyl sulfate. This highlights the regulatory role of 
the microbiota-derived Trp metabolites on peripheral and 
central blood pressure mechanisms (Huć et al. 2018; Gao 
et al. 2020). In particular, indole and indoxyl sulfate affect 
arterial blood pressure via the serotonin signaling pathway 
since pre-treatment with serotonin-receptor blockers such as 
ondansetron and pizotifen inhibited the hemodynamic effects 
of indole and indoxyl sulfate (Huć et al. 2018).

Overall, there is multiple evidence linking Trp and its 
microbiota-derived metabolites with blood pressure regula-
tion and hypertension (Fig. 3). Besides central and periph-
eral regulation by microbiota-derived Trp metabolites via 
the serotonin pathway, local activation of AHR signalling by 
indole metabolites in the gut, but also impaired gut-vascular 
barrier function could be involved.

Microbiota‑derived tryptophan metabolites 
in atherosclerosis

Despite the use of cholesterol-lowering therapies to reduce 
atherosclerosis, nearly 18 million people die each year from 
CVD (Roth et al. 2017). Atherosclerosis is a chronic inflam-
matory disease, affecting both large and medium sized arter-
ies, initiated by vascular inflammation, increased endothelial 
cell permeability, and intimal low-density lipoprotein (LDL) 
cholesterol accumulation (Theodorou and Boon 2018). 
Overgrowth of atherosclerotic plaques in coronary arteries 
can result in myocardial ischemia, which leads to myocardial 
cell death and acute myocardial infarction (AMI) (Thygesen 
et al. 2018; Ibanez et al. 2018).

Inflammation is considered a key driver of arterial throm-
botic events (Ross 1999; Hansson 2005; Libby et al. 2009). 
Several amino acid metabolic pathways were identified as 
checkpoints for the control of inflammation-related mecha-
nisms. For example, the branched-chain amino acids (leu-
cine, isoleucine, and valine) have been shown to promote 
endothelial cell dysfunction by increasing production of 
reactive oxygen species (ROS) and inflammation (Zhenyukh 
et al. 2018). In particular, Trp metabolites were implicated in 

cardiovascular disease (Nitz et al. 2019; Kappel et al. 2020). 
For example, in clinical studies on advanced atherosclero-
sis, Trp was negatively associated and the kynurenine/Trp 
ratio was positively associated with advanced atherosclero-
sis (Pedersen et al. 2015). In the apolipoprotein E (Apoe)-
deficient mouse atherosclerosis model, antibiotic treatment 
resulted in increased atherosclerosis, connected to a loss of 
intestinal microbiome diversity and alterations in microbial 
metabolic functional capacity with a major impact on the 
host serum metabolome (Kappel et al. 2020). Pathways that 
were modulated by antibiotics and connected to atheroscle-
rosis included diminished tryptophan and disturbed lipid 
metabolism. In support of the role of reduced microbial 
tryptophan biosynthesis in antibiotics-induced atheroscle-
rosis, supplementation of tryptophan in the diet was able 
to partially reduce atherosclerotic lesion size in antibiotics-
treated Apoe-deficient mice.

IDO is a rate limiting enzyme implicated in Trp catab-
olism via the kynurenine pathway (Higuchi and Hayaishi 
1967; Yamamoto, and Hayaishi 1967). During inflammation, 
IDO is up-regulated mostly in macrophages and dendritic 
cells by pro-inflammatory stimuli, such as IFN-γ (Chon 
et al. 1996). Daissormont et al. reported a protective effect 
of plasmacytoid dendritic cells (pDCs) in a model of ath-
erosclerosis, proposing that pDC depletion was accompa-
nied by increased CD4+ T cell proliferation, interferon-γ 
expression by splenic T cells, and plasma interferon-γ levels. 
Lymphoid tissue plasmacytoid dendritic cells from athero-
sclerotic mice showed increased IDO expression and IDO 
blockage abrogated the pDC suppressive effect on T-cell 
proliferation (Daissormont et al. 2011). In vascular inflam-
mation and atherosclerosis, IDO1 activity in bone marrow-
derived macrophages was proposed to have adverse effects 
by inhibition of the anti-inflammatory cytokine IL-10 via 
kynurenic acid mediated activation of a cAMP-dependent 
pathway and inhibition of Erk1/2 phosphorylation (Metghal-
chi et al. 2015). As macrophages are crucially involved in 
vascular inflammation and the pathogenesis of atherosclero-
sis (Shirai et al. 2015), changes in IDO1 activity might play 
a role in these diseases as well. A recent study on Apoe-defi-
cient mice suggested that IDO1 protects against the devel-
opment of atherosclerotic lesions as Indo-knockout mice 
deficient in Apoe had an increased lesion area, increased 
macrophage and CD4+ T cell content in their atherosclerotic 
lesions, and reduced IL-10 production in B cells (Fig. 4) 
(Cole et al. 2015). Moreover, by depriving T cells of Trp, 
IDO activity was hypothesized to regulate T cell-related 
immunity (Fallarino et al. 2006) and therefore to decrease 
vascular inflammation and the progression of atherosclerosis 
(Niinisalo et al. 2010). Indeed, recent work indicates that 
IDO is critically involved in the regulation of intestinal Trp 
metabolism, thus impacting on the microbiota-dependent 
control of metabolic disease (Laurans et al. 2018).
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In patients with coronary artery disease, IDO activity 
was associated with worse cardiovascular outcome (Ped-
ersen et al. 2011, 2015; Eussen et al. 2015). Furthermore, 
in patients with end-stage renal disease, IDO activity was 
linked to atherosclerosis progression (Pawlak et al. 2009). 
In line, kynurenine supplementation was associated with 
an aggravation of cardiac function as well as a deleterious 
cardiac remodeling as revealed by lower capillary number, 
increased infarct size and interstitial fibrosis. IDO inhibitor 
treatment, as well as total and specific endothelial deletion 
of IDO, was recently shown to protect against the deleteri-
ous cardiac effects of MI-induced ischemia (Melhem et al. 
2021). In contrast, kynurenine supplementation, a major 
IDO-related metabolite, abolished the protective effects of 
IDO deficiency in this setting. Hence, the inhibition of IDO 
activity might represent a novel potential therapeutic strat-
egy to mitigate ischemic cardiac injury.

Of note, dysbiosis of the gut microbiota has been shown 
to have an adverse role in the development of atherosclerosis 
by increasing the production of indoxyl sulfate from indole 
and promoting the progression of chronic kidney disease 
(CKD) (Poesen et al. 2016). Due to the reduced clearance 
capability of the kidneys, indoxyl sulfate is accumulated and 
contributes to characteristic phenotypes of atherosclerosis 
such as endothelial dysfunction (Dou et al. 2004) and coro-
nary calcification (Adijiang et al. 2008).

Taken together, these recent results from clinical and 
experimental studies highlight the importance of mechanis-
tic investigations on the microbe-host interactions interfering 

with Trp metabolism, which may contribute to atherosclero-
sis and its end-stage complications.

Concluding remarks

The metabolic capacity of the gut microbiota is increasingly 
recognized to impact on cardiometabolic and cardiovascu-
lar disease phenotypes (Kiouptsi et al. 2020; Vieira-Silva 
et al. 2020). Dependent on the nutritional availability of 
the essential amino acid Trp, bacteria of the gut microbiota 
influence host serotonin biosynthesis in enterochromaffin 
cells and certain members of this microbial ecosystem are 
even capable to directly provide serotonin to their host (Yano 
et al. 2015; O’Mahony et al. 2015). Indeed, the microbi-
ota-induced elevation of serotonin levels by spore forming 
bacteria might contribute to vascular inflammation, most 
likely by its impact on neutrophil function (Mauler et al. 
2022). Another Trp-dependent pathway modulated by the 
gut microbiota is the indole pathway, which acts via the 
AHR, thereby impacting mucosal ILC3 and TH17 immunity 
(Cella et al. 2009; Kiss et al. 2011; Schiering et al. 2017). 
Although the Trp catabolic kynurenine pathway is meta-
bolically independent of the enzymatic repertoire of the gut 
microbiota, still this pathway underlies the regulation by 
microbiota-regulated type I interferons (Chon et al. 1996; 
Schaupp et al. 2020). Of note, there is ample evidence for a 
protective role of the gut microbiota in atherosclerotic lesion 
development, which is for instance mediated by its choles-
terol-lowering effects (Pontarollo et al. 2020). Importantly, 

Fig. 4   Dysbalance in tryptophan (Trp) metabolism promotes athero-
sclerosis. Gut dysbiosis increases the production of indoxyl sulfate 
which may contribute to atherogenesis. Absence of microbiota pro-
motes Trp involvement in the kynurenine pathway. BMDMs pro-
cess Trp via IDO1 into Kyn metabolites. The decreased release of 
IL-10 has a pro-atherogenic effect. Accumulation of CD4+ T cells 

is crucial for the progression of atherosclerosis and is promoted by 
Trp. pDCs are known for their protective role in atherosclerosis by 
inhibiting CD4+ T cell proliferation. Abbreviations: BMDM bone 
marrow-derived macrophage, CD cluster of differentiation, IDO1 
indolamine-2,3-dioxygenase-1, IL interleukin, Kyn kynurenine, pDC 
plasmacytoid dendritic cell, Trp tryptophan



1350	 N. Paeslack et al.

1 3

in mouse atherosclerosis models, a protective role of dietary 
tryptophan has been demonstrated (Kappel et al. 2020).

In conclusion, there is comprehensive experimental and 
clinical evidence for the involvement of microbiota-related 
Trp metabolites in vascular inflammation, blood pressure 
regulation and cardiovascular disease development. Hence, 
future work should focus on the pro- and anti-inflammatory 
effects of microbiota-derived Trp metabolites and their 
direct and indirect impact on host immune cells. Another 
future challenge is to dissect effects arising from microbi-
ota-produced Trp metabolites from the various influences 
of endogenously produced metabolites of the kynurenine 
pathway. Furthermore, using well-defined cell-type specific 
mouse models, it will be interesting to define how these 
pathways interfere to regulate host (patho)physiology on 
the molecular and cellular level.
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