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Abstract

Image-guided adaptive lung radiotherapy requires accurate tumor and organs segmentation from 

during treatment cone-beam CT (CBCT) images. Thoracic CBCTs are hard to segment because 

of low soft-tissue contrast, imaging artifacts, respiratory motion, and large treatment induced 

intra-thoracic anatomic changes. Hence, we developed a novel Patient-specific Anatomic Context 

and Shape prior or PACS-aware 3D recurrent registration-segmentation network for longitudinal 

thoracic CBCT segmentation. Segmentation and registration networks were concurrently trained 

in an end-to-end framework and implemented with convolutional long-short term memory models. 

The registration network was trained in an unsupervised manner using pairs of planning CT (pCT) 

and CBCT images and produced a progressively deformed sequence of images. The segmentation 

network was optimized in a one-shot setting by combining progressively deformed pCT (anatomic 

context) and pCT delineations (shape context) with CBCT images. Our method, one-shot PACS 

was significantly more accurate (p <0.001) for tumor (DSC of 0.83 ± 0.08, surface DSC [sDSC] 

of 0.97 ± 0.06, and Hausdorff distance at 95th percentile [HD95] of 3.97±3.02mm) and the 

esophagus (DSC of 0.78 ± 0.13, sDSC of 0.90±0.14, HD95 of 3.22±2.02) segmentation than 

multiple methods. Ablation tests and comparative experiments were also done.
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I. Introduction

Adaptive image-guided radiation treatments (AIGRT) of lung cancers require accurate 

segmentation of tumor and organs at risk (OAR) such as the esophagus from during 

treatment cone-beam CT (CBCT) [1]. Tumors are difficult to segment due to very low 

soft-tissue contrast on CBCT, imaging artifacts, radiotherapy (RT) induced radiographic and 

size changes, and large intra- and inter-fraction motion [1]. Normal organ like the esophagus 
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is also hard to segment due to low soft-tissue contrast and displacements exceeding 4mm 

between treatment fractions [2].

Cross-modality deep learning methods have used structure constraints from planning CT 

(pCT) [3], as well as MRI contrast as prior knowledge to improve pelvic organ [4] and lung 

tumor [5] segmentation from CBCT. However, expert delineated CBCTs needed for training 

are not routinely segmented and suffer from high inter-rater variability [6].

Atlas-based image registration methods overcome the issue of limited segmented datasets by 

directly propagating segmentations [7], [8] as well as by providing synthesized images as 

augmented data for segmentation training [9]-[11]. Cross-domain adaptation based synthetic 

CBCT generation based data augmentation [12] is another promising approach used for 

pelvic organs segmentation. A hybrid approach [13] combining data augmentation using 

cross-domain adaptation of pCT, MRI, and CBCT with multi-modality registration was used 

for liver segmentation from during treatment CBCTs.

Multi-task networks [10], [14]-[16] handle limited datasets by using implicit data 

augmentation available from the different tasks through the losses to jointly optimize 

registration and segmentation. Notably, these methods have shown feasibility for one and 

few-shot normal organ segmentation [10], [14], [17], using CT-to-CT or MRI-to-MRI 

registration. Planning CT to CBCT registration is harder because of low soft-tissue contrast 

and narrow field of view (FOV) on CBCT [13].

Prior works applied to CBCT registration aligned large moving organs [4], [10], [13], [18], 

[19]. We tackle more challenging lung tumor segmentation from CBCT for longitudinal 

response assessment in tumors undergoing treatment. Previously, longitudinal tracking 

in anatomy depicting large changes, such as growing infant brains [8] and pre- and 

post-surgical brains [20] aligned same modalities with high contrast (MRI-to-MRI). Cross-

domain adaptation based synthetic CT [21] as well as deep network combined with scale 

invariant feature transform (SIFT) detected features [19], and surface points registration of 

multiple modalities [13] are example approaches used to handle low soft-tissue contrast on 

CBCT. We address multiple challenges, namely, multi-modal registration (pCT to CBCT), 

longitudinal registration of highly deforming diseased and healthy tissues with altered 

appearance from treatment, and segmentation on low soft-tissue contrast CBCT.

In order to tackle all these challenges, our approach combines an end-to-end trained joint 

recurrent registration network (RRN) and recurrent segmentation network (RSN). Our 

approach models large local deformations by computing progressive deformations that 

incrementally improves regional alignment. This is accomplished by using convolutional 

long-short term memory (CLSTM) [22] to implement the recurrent units of RRN and 

RSN. CLSTM models long-range temporal deformation dynamics, needed to model the 

progressive deformations in regions undergoing large deformations. The convolutional 

layers used in CLSTM models the spatial dynamics of a dense 3D flow field compared 

to 1D information computed by LSTM [23]. Our approach increases flexibility to capture 

longitudinal size and shape changes in tumors compared to the Recurrent Registration 

Neural Network (R2N2) [24], which computes parameterized local deformations. Finally, in 
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order to handle low contrast on CBCT, RSN combines progressively aligned anatomical 

context (pCT) and shape (pCT delineation) prior produced by a jointly trained RRN. 

Hence, we call our approach patient-specific anatomic context and shape prior or PACS-

aware registration-segmentation network. We show that our approach is more accurate than 

multiple methods.

The RRN is trained in an unsupervised way using only pairs of target and moving images 

without structure guidance from segmented pCT or CBCT. RSN is optimized with a single 

segmented CBCT example and combines progressively warped pCT images and delineations 

produced by the RRN with CBCT for one-shot training. Our contributions are:

• Multi-modal recurrent joint registration-segmentation approach to handle large 

anatomic changes in tumors undergoing treatment and highly deforming 

esophagus.

• One-shot segmentation with patient-specific anatomic context and shape priors, 

which handles tumor segmentation despite varying size and locations. To our 

best knowledge, this is the first one-shot learning approach for longitudinal 

segmentation of lung tumors from CBCT.

• A recurrent registration network that interpolates dense flow field using only a 

pair of pCT and CBCT images and optimized with unsupervised training.

• Comprehensive comparison, ablation, and network design experiments to study 

accuracy.

II. Related Works

A. Medical image registration-based segmentation

One-shot and few-shot learning strategies extract a model from only a single or a few 

labeled examples. Hence, these are attractive options for medical image analysis where large 

number of expert segmented cases are not available. As elucidated by Wang et.al [25], a 

key difference between few shot learning applied to natural vs. medical images is that, in 

the former, learning is concerned with extracting a model to recognize a new class based 

on appearance similarities to previously learned classes. Medical image analysis methods 

are concerned with better modeling the anatomic similarity between subjects using few 

examples where all classes are available. The challenge is to extract a representation that is 

robust to imaging and anatomic variability among patients.

Iterative registration methods sidestep the issue of learning by using the available segmented 

cases as atlases [26]. Assuming that the atlases represent the variability in the patient 

anatomy, these methods provide reasonably accurate tissue segmentations [7]. Unsupervised 

deep learning-based synthesis of realistic training samples [9] as augmented datasets are a 

more robust option, because they do not suffer from catastrophic failures. Also, once trained 

the network produces computationally fast segmentations unlike iterative registration. 

Nonetheless, accuracy is reduced due to poor image quality and large anatomical changes 

[27].
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Joint registration-segmentation methods [14]-[16], [28] are more accurate than registration-

based segmentation. This is because, these methods model the interaction between 

registration and segmentation features and improve accuracy. Furthermore, these approaches 

are amenable to training with few segmented examples including semi-supervised learning. 

For example, a registration network was used to segment unlabeled data for training 

[11], [14] as well as create augmented samples through random perturbations in the 

warped images [10]. These methods benefit by using the segmentation network to provide 

additional regularization losses to optimize the registration network training such as through 

segmentation consistency [14] and cycle consistency losses [11]. However, the one-step 

registration computed by these methods may not handle very large deformations.

Multi-stage [29] and recursive cascade registration [30] methods have shown that 

incrementally refined outputs produced from intermediate steps as inputs to subsequent steps 

increases accuracy to model large deformations but require large number of parameters. 

R2N2 [24] improves on these methods by using gated recurrent units with local Gaussian 

basis functions and captures organ deformations occurring in a breathing cycle from MRI.

B. Shape and spatial priors for registration-segmentation

Template shape constraints [31] as well as population level anatomical priors learned using a 

generative model [32], [33] were previously used to regularize same modality registrations. 

Segmentation as auxiliary supervised information has shown to provide more accurate 

registrations [14], [34]-[36]. Structure guidance from pCT [3] and anatomical priors priors 

[32], [33] have shown to improve accuracy. Improving on prior works that used either shape 

[3], [31], [34]-[36] or anatomical priors [32], [33], we use both priors and show accuracy 

gains, even in the one-shot segmentation training scenario, where a single segmented CBCT 

example is used for training. Our joint recurrent registration-segmentation network computes 

a dense 3D flow field but uses fewer parameters than cascaded methods [29], [30] and is 

more accurate than R2N2 [24].

Rationale for combining pCT as anatomical context and and delineations as 
shape prior: The pCT has a higher soft-tissue contrast than the CBCT scans, which 

can provide a spatially aligned anatomic context to improve inference from lower-contrast 

CBCT. We also expect that the pCT segmentations used as patient-specific priors to segment 

CBCT will be informative of the tumor and organ shape for segmentation.

III. Method

A. Background

Problem setting and approach: Given a single segmented CBCT example {xcb
e , ycb

e }, 

it’s corresponding delineated pCT {xce, yce}, as well as several unsegmented CBCTs xcb ∈ 

XCBCT and their corresponding segmented pCTs {xc, yc} ∈ {XC, YC}, our goal is to 

construct a model to generate tumor and esophagus segmentations from weekly CBCTs.

Our approach uses a joint recurrent registration-segmentation network (Fig. 1). The recurrent 

registration network (RRN) g and recurrent segmentation network (RSN) s are implemented 
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using CLSTM [22]. RRN aligns xc to xcb and produces progressively deforming {xct, yct} in 

N CLSTM steps, where 1 ≤ t ≤ N. RSN computes a segmentation ycb for xcb by combining 

progressively warped {xct, yct} produced by the RRN using N + 1 CLSTM steps. As shown in 

Fig. 1, the first CLSTM step (t = 0) of RSN uses input pCT and it’s delineation (xc0, yc0) with 

xcb. On the other hand, the CLSTM steps t ≥ 1 of RSN use the outputs of RRN (xct, yct) with 

xcb.

Classical dynamic system vs. basic recurrent network vs. LSTM vs. CLSTM
—A classical dynamic system (CDS) uses shared feature layers to produce outputs 

sequentially [37], represented as, xt = f(xt−1; θ). A basic recurrent neural network (RNN) 

also includes a hidden state [37], (xt = f(xt−1, ht−1; θ)) in order to blend information from 

preceding temporal step. LSTM and CLSTM are a type of RNN, which use feedback 

through forget gate and memory cells to capture long range temporal information. CLSTM 

uses convolution layers to model dense spatial dynamics whereas LSTM models 1D 

dynamics through fully connected layers [22]. A diagram of the differences are shown in 

Supplementary Fig 2.

Convolutional long short term memory network: CLSTM is a recurrent network that 

was introduced to model the dynamics within 2D spatial region [22] via convolution. We 

extended CLSTM to model deformation dynamics in a 3D spatial region. Moreover, our 

approach models the large deformation dynamics as an interpolated temporal deformation 

sequence (for RRN) or an interpolated segmentation sequence (for RSN), given only the 

start (pCT and its contour) and end images (CBCT image to be segmented) of the sequence.

A CLSTM unit is composed of a memory cell ct, which accumulates the state xt at step 

t, a forget gate ft that keeps track of relevant state information from the past, a hidden 

state ht, which encodes the state, as well as input state it, and output gate ot. The CLSTM 

components are updated as:

ft = σ(W xf ∗ xt + W ℎf ∗ ℎt − 1 + bf)
it = σ(W xi ∗ xt + W ℎi ∗ ℎt − 1 + bi)
c t = tanℎ(W xc ∗ xt + W ℎc ∗ ℎt − 1 + bc )
ot = σ(W xo ∗ xt + W ℎo ∗ ℎt − 1 + bo)
ct = ft ⊙ ct − 1 + it ⊙ c t

ℎt = ot ⊙ tanℎ(ct),

(1)

where, σ is the sigmoid activation function, * the convolution operator, ☉ the Hadamard 

product, and W the weight matrix.

B. Planning CT to CBCT deformable image registration

The RRN g computes a deformation of xc to xcb, expressed as 

g(xc, xcb) :θg(xc) xccb as a sequence of deformation vector fields (DVF) using N steps: 

ϕc
cb = ϕ1 ∘ ϕ2… ∘ ϕN . ϕt :I + ut, where I is the identity and u is the displacement vector 

field to deform pixels from a currently warped pCT xct ∈ ℝL × Q × P  closer to the coordinates 
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of the CBCT image as xct + 1. No structure guidance from segmented pCT or CBCT is used 

and the RRN is optimized in an unsupervised manner using pairs of pCT and CBCT images 

{xc, xcb}.

The inputs to the RRN consist of channel-wise concatenated image pairs and hidden state, 

{xct − 1, xcb, ℎg
t − 1}, where ℎg

0 is initialized to 0 and xc0 = xc (Fig. 1). The intermediate CLSTM 

steps t ≥ 1 receive the hidden state ℎg
t − 1 produced from prior CLSTM step t − 1. RRN at 

CLSTM step t outputs a warped pCT image xct and the updated hidden state ℎg
t . With xc0 = xc, 

it’s delineation, yc0 = yc, and ϕt = g(xct − 1, xcb, ℎg
t − 1), the warped pCT and its delineation are 

computed as:

xct = xct − 1 ∘ ϕt

yct = yct − 1 ∘ ϕt .
(2)

RRN is optimized using image similarity Lsim and smoothness loss Lsmooth measured from 

the flow field gradient, with a tradeoff parameter λsmooth to control image similarity and 

deformation smoothness. Lsim is computed using Normalized Cross-Correlation (NCC) 

between the CBCT xcb and the N warped pCTs xct produced by CLSTM steps. NCC was 

computed locally using window of 5×5×5 centered on each voxel to improve robustness to 

CT and CBCT intensity differences [34]. Lsim was computed as:

Lsim = − ∑
t = 1

N
Lsim

t = − ∑
t = 1

N
NCC(xct, xcb) ∕ N, (3)

NCC(xct, xcb) at each step t is an average of all local NCC calculations. The smoothness loss 

term is computed as:

Lsmootℎ = ∑
t = 1

N
Lsmootℎ

t = ∑
t = 1

N
∑

p ∈ Ω
‖∇ϕt(p)‖2 ∕ N . (4)

The total registration loss is computed as Lreg = Lsim + λsmooth × Lsmooth.

C. One shot Patient-specific anatomic context and shape prior-aware CBCT 
segmentation

The CLSTM step t of RSN uses a channel-wise concatenated input {xct, yct, xcb, ℎs
t} to 

compute a segmentation ycb
t = s(xct, yct, xcb, ℎs

t). xct and yct are produced by the RRN at CLSTM 

step t and ℎs
t is the hidden state of s from CLSTM at time t, 1 ≤ t ≤ N (Eqn. 2). As shown in 

Fig. 1, the first CLSTM step of RSN t = 0 is initialized with a weak prior from undeformed 

pCT inputs (xc0, yc0, xcb, ℎs
0). CBCT segmentation ycb is produced after N + 1 CLSTM steps.
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In one-shot training, only a single exemplar segmented CBCT {xcb
e , ycb

e } is available. RSN 

learns a mapping θS(.) of an image to it’s segmentation, s(xc, yc, xcb
e ) :θs(xcb

e ) ycb
e . The 

segmentation loss is computed from segmentations computed in all CLSTM steps 0 ≤ t ≤ N 
of RSN as:

Lseg = ∑
t = 0

N
Lseg

t = ∑
t = 0

N
logP (ycb

e ∣ s(xct, yct, xcb
e , ℎs

t)) . (5)

The losses, Lseg
0 , …Lseg

N − 1 provide deep supervision to train RSN.

1) Online Hard Example Mining (OHEM) Loss: OHEM loss was previously used 

to improve stability of training in the presence of highly imbalanced classes in few-shot 

learning [17], [38]. Training stability is improved because the pixels considered for 

gradient computation change based on model output, and which acts as a form of online 

bootstrapping. OHEM loss focuses the network towards pixels that are hard to classify in a 

minibatch. Hard pixels are those that are associated with a small probability of producing 

the correct classification, or pm,c < τ, where pm,c is the probability associated to a class c 

for a pixel m, and τ is the probability threshold for selecting the hard pixels. We set τ = 0.7 

and K = 10,000, the minimum number of hard pixels to be used within each mini-batch. The 

OHEM loss is computed as:

Lseg
oℎem =

∑
t = 0

N
∑

m = 1

M
∑

c = 1

C
1{pm, c < τ}log Pm, c(ycb

e ∣ s(xct, yct, xcb
e , ℎs

t)), (6)

where τ ∈ (0,1] is a threshold; 1{*} equals to one when the condition inside holds; C is the 

total class number; M is the total number of voxels inside one mini-batch.
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Algorithm 1: One-shot PACS method.

input :Unlabeled CT and CBCT dataset (xc, xcb) ∈ {Xc, Xcb}K,
Exemplar segmented CBCT and corresponding segmented

pCT, ({xcb
e , ycb

e , xc, yc})1 ∈ {Xc, Yc, Xcb, Ycb}K, K is the
number of pCT, CBCT pairs, 1 refers to a single example .

output:Registration model θg to align xc to xcb and segmentation
model θs to segment xcb

1 Upsample one‐shot CBCT example (xcb
e , ycb

e ) and its corresponding
pCT (xc, yc) to product K ∕ 10 examples;

2 θg, θs initialize ;
3 for Epocℎ id ≤ Maximum Epocℎ do
4 for Iter ≤ Maximum Iter do
5 if Registration Flag then
6 xc, xcb sample mini‐batch from {Xc, Xcb};
7 Lreg calculated using (3) (4);

8 θg
+ − Δθg(Lreg) (Gradient update);

9 else

10 load the example (xc, yc, xcb
e , ycb

e ) ;

11 xct, yct calculated using (2) ;

12 Lsegoℎem calculated using (6);

13 θs
+ − Δθs(Lsegoℎem) (Gradient update);

14 end
15 end
16 end

2) Joint registration-segmentation network optimization: The RRN network 

parameters are fixed when training the RSN and vice versa. The number of training 

examples available to optimize RRN K ≫ 1, where 1 is the number of examples available 

to optimize RSN. We replicated the one-shot exemplar 0.1×K times through online 

augmentation to improve training stability. The number of replications was determined 

experimentally. This example replication is akin to upsampling (not to be confused with 

image upsampling) strategy used in machine learning for improving model generalizability. 

The training examples are shuffled to randomize the order of network updates. RRN g is 

updated using the gradient −Δθg (Lreg). RSN s is updated using the gradient −Δθs(Lseg
oℎem). 

The detailed training procedure for one-shot PACS registration-segmention method is in 

Algorithm 1.
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D. Implementation details

All networks were implemented using Pytorch library and trained on Nvidia GTX V100 

with 16 GB memory. The networks were optimized using ADAM algorithm with an initial 

learning rate of 2e-4 for the first 30 epochs and then decayed to 0 in the next 30 epochs and 

a batch size of 1. We set λsmooth=30 experimentally. Eight CLSTM steps were used for both 

RRN and RSN. GPU memory limitation was addressed using truncated backpropagation 

through time (TBPTT) [39] after every 4 CLSTM steps.

The RSN was constructed with 3D Unet with the CLSTM placed on the encoder layers. 

Each convolutional block was composed of two convolution units, ReLU activation, and 

max-pooling layer. This resulted in feature sizes of 32,64,128,256, and 512. The RRN 

extended the Voxelmorph architecture [34] with CLSTM implemented in the encoder layers. 

Diffeomorphic deformation was ensured by using a diffeomorphic integration layer [40] 

following the 3-D flow field output of the CLSTM. The last layer of the RRN was composed 

of a spatial transformation function based on spatial transform networks [41] to convert the 

feature activations into DVF. The 3D networks architecture details are in the Supplementary 

document Table I and II.

IV. Experiments and Results

A. Dataset and Experiments:

A retrospective dataset of 369 fully anonymized weekly 4D-CBCT acquired from 65 

patients with locally advanced non-small cell lung cancer and treated with intensity 

modulated radiotherapy using conventional fractionation with a single 4D pCT and up to 

6 4D CBCTs acquired weekly during treatment were analyzed. Thirteen out of 65 patients 

were sourced from an external institution cohort [42]. Mid phase CTs and CBCTs were 

analyzed. The scans had an image resolution that ranged from 0.98 to 1.17mm in-plane and 

3mm slice thickness. CBCT scans were acquired on a commercial CBCT scanner (On-board 

Imager™, Varian Medical Systems Inc,) using truebeam with (external: a peak kilovoltage 

(kVp) of 125kVp, tube current of 50 mAs; internal: 100kVp and 20 mAs) and reconstructed 

using Ram-Lak filter.

The open-source dataset [42] provided expert delineations. In the internal dataset, the gross 

tumor volume and the esophagus contours were produced on the pCT and CBCT by an 

experienced radiation oncologist and these represented the ground truth [5]. The esophagus 

contours were outlined on CBCT below the level of cricoid junction to the entrance of the 

stomach. CBCT and pCT scans were rigidly aligned using bony anatomy to bring them in 

the same spatial coordinates. FOV differences were addressed by resampling CBCT images 

to the same voxel size as the pCTs and the body mask was extracted through automatic 

thresholding (≥ 800HU) for soft tissue and the extracted region used as region of interest as 

done by other prior works [43], [44].

Metrics: Segmentation was evaluated using the Dice similarity coefficient (DSC), surface 

DSC (sDSC), and Hausdorff distance at 95th percentile (HD95) on testing set. The tolerance 

value of 4.38mm for computing sDSC was obtained using two physician segmentations 
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[5]. Inter-rater accuracy comparisons were done using the DSC metric. Registration was 

evaluated using segmentation accuracy, measures of deformation smoothness, namely, 

standard deviation of the Jacobian determinant and folding fraction (∣Jϕ∣ ≤0 (%)) [29], 

[30] computed from 95,551,488 voxels on the test set, and target registration error (TRE) 

using 3D scale invariant feature transform (SIFT) features [43], [45] identified on the pCT 

and CBCT [43], [44]. In the first step, keypoints are located by applying convolutions 

with the difference of Gaussians (DoG) function; in the second step, the feature descriptors 

consisting of 768 dimensional feature are constructed using geometric moment invariants to 

characterize the keypoints. Correspondences of the detected SIFT features (547 on average) 

in the pCT and CBCT scans were established using random sample consensus followed 

by manual verification [43]. On average, 22 corresponding features were used for TRE 

computation per image pair.

Experimental comparisons: One-shot PACS segmentations were compared against 

affine image registration, symmetric diffeomorphic registration (SyN) [26], deep learning 

segmentation only methods 3D Unet [46], Mask-RCNN [47], cascaded segmentation [48], 

and multiple deep registration based segmentation, Voxelmorph [34], recursive cascaded 

registration using 10 cascades [30], R2N2 [24], and coupled registration and segmentation 

network U-ReSNet [49]. The Voxelmorph was regularized using segmentation losses from 

CBCT segmentations [34]. Full-shot PACS segmentation and full-shot PACS registration 

based segmentation were computed to establish upper bounds in accuracy and compare 

one-shot PACS segmentation against registration-based segmentation.

Statistical analysis : Statistical comparisons between one-shot PACS and other methods 

was done using the DSC metrics computed on the testing sets using pairwise, two-sided 

Wilcoxon signed rank tests at 95% significance level. The effect of treatment based tumor 

changes on the longitudinal accuracy of CBCT tumor segmentations was measured using 

one-way repeated measures ANOVA for DSC and HD95. Only p < 0.05 were considered to 

be significant.

Experiments: Separate networks are trained for tumor and esophagus segmentation, 

because tumors, which are abnormal structures are likely to have variable spatial and 

feature characteristics. Due to GPU limitation, the lung tumor segmentation model was 

computed from image volumes containing the entire thorax from the apex of lung to the 

level of diaphragm with a size of 192×192×60 obtained by resizing a volume of interest 

(VOI) of size 300×300×90. The full extent of the chest was visible on each slice. The 

esophagus model was computed from images of size 160×160×80 after resizing a VOI of 

size 256×256×110 enclosing the entire chest on each slice, starting from the cricoid junction 

till the entrance of the stomach. All methods were trained with 3-fold cross-validation using 

9,800 VOI pairs obtained from 315 scans. The best model was applied on the independent 

test set of 54 CBCTs. One shot training was done using a randomly selected CBCT scan 

in the training set. Separately, robustness of tumor segmentation according to the choice of 

the one-shot CBCT example was evaluated using tumor location (apex: n = 109; inferior: n 

= 93; and middle: n = 80) and tumor size (small [≤ 5cc]: n = 54; medium [5cc to 10cc]: n 

= 80; and large [> 10cc]: n = 146) [50] as selection criteria. Separate models were trained 
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for each example and tested on a set aside data consisting of 28 apex, 29 inferior, 30 middle 

or centrally located tumors and 29 small, 28 medium, and 32 large tumors. Network design 

and ablation tests were performed to evaluate the impact of various losses, joint vs. two-step 

training, and the utility of CLSTM on tumor segmentation accuracy.

Network training convergence: Fig. 2 shows the training loss curves at every 500 

iterations for the various losses when training the one-shot PACS network. As shown, the 

segmentation loss and NCC loss progressively decrease indicating training convergence. 

Increasing smoothness loss indicates increased image deformation.

B. Registration smoothness and accuracy

One-shot PACS produced the lowest TRE of 1.84±0.76 mm and smooth deformations that 

were within the accepted range of 1% of the folding fraction [29], [30] (Table. I). It required 

fewer parameters than recursive [30], but more than the R2N2 registration [24]. An example 

slice with corresponding SIFT features from warped pCT produced using different methods 

overlaid on the CBCT image is shown in Fig. 3.

Fig. 5 shows example registrations with the progressively changing DVFs and the warped 

pCTs produced by the CLSTM steps. A mirror flipped view of the pCT and it’s 

corresponding CBCT before and after the registration, depicting the qualitative alignment 

of the images is shown. Brighter colored DVF curves correspond to the large deformations 

occurring in the regions corresponding to the shrinking tumor as well as the boundary of 

lung due to respiration differences. Registration performance for a representative case near 

descending aorta is shown in Supplementary Fig 6, which shows good alignment. Additional 

deformation results are in Supplementary Fig 1.

C. Segmentation accuracy

1) Tumor segmentation: Table II shows the segmentation accuracies produced using 

various methods. There was no difference in accuracy between the one-shot and full-shot 

PACS segmentation (DSC p=0.16). One-shot PACS segmentation was significantly more 

accurate (p<0.001) than all other methods, including the full-shot PACS registration-based 

segmentation (DSC p=1.2e-9). Fig. 4 shows segmentations produced by the various methods 

on randomly selected and representative cases from the external institution dataset. One shot 

PACS closely approximated expert’s segmentations, despite imaging artifacts, indicating 

feasibility for tumor segmentation.

Inter-observer variability:  Robustness to two rater tumor segmentations was measured for 

9 patients. One-shot PACS produced a DSC of 0.82±0.08 and 0.84±0.09 for raters 1 and 2. 

The inter-rater DSC was 0.83±0.06. Fig. 6 shows three examples with one-shot PACS and 

two rater segmentations.

2) Esophagus segmentation: Table III shows the accuracies for segmenting the 

esophagus on CBCT images. One-shot PACS was similarly accurate as the full-shot PACS 

segmentation (DSC p=0.07). It was also significantly more accurate (p<0.001) than all other 

methods. Fig. 7 shows esophagus segmentation produced by various methods.
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D. Longitudinal response assessment

The mean of maximum HD95 distance per patient from the weekly scans was 4.98mm. 

The median and inter-quartile range (IQR) of maximum HD95 from different patients 

were 4.97 mm and 3.90mm to 6.11mm. Longitudinal accuracy evaluation was done on 

30 test patients who had CBCTs from all 6 weeks. The percent slope of DSC accuracy 

was −0.3% and HD95 was −8.4% using HD95 from week 1 to week 6 (Fig. 9). A one 

way repeated measures ANOVA with lower-bound corrections determined that CBCT tumor 

segmentations did not differ between weekly time points (DSC: F(5, 1.35) = 0.0033, p = 

0.26; HD95: F(5, 0.56) = 1.56, p = 0.46). There was no significant interaction of tumor 

location and time on accuracy (DSC: F(5, 0.82) = 0.0002, p = 0.37; HD95: F(5, 1.89) =5.22, 

p = 0.18). These results indicate that the one-shot PACS produced reliable segmentations 

on weekly CBCT. The one-way repeated measures ANOVA analysis for the esophagus also 

did not show a significant effect with time (p = 0.26). The longitudinal accuracy graphs for 

esophagus are in Supplementary Fig. 8.

Fig. 8 shows the representative example case with volumetric segmentations produced using 

one-shot PACS and the expert for tumor and esophagus on weekly scans. Our method 

closely followed the expert delineations.

E. Network design and ablation experiments

1) Robustness of one-shot tumor segmentation to selected CBCT training 
example: Kruskal-Wallis test showed no difference in the accuracy between one-shot and 

full shot models for tumor sizes (small: p=0.98; medium: p=0.62; large: p=0.73). Similarly, 

there was no significant difference between one-shot models trained with examples from 

different locations and the full-shot model (apex: p=0.29 ; middle: p=0.90; inferior: p=0.99). 

Summary of mean DSC accuracies as done in [17], produced by the various one-shot models 

tested on different locations (Fig. 10(a)) and sizes (Fig. 10(b)), shows similar accuracies for 

all models. Results for full-shot training is also shown for comparison. Larger variability in 

accuracy was seen for tumors abutting mediastinum (or middle) and small tumors for all 

models. Qualitative results on representative cases segmented with one-shot models trained 

with different tumor locations and sizes show good agreement between algorithm and expert 

(Fig. 11).

2) Impact of CLSTM in RRN: We compared the segmentation accuracy when the 

CLSTM was removed and implemented with convolutional layers, which converted it into 

a classical dynamic system (CDS) with shared weights for different steps [37]. Fig. 12 

shows the feature activations (steps 1, 2, and 3) produced from layers 2, 3, and 4 (see 

Supplementary Table I) of the RRN that was trained as a CDS (Fig. 12(a)) and with CLSTM 

(Fig. 12(b)). The step outputs in the case of CLSTM correspond to hidden feature ht of 

CLSTM, whereas for the CDS corresponds to the feature output after step t. Fig. 12 shows 

alignment of pCT with CBCT image with a centrally located shrinking tumor. Stronger 

feature activations with a consistent progression in the deformations around the tumor region 

are seen when using CLSTM (Fig. 12(b)) compared to the CDS network (Fig. 12(a)). 

Correspondingly, the mean feature activations in all the layers are higher in the CLSTM 

network (Fig. 12(c)). The CLSTM network also produced higher accuracy than the CDS 
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network trained without CLSTM (Fig. 12(d)). Concretely, the CDS network produced an 

accuracy of 0.78 ± 0.10, compared to the CLSTM network of 0.81 ± 0.08.

3) Impact of number of CLSTM steps on accuracy: We analyzed the accuracy 

and the computational times with increasing number of recurrent steps from 1 to 12. 

Segmentation accuracy increased and saturated beyond 8 steps (Supplementary Fig. 4). 

The computational times increased linearly. Therefore, we chose 8 CLSTM steps for 

our application. Fig. 13 shows the progressive improvement in the tumor and esophagus 

segmentations for a representative case from the various recurrent steps of the RSN trained 

using one-shot PACS-aware method. Moreover, one-shot PACS took 6.65 secs for training 

per iteration and 1.47 secs for testing per image pair.

4) Early vs. intermediate fusion of anatomic context and shape priors 
into RSN: The default PACS-aware approach combines progressively warped pCT and 

delineations as additional input channels with the CBCT image into the individual recurrent 

units placed in the encoder layers of RSN. We tested whether an intermediate fusion 

strategy, wherein separate encoders are used to compute features from CBCT and the 

final warped pCT and its delineation, and combined together at the decoder layer of RSN 

improved accuracy. The schematic of both methods is depicted in Supplementary Fig. 5. 

Our results showed that the intermediate fusion was less accurate (DSC of 0.72±0.15 vs. 

0.83±0.08) than the default early fusion approach. This result indicates that combining the 

progressively warped pCT and its delineations with CBCT through the recurrent network 

improves accuracy.

5) Different weights for CLSTM steps: We studied whether assigning larger weights 

to segmentation losses from the later CLSTM steps had a greater impact on accuracy. 

For this purpose, the weights on the CLSTM steps in RSN were linearly increased (w=t/

(N+1)). This approach had marginal impact on accuracy and resulted in a DSC accuracy of 

0.82±0.10 compared to 0.83±0.08 for the default method.

6) Ablation experiments: We analyzed the accuracies when removing the different 

components of the one-shot PACS-aware network, including (I) shape context prior, (II) 

the anatomic context, (III) deep supervision of the segmentations produced from the 

intermediate recurrent steps of the segmentation network. We also measured the accuracy 

(IV) when CLSTM is removed from the segmentor s, (V) when training without the OHEM 

but with regular cross-entropy loss (Eqn. 5). The default one-shot PACS segmentor results 

are shown in (VI). As shown in Table IV, removing the shape context prior led to a clear 

lowering of accuracy indicating it’s importance for one-shot segmentation training. The very 

low accuracy when removing shape context is because the reported results are for one-shot 

segmentor and not the registration-based segmentation. The shape context was also more 

relevant than the anatomic context with a significant difference (p < 0.001) in accuracies. 

Similarly, training without the OHEM loss led to lowering of segmentation accuracy. The 

segmentations produced using the afore-mentioned training scenarios for a representative 

performance is shown in Supplementary document Fig. 7.
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7) Influence of adding contour loss: We measured the accuracy when a contour 

consistency loss was used to regularize the RRN by minimizing the difference in RRN 

generated and CBCT segmentation. This experiment was performed in the full-shot PACS 

mode as CBCT segmentations are needed for training both RRN and RSN. This approach 

produced a DSC of 0.84±0.08 from RSN and 0.81±0.08 from RRN-based segmentation, 

which is the same as the full-shot method trained without consistency loss, indicating 

equivalence of the two approaches in terms of accuracy. In contrast, one-shot PACS, which 

is similarly accurate as the full-shot method does, requires one segmented CBCT example 

for training.

8) Joint training or separate training: We tested whether optimizing the registration 

network first followed by segmentation network, as a two-step optimization, to provide 

shape and anatomic context to the segmentor improved accuracy over a jointly trained 

network. The two-step method produced a tumor segmentation accuracy of 0.81±0.09 DSC 

compared to 0.83 ± 0.08 using one-shot PACS and 0.82 ± 0.08 compared to 0.84±0.08 

in the full-shot setting, indicating the multi-tasked approach is beneficial over two-step 

optimization.

V. Discussion

We introduced a one-shot recurrent and joint registration-segmentation approach to 

longitudinally segment thoracic CBCT scans with large intra-thoracic changes occurring 

during radiotherapy. Our approach, which incorporates patient-specific anatomic context 

from higher contrast pCT and shape prior from delineated contours on pCT produced more 

accurate segmentations than multiple methods. Subset analysis showed that our approach 

was similarly accurate as two raters indicating feasibility of our approach to reduce inter-

rater variability in CBCT segmentations. The shape context as well as the anatomic context 

prior were essential to improving segmentation network’s accuracy in the one-shot setting 

as shown in the ablation experiments. Our approach was more accurate than cross-modality 

distillation [5], which incorporated MRI information for improving CBCT segmentation 

(DSC of 0.83 ± 0.08 using one-shot PACS vs. 0.73 ± 0.10 using MRI-based distillation) 

on the same dataset, underscoring the importance of spatial and anatomic priors for 

segmentation. Our method was similarly accurate as full-shot training for tumors, and robust 

to the chosen one-shot training example by location and size. However, larger variation 

in accuracies were observed for small tumors and centrally located tumors for all models 

including the full-shot model. Previously, we showed lowering of accuracy for centrally 

located tumors and smaller sized lung tumors [50] with standard CT scans. Addition of 

contour consistency loss in the registration did not improve accuracy, indicating that our 

one-shot PACS method is a reasonable alternative to full-shot training when large number of 

segmented examples are unavailable for training.

Furthermore, combining the RSN with RRN was significantly more accurate than RRN 

propagated segmentations, confirming prior findings [14]-[16], [28] that multi-tasked 

methods are more accurate than registration-based segmentation. We also found that the 

multi-tasked approach was more accurate than a two-step optimization.
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Our approach handles large anatomical and appearance changes to diseased and healthy 

tissues during treatment by computing progressive deformations as a sequence by using 

a 3D CLSTM. CLSTM, which was introduced to model the sequential dynamics of 2D 

images [22], uses convolutions to compute a dense flow, which adds flexibility compared 

to parametric LSTM methods [23]. We found that our approach was significantly more 

accurate than R2N2 [24], even when it also computes progressive deformations. R2N2 

[24] employs gated recurrent units with the local deformations computed using Gaussian 

basis functions, which was insufficient to handle the large anatomic changes common 

in longitudinal CBCT. Analysis of the recurrent component of our network by replacing 

the CLSTM with a standard classical system showed that CLSTM produced stronger 

and consistently progressing activations in local regions (e.g. tumors) undergoing large 

deformations. Also, the accuracy of the network without CLSTM was similar to the 

recursive [30], but the architectures are different. Our network uses a shared feature weights 

in all steps, whereas a recursive cascade [30] method uses different models trained jointly 

for the cascade steps. Finally, as shown in the ablation experiments, inclusion of CLSTM in 

the segmentation allowed the network to use progressively warped pCT (anatomic context) 

and pCT delineation (shape context) to improve accuracy further.

Finally, tumor segmentation using our method showed no significant changes in accuracy 

with treatment time (due to tumor shrinkage) or tumor location, indicating robustness of the 

approach for longitudinal response assessment.

We also evaluated our approach for esophagus segmentation. Our approach can be extended 

to simultaneously segment multiple organs by feeding the multi-channel organ probability 

map as shape prior and image as contextual prior to produce multi-channel output for 

segmentation [51].

CBCT images also have much lower FOV compared to the corresponding pCT, exacerbating 

the problem of robust registration. One prior approach by Zhou et.al [13] explicitly handled 

this issue by performing random crops of the pCT images for improving alignment. We like 

others [43], [44] handled this issue through pre-processing using extraction of chest region 

and resampling of CBCT and pCT images.

Our approach has the following limitations. We did not address the issue of motion 

averaging for precisely defining the gross tumor margin by aligning with all phases of 

CBCT acquired in a breathing cycle because the goal was longitudinal response assessment. 

Although our approach showed feasibility to segment tumors with similar variability as 

two raters, artifacts are not explicitly handled. Accuracy could be improved further by 

using SIFT features computed from gradients of the deep feature [19] or surface points 

[13] for registration. Our approach of computing dense flow fields may be adversely 

impacted especially for abdominal organs which have uniform density internally. In such 

cases, surface points as used in [13] or a MRI-based feature distillation [4], [5] could 

potentially be incorporated with the recurrent network formulation. Nonetheless, to our best 

knowledge, ours is the first to handle longitudinal segmentation of hard to segment lung 

tumors undergoing radiographic appearance and size changes from during treatment CBCTs.
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VI. Conclusion

We introduced a one shot patient-specific anatomic context and shape prior aware multi-

modal recurrent registration-segmentation network for segmenting on treatment CBCTs. 

Our approach showed promising longitudinal segmentation performance for lung tumors 

undergoing treatment and the esophagus on one internal and one external institution dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
One-shot PACS registration-segmentation network. RRN g uses N CLSTM steps to align xc 

to xcb. RSN s uses N+1 CLSTM steps to segment xcb, where {xct, yct}, 1 ≤ t ≤ N produced by 

RRN are used in the RSN to provide spatial and anatomic priors.
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Fig. 2. 
Training loss curves for one-shot PACS method.
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Fig. 3. 
SIFT detected targets and the corresponding deformed targets produced by various methods 

overlaid on CBCT.
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Fig. 4. 
Tumor segmentation from CBCT produced by various methods. DSC accuracies for the 

volume are also shown.
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Fig. 5. 
Progressive DVFs with warped pCTs (rows 2 , 4) for a shrinking tumor (row 1), and out of 

plane rotation (row 3). Mirror flipped view of pCT and the CBCT before and after alignment 

are shown. DVF colors indicate displacements in x (0mm to 10.13mm) (black to red),y 

(0mm to 7.76mm) (black to green), and z (0mm to 13.50mm) (black to blue) directions. Red 

arrow identifies the tumor.
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Fig. 6. 
One-shot PACS segmentation compared to two raters.
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Fig. 7. 
Esophagus segmentation from CBCT produced by various methods. Volumetric DSC 

accuracies are also shown.
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Fig. 8. 
Longitudinal segmentation using algorithm (red) and expert (yellow) on weekly CBCT for 

tumor (top row) and the esophagus (bottom row). The pCT delineation is shown in blue.
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Fig. 9. 
Segmentation accuracy at different weeks with percent slope change in accuracy for DSC 

and HD95 metrics.
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Fig. 10. 
Testing set segmentation accuracy with models trained using different one-shot examples by 

(a) location and (b) size.
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Fig. 11. 
Example one-shot PACS segmentor (yellow) results trained with different sizes and 

locations. Red: expert contour.
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Fig. 12. 
(a) Feature activations produced in CNN layers 2, 3, and 4 for steps 1, 2, 3 without CLSTM, 

and (b) with CLSTM. (c) shows mean feature activations in the layers 2, 3, and 4. (d) shows 

DSC accuracy with increasing number of recurrent steps.
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Fig. 13. 
Segmentations produced using the one-shot PACS segmentor with increasing number of 

CLSTM steps for tumor and esophagus. Red is expert, yellow is algorithm contour.

Jiang and Veeraraghavan Page 31

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jiang and Veeraraghavan Page 32

TABLE I

Registration metrics of various methods.

Method SD Jacobian J ø ≤0 (%) Parameters TRE (mm)

SyN [26] 0.04±0.01 0.0022±0.0066 N/A 3.94±1.55

Voxelmorph [34] 0.05±0.01 0.0042±0.011 301,411 3.13±1.50

Recursive [30] 0.08±0.02 0.013±0.030 42,418,491 2.77±1.53

U-ReSNet [15] 0.04±0.01 0.021±0.015 4,753,035 3.45±1.62

R2N2 [24] 0.04±0.01 0.039±0.012 39,183 3.25±1.91

PACS-aware 0.13± 0.02 0.020±0.037 522,723 1.84±0.76
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TABLE II

Tumor segmentation accuracies produced by various methods. Reg - registration, Seg - segmentation.

Method
Testing (Number=54)

DSC sDSC HD95 mm

Affine Reg 0.71±0.14 0.87±0.14 7.31±3.65

SyN [26] 0.72±0.14 0.88±0.13 7.03±3.52

Voxelmorph [34] 0.75±0.13 0.92±0.11 5.62±3.05

R2N2 [24] 0.74±0.13 0.91±0.10 6.12±2.85

U-ReSNet [15] 0.73±0.14 0.90±0.12 6.44±3.33

Recursive [30] 0.77±0.11 0.93±0.08 5.38±2.57

3D Unet [46] 0.61±0.15 0.83±0.15 16.72±23.50

Mask RCNN [47] 0.64±0.16 0.82±0.14 20.53±23.29

Cascaded Net [48] 0.63±0.16 0.81±0.14 22.61±23.42

PACS-aware Reg 0.81±0.08 0.97±0.05 4.15±1.82

Full-shot PACS seg 0.84±0.08 0.98±0.04 3.33±2.02

One-shot PACS seg 0.83±0.08 0.97±0.06 3.97±3.06
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TABLE III

Esophagus segmentation accuracies. Reg - registration, Seg - segmentation.

Method
Testing (Number=54)

DSC sDSC HD95 mm

Affine Reg 0.67±0.16 0.77±0.18 5.11±3.38

SyN [26] 0.69±0.17 0.79±0.19 4.96±3.43

Voxelmorph [34] 0.72±0.15 0.83±0.17 4.40±2.89

R2N2 [24] 0.73±0.15 0.84±0.17 4.33±3.14

U-ReSNet [15] 0.72±0.15 0.83±0.17 4.47±3.20

Recursive [30] 0.73±0.15 0.85±0.16 4.11 ±2.15

3D Unet [46] 0.57±0.18 0.64±0.17 6.79±2.87

Mask RCNN [47] 0.61±0.17 0.68±0.16 6.67±2.67

Cascaded Net [48] 0.60±0.15 0.66±0.15 7.58±2.38

PACS-aware reg 0.76±0.12 0.88±0.13 3.88±2.83

Full shot PACS seg 0.79±0.13 0.91±0.12 3.10±2.16

One shot PACS seg 0.78±0.13 0.90±0.14 3.22±2.02
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TABLE IV

Ablation experiments. DS: Deep supervision

Tumor Segmentation

pCT Shape CBCT DS CLSTM Seg OHEM DSC

I ✓ × ✓ ✓ ✓ ✓ 0.02±0.00

II × ✓ ✓ ✓ ✓ ✓ 0.79±0.11

III ✓ ✓ ✓ × ✓ ✓ 0.80±0.10

IV ✓ ✓ ✓ ✓ × ✓ 0.81±0.11

V ✓ ✓ ✓ ✓ ✓ × 0.80±0.11

VI ✓ ✓ ✓ ✓ ✓ ✓ 0.83±0.08
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