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Abstract 

Background:  Diclofenac etalhyaluronate (DF-HA) is a recently developed analgesic conjugate of diclofenac and 
hyaluronic acid that has analgesic and anti-inflammatory effects on acute arthritis. In this study, we investigated its 
analgesic effect on osteoarthritis, using a rat model of monoiodoacetate (MIA).

Methods:  We injected MIA into the right knees of eight 6-weeks-old male Sprague–Dawley rats. Four weeks later, 
rats were randomly injected with DF-HA or vehicle into the right knee. Seven weeks after the MIA injection, fluorogold 
(FG) and sterile saline were injected into the right knees of all the rats. We assessed hyperalgesia with weekly von 
Frey tests for 8 weeks after MIA administration. We took the right knee computed tomography (CT) as radiographi‑
cal evaluation every 2 weeks. All rats were sacrificed 8 weeks after administration of MIA for histological evaluation of 
the right knee and immunohistochemical evaluation of the DRG and spinal cord. We also evaluated the number of 
FG-labeled calcitonin gene-related peptide (CGRP)-immunoreactive(ir) neurons in the dorsal root ganglion (DRG) and 
ionized calcium-binding adapter molecule 1 (Iba1)-ir microglia in the spinal cord.

Results:  Administration of DF-HA significantly improved pain sensitivity and reduced CGRP and Iba1 expression in 
the DRG and spinal cord, respectively. However, computed tomography and histological evaluation of the right knee 
showed similar levels of joint deformity, despite DF-HA administration.

Conclusion:  DF-HA exerted analgesic effects on osteoarthritic pain, but did not affect joint deformity.
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Background
Osteoarthritis (OA) is a chronic degenerative disease 
caused by the loss of articular cartilage components in 
patients worldwide. It is a significant cause of disabil-
ity-related loss of physical function [1]. Pain is a com-
mon symptom of OA, and although its mechanism is 
unclear, several animal models have been reported, 
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including the anterior cruciate ligament resection [2, 
3] and medial meniscectomy [4] models. Monoiodoac-
etate (MIA) is often used to induce OA because it 
causes necrosis of chondrocytes when administered in 
the knee joints of rats, leading to a pathology similar to 
OA [5, 6].

Previous studies have reported that both inflammatory 
and neuropathic pain elements and hypersensitivity are 
present in the animal models of OA [7, 8]. MIA adminis-
tration which induces OA has been reported to increase 
the expression of calcitonin gene-related peptide (CGRP) 
that mediates peripheral nervous system inflammation in 
the dorsal root ganglia (DRG) [9].

In addition, glial cells, such as microglia in the dor-
sal horn of the spinal cord, proliferate and change their 
morphology, and the expression of markers, such as 
ionized calcium-binding adapter molecule 1 (Iba1) 
increases that leads to central sensitization [9–11].

Diclofenac etalhyaluronate (DF-HA) is a chemical 
combination of diclofenac (DF) and hyaluronic acid 
(HA), a newly developed drug for intra-articular injec-
tion in OA that slowly releases DF through hydrolysis 
in the joint [12]. NSAIDs, such as DF, provide good 
and rapid analgesia, but are not recommended for fre-
quent or long-term use [13]. HA may improve pain 
through cartilage protection, anti-inflammation, and 
intra-articular protection when administered intra-
articularly, and may have less immediate, but long-last-
ing effects [14]. DF-HA may improve joint function and 
analgesia and decrease systemic side effects because it 
releases DF slowly by hydrolysis in the joints. Studies 
suggest that DF-HA promotes the production of high-
molecular-weight sodium hyaluronate in human syn-
oviocytes in  vitro and may provide potent long-term 
analgesic effects and improve joint function [15]. Ani-
mal studies indicate that DF-HA persists in the joints 
for approximately 4 weeks after administration and con-
fers analgesic effects on a silver nitrate-induced acute 
inflammation model [12]. In humans, several clinical 
trials have reported that joint injections of DF-HA every 
4 weeks for up to 52 weeks for osteoarthritis improved 
pain and did not cause serious adverse events [16–19]. 
However, in animal studies, no such experimental 
results have yet been reported for such osteoarthritis 
models.

An excessive analgesia may promote joint deform-
ity, and studies have reported an association between 
opioid administration and OA progression [20, 21]. 
Therefore, this study aimed to investigate the analgesic 
effect of DF-HA and its effect on joint deformity using 
an MIA-induced rat knee OA model.

Methods
Animals
All animal experimental procedures were reviewed and 
approved by the Ethics Committee of the Chiba Univer-
sity. All experiments were conducted in accordance with 
the National Institutes of Health guidelines for the man-
agement and use of laboratory animals.

Eight 6-weeks-old male Sprague–Dawley rats (CLEA, 
Tokyo, Japan), weighing 250–300 g, were used. The rats 
were kept under an environmentally controlled 12-h 
light/dark cycle, with a temperature of 21–23℃ and 
humidity of 45–65%. All rats were provided water and 
food ad  libitum and fed a standard rodent diet (CRF-1; 
Oriental Yeast Co., Ltd).

Intra‑articular injection of MIA and retrograde neurotracer
Based on previous studies [22], three drugs, 0.15  mg/kg 
medetomidine (Nippon Zenyaku Kogyo Co., Ltd.), 2.0 mg/
kg midazolam (Maruishi Pharmaceutical Co., Ltd.), and 
2.5  mg/kg butorphanol (Meiji Seika Pharma. Co., Ltd.) 
were mixed with 1.45 mL/kg of saline (Otsuka Pharmaceu-
tical Co., Ltd., Tokyo, Japan) and used as anesthesia. The 
eight rats that had received the anesthetics intraperito-
neally were injected with 50 μL of saline and 2 mg of MIA 
into the right knees using a 27-gauge needle [9, 23].

Four weeks later, the rats were randomly divided into 
two groups of four rats each: one group was injected 
with DF-HA (JOYCLU, Seikagaku Corporation) (0.5 mg) 
(50 μL) into the right knee joint (DF-HA group) and the 
other group was injected with 50 μL of substrate only 
(Macrogol 400, an additive adjusted to a pH of 4.8–5.4) 
without DF-HA (vehicle group).

Seven weeks after MIA administration, the retrograde 
nerve tracer—1% fluorogold (FG)—and 25 μL of saline 
were administered to the right knees of all animals.

All rats of both groups were examined for behavioral 
tests every week and Computed tomography (CT) every 
2  weeks. After 8  weeks of administration of MIA injec-
tion, namely 4 weeks of DF-HA or vehicle administration, 
all of them were sacrificed by perfusion fixation under 
anesthesia. Then, the spinal cord, DRGs and right knee 
joint of all rats were harvested. The spinal cord and DRGs 
were used for immunohistochemical staining, and the 
right knee joints were used for histological evaluation.

Behavioral test
Using the von Frey assay, mechanical plantar skin sensi-
tivity of all rats in both groups was evaluated every week 
for 8  weeks after MIA administration. Prior to the test, 
the condition of each animal was observed, and its weight 
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was measured each time to confirm that there were no 
health problems. Two groups of four rats each were used. 
The rats were randomly selected and acclimatized to the 
test chamber for 1 h before testing (blinded to the experi-
menter). Baseline thresholds were tested before MIA 
administration. The von Frey filament (monofilament kit; 
Smith & Nephew) was applied for 4  s or until the lower 
limb was withdrawn (whichever occurred first), and 
the 50% paw withdrawal threshold (PWT g) was calcu-
lated [24]. Stimulus intensity ranged from 1 to 60 g, cor-
responding to 4.08, 4.17, 4.31, 4.56, 4.74, 4.93, 5.07, 5.18, 
5.46, and 5.88. Five consecutive stimulations were per-
formed using the up-down method [25], starting from 
the lowest filament that elicited a positive response in 
each animal. Threshold values were calculated based on 
the filament thickness, average spacing, and pattern of 
responses. Hind limb plantar mechanical hypersensitivity 
was assessed using a wire mesh observation cage. Data are 
presented as 50% PWT ± standard mean error for each 
group.

Immunohistochemical analyses of CGRP and Iba1
As mentioned above, according to a previous study [26], 
the L3, L4, and L5 level right DRG and lumbar spinal cord 
of all the rats in both groups were harvested 4 weeks after 
the administration of DF-HA or vehicle, namely 8 weeks 
after administration of MIA. The DRG and spinal cord 
specimens were immersed overnight in phosphate-buff-
ered paraformaldehyde.

Specimens were then stored in 0.01  M phosphate-
buffered saline (PBS) containing 20% sucrose for 20  h 
at 4 ℃ and frozen in liquid nitrogen. The DRG and spi-
nal cord were sliced into 10-μm-thick slices using a cry-
ostat (CM3050S, Leica Microsystems). The sections were 
mounted on slides coated with poly-L-lysine. The DRG 
sections were treated with a nonspecific blocking solu-
tion of 0.3% Triton X-100 mixed with 3% skim milk, 
bovine serum albumin, and PBS for 90 min at 20℃. The 
sections were then incubated with anti-CGRP rabbit 
antibody (1:1,000 dilution; chemicon Temecula) for 20 h 
at 4℃, and then incubated with Alexa Fluor 488-conju-
gated goat anti-rabbit IgG (1:1,000 for CGRP immuniza-
tion Molecular Probes).

The spinal cord sections were incubated with anti-Iba1 
rabbit antibody (1:1,000 dilution; Chemicon Temecula) 
for 20  h at 4℃, and then incubated with Alexa Fluor 
488-conjugated goat anti-rabbit IgG (1:1,000 for Iba1 
immunization, Cat# 019–19,741; Wako, Osaka, Japan).

After each step, the sections were washed three times 
with PBS. Immunostained sections were observed under 
a microscope BZ-X810 (KEYENCE, Japan).

The number of neurons labeled with FG-alone and 
those marked with FG and CGRP were randomly 
counted at 10 locations every 0.45 mm2 in each DRG at 
400 × magnification. The percentage of CGRP-immuno-
reactive (ir) neurons in the FG-labeled neurons was then 
determined.

Counting grids were used to measure Iba1-ir neurons 
every 0.1 mm2 of the dorsal horn of the spinal cord.

Both CGRP-ir DRG neurons and Iba-positive cells 
in spinal cord were completely blinded to count by 
two orthopedic surgeons with experience in basic 
experiments.

Histopathological findings
Samples were collected from all groups for histological 
evaluation. The rats were anesthetized intraperitoneally 
with 0.15  mg/kg medetomidine, 2.0  mg/kg midazolam, 
and 2.5 mg/kg butorphanol. Further, 0.9% saline was per-
fused percutaneously, followed by 500  mL of 4% para-
formaldehyde mixed with phosphate buffer (0.1  M, pH 
7.4). The soft tissues around the right knee joint were 
excised. Each specimen was dehydrated twelve hours in 
U.I. demineralization solution A (Yuaikasei CO., LTD, 
Amagasaki, Hyogo, Japan), neutralized with 5% sodium 
sulfate, and then cut. The specimens were dehydrated 
and paraffin-embedded using Tissue-Tek V. I. P. 6 AI 
(Sakura Finetek Japan Co., LTD, Tokyo, Japan). From 
each prepared block, 10-μm serial sections were made at 
the center and intercondylar area of the knee joint using a 
sliding microtome LS113 (YAMATO-KOHKI Industrial 
Co., LTD, Asaka, Saitama, Japan). Twelve sections from 
each group were stained with hematoxylin–eosin and 
safranin O (three sections per animal).

OA was evaluated using the histopathology scoring sys-
tem of the Osteoarthritis Research Society International 
(OARSI) [27]. The OARSI score is calculated by multiply-
ing the Stage and Grade scores. Grade 0 is normal, grade 
1 preserves the articular surface, but cartilage tissue 
changes such as chondrocyte proliferation occur, grade 
2 shows localized breakdown of cartilage surface conti-
nuity, grade 3 shows progressive vertical fissuring, grade 
4 shows delamination of the cartilage surface, grade 5 
shows degeneration extending to the subchondral bone, 
and grade 6 shows deformity of the joint as a result of 
microfracture repair. Stage 0 has no OA findings, stage 1 
has less than 10% of the joint surface, stage 2 has 10–25%, 
stage 3 has 25–50%, and stage 4 has more than 50%. Two 
orthopedic surgeons with experience in basic experi-
ments blindly assessed and scored the samples.

Each sample was evaluated for OA changes in depth 
(grading) and width (staging), and the scores for depth 
and width were multiplied. The mean scores for each 
group were compared between groups.
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Radiographical findings
CT of the right knee of rats in both the groups was per-
formed every 2 weeks after MIA administration. The rats 
were anesthetized by inhalation of sevoflurane, and imag-
ing was performed using a CT Lab GX (Rigaku, Tokyo, 
Japan) with a FOV of 45 mm and an imaging time of 18 s.

Coronal cross-sectional images parallel to the bony axis of 
the tibia and through the center of the articular surface were 
produced on CT and evaluated using the Larsen classifica-
tion [28], commonly applied in rheumatoid arthritis. Two 
blinded orthopedic surgeons evaluated and scored the sec-
tions according to the degree of joint deformity. The mean 
scores of each group were compared between the groups.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism version 9 (GraphPad Software). PWT, OARSI 
score, percentage of CGRP-positive FG-labeled neu-
rons in the DRGs, and the number of microglia in the 
right dorsal horn of the spinal cord were compared 
between the two groups using Mann–Whitney U test. 
Statistical significance was set at P < 0.05.

Results
Behavioral test
In the von Frey test, both the vehicle and DF-HA 
groups showed a decreased pain threshold after MIA 
administration, with no significant difference between 
the two groups. After drug administration, the DF-HA 
group showed a significant improvement in irritabil-
ity from the second to the fourth week after treatment 
than vehicle group (P < 0.05; Fig. 1).

Immunohistochemical expression of CGRP and Iba1
The DF-HA group had a significantly lower percentage 
of FG-labeled CGRP-ir cells in the DRGsL3, L4 and L5 
than those in vehicle group (P < 0.01; Fig. 2). The num-
ber of Iba1-ir cells in the right dorsal horn of the spinal 
cord was significantly lower in the DF-HA group than in 
vehicle group (P < 0.05; Fig. 3).

Histopathological findings
Both groups had progressive OA changes (Fig. 4). The 
OARSI score was slightly lower in the DF-HA group 
than in vehicle group, but there was no significant dif-
ference between the two groups (Fig. 5).

Radiographical findings
Progression of the joint deformity was observed in both 
the groups; however, there was no significant difference 
at any time point (Fig. 6).

Discussion
This is the first study to demonstrate the effect of DF-HA 
treatment on the behavioral induction of osteoporotic 
pain, sensory neurons, and OA in a rat model of MIA-
induced knee OA. In the present study, 2.0  mg of MIA 
administered to the knee joint of rats led to signifi-
cant MIA-induced cutaneous hind paw hypersensitiv-
ity to mechanical stimuli and OA changes. In addition, 
intra-articular injection of DF-HA caused significant 
improvement in cutaneous hind paw hypersensitivity to 
mechanical stimuli and attenuated CGRP-ir DRG neu-
rons and Iba-1 positive cells. However, there was no sig-
nificant difference in the osteoarthritic changes between 
the DF-HA and vehicle groups.

In the 2.0  mg MIA rat knee OA model used in this 
study, significant MIA-induced cutaneous hind paw 
hypersensitivity to mechanical stimuli, increased CGRP-
ir DRG neurons and MIA-induced OA changes have 
been previously reported [9], and the model is considered 
a valid model for knee OA.

Since this is the first study in which DF-HA was admin-
istered to a rat MIA model, it was necessary to use a dose 
that would definitely induce joint deformity. In addition, 
since it was required to compare not only arthropathic 
changes but also pain behavior evaluation, we decided to 
use a dose of 2.0 mg MIA. This dose has been reported 
in previous animal studies using rats to reliably induce 
arthropathic changes and show significant results in pain 

Fig. 1  Effect of DF-HA on the pressure withdrawal threshold 
applied to one posterior ipsilateral limb Changes in hyperalgesia 
are measured using a von Frey filament and expressed in grams (g) 
as a 50% paw withdrawal threshold. Behavioral tests are performed 
before MIA administration (BL). Further, 2 mg of MIA is administered, 
and the von Frey test is performed weekly for 8 weeks. DF-HA (DF-HA 
group) or vehicle (vehicle group) is administered at week 4 and FG is 
administered at week 7 after the test. Lower threshold values indicate 
enhanced hyperalgesia. Data are expressed as the mean ± standard 
error of four animals per group
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behavior. We also considered MIA 2.0 mg, which causes 
severe joint degeneration, to be appropriate because, in 
Japan, in clinical practice, intra-articular injection of HA 
and DF-HA is often used for patients with moderate to 
end-stage OA as well as for those with mild OA.

However, DF-HA may exert better analgesic and joint-
protective effects in patients with mild OA. Yoh et  al. 
[29] reported that 0.25 mg or 0.5 mg MIA intra-articular 
injection to hip in rats induced mild OA this year, moreo-
ver, Kanno et al. [26] also reported arthropathic changes 
and pain behavior assessment in a rat model of hip oste-
oarthritis at 0.5  mg MIA. We believe it is necessary to 
compare the effects of DF-HA with those of low-dose 
MIA administration models such as 0.25 mg and 0.5 mg 
in the future.

In a previous study, radiolabeling showed that DF-HA 
remained in the joints for up to 4  weeks post-adminis-
tration and released DF continuously [30]. In addition, 
a study [12] in which DF-HA was administered after 
inducing arthritis with silver nitrate in the knees of rab-
bits suggested that the DF concentration in the synovium 
remained > 10  ng/g and significantly reduced swell-
ing from the day after its administration until 4  weeks 
later. In the present study, MIA-induced cutaneous hind 

paw hypersensitivity to mechanical stress was signifi-
cantly improved in the DF-HA group than that in vehi-
cle group from 2 to 4 weeks after administration. These 
results suggest that intra-articular injection of DF-HA 
improved pain and was sustained for up to 4 weeks after 
administration.

In this study, considering the survival period of FG, 
intra-articular injection of FG was performed at week 7 
of MIA administration, but the possibility of influence 
on subsequent pain behavior cannot be ruled out. In the 
future, it will be necessary to devise the timing of FG 
administration, such as administering MIA and FG at the 
same time and conducting further long-term follow-ups.

A previous study reported that intra-articular admin-
istration of MIA enhances cyclooxygenase2 (COX2) 
and interleukin1β (IL-1β) expression in chondrocytes 
[31]. DF-HA continuously released DF that suppressed 
the production of prostaglandin E2 [12, 32], a typi-
cal inflammatory cytokine, by inhibiting COX, thereby 
reducing pain. These mechanisms suggest that DF 
improves pain in the MIA-induced rat knee OA model.

Immunohistochemical staining showed that the 
DF-HA group had a significantly decreased percentage 
of FG-positive and CGRP-positive DRG cells innervating 

Fig. 2  Fluorescence photomicrographs of the DRG after administration of DF-HA or vehicle for 4 weeks a FG-labeled DRG neurons, b 
CGRP-immunoreactive (ir) DRG neurons, and c overlaid picture a on b. All photomicrographs are from the same section. White arrows in the 
photomicrograph of a indicate FG-labeled DRG neurons, and white arrowheads in the photomicrograph of b and c indicate FG-labeled CGRP-ir 
DRG neurons. The proportions of FG-labeled CGRP-ir neurons in the DF-HA groups are significantly higher than those in vehicle group (n = 4 rats 
per group)
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Fig. 3  Fluorescence photomicrographs of the spinal cord after administration of DF-HA or vehicle for 4 weeks a and b Representative fluorescent 
photomicrographs of the right dorsal horn of the spinal cord. Scale bars, 100 μm. White arrowheads indicate Iba1-immunoreactive (ir) microglia in a 
DF-HA and b vehicle groups. The number of Iba1-ir microglia is significantly higher in the vehicle group than in DF-HA group

Fig. 4  Histopathological images of the rat’s knee in the vehicle and DF-HA groups a and b Vehicle group, and c and d DF-HA group. Scale bars, 
400 μm. a and c Hematoxylin–eosin staining. b and d Safranin O (SO) staining. a and c White arrows indicate significant cartilage loss in both 
groups. b and d Little cartilages are stained red with SO. b and d Red-stained areas are irregularly fragmented and distributed deep in the remaining 
cartilage layer (sections surrounded by a red frame)
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the knee joint than those in vehicle group. The secre-
tion of local pro-inflammatory cytokines contributes 
to increased CGRP expression, leading to neurogenic 
inflammation and hypersensitivity.

The afferent nerve fibers in the rat knee joint have 
been reported to be localized to the L3, L4, and L5 [33, 

34]. Increased levels of CGRP in the DRG of L3, L4, 
and L5 indicated acute inflammatory pain in the knee 
of an MIA-induced OA rat model [35–37]. In addition, 
the DRG neurons are considered responsible for acute 
inflammatory pain [38].

Thus, pain-related characteristics of an MIA-induced 
rat OA model may originate from an inflammatory pain 
state induced by local inflammation initiated by inflam-
matory cytokines. Therefore, the present study indicated 
that local inflammation occurred in the knee of an MIA-
induced OA rat model, and that CGRP expression in 
the DRG was suppressed by DF-HA injection that sug-
gested that DF-HA administration reduced acute inflam-
matory pain. However, as there was no control group in 
this study, it is unclear how many CGRP-ir DRG neurons 
were elevated after MIA injection in the vehicle group 
than in normal group. Future studies should include a 
control group.

In this study, the number of Iba1-positive cells, a 
marker of microglia in the dorsal horn of the spinal cord, 
was also significantly reduced in the DF-HA group than 
that in vehicle control. Pain in OA is a complex mecha-
nism; however, it may primarily involve inflammatory 
pain and, when prolonged, a neuropathic pain compo-
nent. Moreover, in the MIA-induced model, pain may 
become chronic due to central sensitization [38, 39].

It has been shown that 2.0  mg of MIA administered 
intra-articulately causes significant axonal damage to 
DRG cells innervating the skin and other parts of the 
hind leg, in addition to joint deformities [33]. Namely, 
neuropathic pain component may have been involved in 
the present results with MIA 2.0 mg.

In this study, we didn’t evaluate the nature of the pain, 
and immunostaining of DRGs only evaluated inflammatory 

Fig. 5  Graphs of OARSI score in each group after 4 weeks of DF-HA 
or vehicle administration The mean score of the vehicle group is 
slightly higher than that of DF-HA group (P > 0.05)

Fig. 6  CT images of the right knee after intra-articular injection of MIA every 2 weeks a–d Vehicle and e–h DF-HA groups. The graph shows the 
transition of the mean Larsen grade of each group. Joint degeneration tends to progress with time (P > 0.05)
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pain using CGRP. Therefore, neuropathic pain was not dis-
cussed. Therefore, future studies should include evaluation 
of ATF-3, a neuropathic pain marker in DRGs, and micro-
glial activity using OX42 in the dorsal horn of the spinal 
cord to focus on the neuropathic pain component when we 
use 2.0 mg MIA injection.

Level of COX is upregulated in macrophages and 
Schwann cells around nerve injury [40], and COX inhibi-
tors can interfere with myelin debris signals that negatively 
affect regeneration and may assist in nerve regeneration in 
rats [41, 42]. DF-HA may also decrease microglial expres-
sion by regenerating peripheral nerves and inhibiting sen-
sitization of the central nervous system. Therefore, DF-HA 
may be effective against acute inflammatory and chronic 
pain; however, further validation is needed.

Pathologically and radiographically, DF-HA was inef-
fective in improving or inhibiting the progression of 
joint deformity; in contrast, there was no progression 
of deformity due to excessive analgesia. As Kanno et al. 
[26] reported, drugs with strong analgesic effects such 
as tramadol risk worsening arthropathy, but the results 
of this study showed that DF-HA reduced pain but did 
not worsen arthropathy. This may be because HA has a 
protective effect on joints and promotes the synthesis of 
proteoglycans and glycosaminoglycans [43].

In this study, we used the Larsen classification for CT 
image evaluation because CT is more convenient than 
X-ray at our facility and that it is more accurate to eval-
uate the articular surface of rats than X-ray. The Kell-
gren–Lawrence classification [44] (K–L classification) on 
X-rays is generally used for evaluating human patients 
with OA. However, in CT [45], particularly in rats, MIA 
injection causes bone loss, and increases trabecular [46] 
and tibial subchondral plate thickness, but this is not a 
well-established evaluation. As the MIA-induced rat 
model simulates OA by inducing necrosis of chondro-
cytes, we considered the Larsen classification to be more 
suitable for the evaluation than the K–L classification. 
Considering the characteristics of CT, it is possible to 
provide detailed data on the evaluation of the bone itself, 
such as bone volume/tissue volume (BV/TV), trabecular 
number (Tb.N), trabecular thickness (Tb.Th), trabecular 
separation (Tb. Sp), we would like to evaluate the bone 
using each parameter with CT.

This study has some limitations. First, we failed to 
include a control group. In previous studies, it has been 
reported that 2.0 mg MIA induces obvious arthropathic 
changes, and in this study, CT showed obvious arthro-
pathic changes, so we judged that it is appropriate as a 
rat knee arthropathy model induced by MIA. However, 
the lack of a control group is a major limitation of this 
study, and it will be necessary to provide one in future 

studies. Second, as the synovial membrane and cartilage 
in the knee joint were not investigated, we could not con-
firm whether the reduction in inflammatory cytokines 
decreased the pain. Third, the von Frey test was the only 
behavioral test used to evaluate pain. Therefore, it is nec-
essary to perform behavioral assessments for musculo-
skeletal pain, such as measuring hind limb weight bearing 
and the catwalk test in the future. Finally, the follow-up 
period was short, and DF-HA was administered only 
once. Thus, a long-term study with adequate administra-
tion of DF-HA is required in the future.

Conclusion
Intra-articular injection of DF-HA provided an analgesic 
effect without worsening joint deformity in the rat knee 
MIA model.
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