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Abstract

Background: Sevoflurane anaesthesia induces phosphorylation of the microtubule-associated protein tau and cognitive

impairment in neonatal, but not adult, mice. The underlying mechanisms remain largely to be determined. Sex hor-

mones can be neuroprotective, but little is known about the influence of testosterone on age-dependent anaesthesia

effects.

Methods: Six- and 60-day-old male mice received anaesthesia with sevoflurane 3% for 2 h daily for 3 days. Morris water

maze, immunoassay, immunoblotting, co-immunoprecipitation, nanobeam technology, and electrophysiology were

used to assess cognition; testosterone concentrations; tau phosphorylation; glycogen synthase kinase-3b (GSK3b) acti-
vation; binding or interaction between tau and GSK3b; and neuronal activation in mice, cells, and neurones.

Results: Compared with 60-day-old male mice, 6-day-old male mice had lower testosterone concentrations (3.03 [0.29] vs

0.44 [0.12] ng ml�1; P<0.01), higher sevoflurane-induced tau phosphorylation in brain (133 [20]% vs 100 [6]% in 6-day-old

mice, P<0.01; 103 [8]% vs 100 [13]% in 60-day-old mice, P¼0.77), and sevoflurane-induced cognitive impairment. Testos-

terone treatment increased brain testosterone concentrations (1.76 [0.10] vs 0.39 [0.05] ng ml�1; P<0.01) and attenuated

the sevoflurane-induced tau phosphorylation and cognitive impairment in neonatal male mice. Testosterone inhibited

the interaction between tau and GSK3b, and attenuated sevoflurane-induced inhibition of excitatory postsynaptic cur-

rents in hippocampal neurones.

Conclusions: Lower brain testosterone concentrations in neonatal compared with adult male mice contributed to age-

dependent tau phosphorylation and cognitive impairment after sevoflurane anaesthesia. Testosterone might attenuate

the sevoflurane-induced tau phosphorylation and cognitive impairment by inhibiting the interaction between tau and

GSK3b.
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Editor’s key points

� The mechanisms underlying volatile anaesthetic-

induced phosphorylation of the microtubule-

associated protein tau and cognitive impairment in

neonatal, but not adult, rodents are unclear.

� Molecular, electrophysiological, and neuro-

behavioural experiments were used to assess cogni-

tion, testosterone concentrations, molecular

interactions, and neuronal activation in mice and

neuronal cells.

� Compared with 60-day-old male mice, 6-day-old

male mice had lower testosterone concentrations,

higher sevoflurane-induced tau phosphorylation in

brain, and greater sevoflurane-induced cognitive

impairment, all of which were attenuated by testos-

terone treatment.

� Lower brain testosterone contributes to age- and sex-

dependent tau phosphorylation and cognitive

impairment after sevoflurane anaesthesia.
The widespread and growing use of anaesthesia in children

makes its safety a significant health issue. Several clinical

studies show cognitive impairment in children after anaes-

thesia and surgery.1e5 However, other studies show no asso-

ciation.6,7 Thus, the effects of anaesthesia on cognitive

function in children and the underlying mechanisms remain

to be determined.

Anaesthetics induce neurotoxic effects and cognitive

impairment in young rodents and monkeys.8e12 For instance,

anaesthesia with sevoflurane causes tau protein phosphory-

lation and impaired cognition in neonatal, but not in adult,

mice.13e17 Tau is a protein predominantly expressed in neu-

rones and is associated with microtubule assembly and

function.18,19 Tau phosphorylation, aggregation, and spread

contribute to Alzheimer’s disease pathogenesis.20 These

studies suggest a molecular pathogenic mechanism for

impaired cognition after anaesthesia; however, it remains

unclear what contributes to the age-dependent effects of

anaesthesia in these laboratory models.

As the sex hormones oestrogen and androgen are neuro-

protective,21 one potential link may be through sex hormone

levels in neonatal or young compared with adult individuals.

17b-Oestradiol attenuates tau hyperphosphorylation induced

during global cerebral ischaemia by inhibiting c-Jun N-termi-

nal kinase/c-Jun/Dickkopf-1 signalling pathway activation.22

17b-Oestradiol also mitigates tau hyperphosphorylation

induced by protein kinase A in human embryonic kidney cells

stably expressing tau, potentially by inhibition and elevation

of cyclic adenosine monophosphate and overactivation of

protein kinase A.23

Sex- and age-dependent anaesthetic neurotoxicity in

developing brain has been reported.24e26 However, the role of

sex hormones in these effects has not been specifically

determined. Our previous studies13e17,27 assessed male and

female neonatal animals together, so did not differentiate ef-

fects by sex. Therefore, the objective of the study was to

investigate whether testosterone contributes to the observed

age-dependent effects of sevoflurane on tau phosphorylation

and cognitive impairment in mice, and to determine the un-

derlying mechanism. Sevoflurane may phosphorylate tau by

activating glycogen synthase kinase-3b (GSK3b),14 a kinase
that contributes to tau phosphorylation.28 Decreased phos-

pho-GSK3b-Ser929,30 or increased phospho-GSK3b-Tyr21631

indicates activation of GSK3b. We further hypothesised that

increasing testosterone could attenuate sevoflurane-induced

tau phosphorylation and cognitive impairment in neonatal

male mice by inhibiting the interaction between tau and

GSK3b.

Methods

Mice, anaesthesia, and treatment

The Standing Committee on Animals approved the animal

protocol at Massachusetts General Hospital (protocol

2006N000219). Efforts were made to minimise the number of

animals used; experiments and reporting follow the Animal

Research: Reporting of In Vivo Experiments guidelines. Adult

male mice (C57BL/6J) were purchased from The Jackson Lab-

oratory (Bar Harbor, ME, USA). Neonatal malemice of the same

strain at postnatal (P) Day 6 were generated from in-house

breeding. Littermates were assigned randomly to all study

groups. Neonatal and adult mice were randomly assigned to

one of the following groups: (i) control plus vehicle (corn oil),

(ii) control plus testosterone, (iii) sevoflurane plus vehicle, and

(iv) sevoflurane plus testosterone. We also included female

neonatal mice under control conditions and sevoflurane

anaesthesia to compare tau phosphorylation between female

and male neonatal mice.

Mice were anaesthetised in chambers with sevoflurane 3%

and oxygen 40% for 2 h daily for 3 days at P6, P7, and P8

(neonatal group), or at P60, P61, and P62 (adult group), based on

previous studies.13,14 Control group mice received oxygen 40%

at the identical flow rate in similar chambers and with the

same separation time from their mothers. Previous studies

showed that anaesthesia with sevoflurane 3% and oxygen 40%

did not significantly affect blood gas values.32

Sevoflurane and oxygen concentrations were continuously

monitored using a gas analyser (Dash 4000; GE Healthcare,

Milwaukee, WI, USA). Anaesthesia chamber temperature was

monitored and controlled by an automatic feedback-based

system (World Precision Instruments Inc., Sarasota, FL, USA),

keeping mouse rectal temperature at 37 [0.5]�C via a warming

pad placed under the chamber. Testosterone (100 mg, dissolved
in corn oil 25 ml to a concentration of 4 mg ml�1; PHR2027; Sigma-

Aldrich, St Louis, MO, USA) or vehicle only (corn oil 25 ml) was

administered subcutaneously 1 h before sevoflurane anaes-

thesia based on methods described previously.33 A pilot study

showed that administration of testosterone 100 mg led to a

peak concentration of testosterone in brain 1 h after admin-

istration (data not shown).

Cell line, primary neurones, anaesthesia, and
treatment

SH-SY5Y neuroblastoma cells were purchased from the

American Type Culture Collection (ATCC) (ATCC Cat# CRL-

2266; ATCC, Manassas, VA, USA). Primary hippocampal neu-

rones were harvested and cultured as described.34 SH-SY5Y

cells and neurones were randomly assigned to one of the

following groups: (i) control plus vehicle (corn oil), (ii) control

plus testosterone, (iii) sevoflurane plus vehicle, and (iv) sevo-

flurane plus testosterone. Primary neurones were treated with

sevoflurane 3% for 2 h daily on culture Days 6, 7, and 8. SH-

SY5Y cells were treated on culture Day 7 with sevoflurane

4% for 6 h as described.35 SH-SY5Y cells and neurones were
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treated with testosterone (dissolved in medium to a final

concentration of 100 nM; PHR2027; Sigma-Aldrich) 1 h before

sevoflurane exposure.
Morris water maze

AMorris watermaze test was performed on P30eP36 (neonatal

group) or P84eP90 (adult group) mice with four trials per day

for 7 days as the reference training. Details of the Morris water

maze test have been described.16 At the end of the reference

training (P36 or P90), the platform was removed from the pool.

Each mouse was placed in the opposite quadrant and allowed

to swim for 90 s. The numbers the mouse swam to cross the

platform area were recorded as platform crossing number.
Brain tissue harvest, lysis, and protein quantification

Mice were decapitated at the end of sevoflurane anaesthesia

on P8 or P62. Cerebral cortex and hippocampuswere harvested

and homogenised on ice using a lysis buffer, including

immunoprecipitation buffer (Mammalian Protein Extraction

Reagent, Cat# 78501; ThermoFisher Scientific, Waltham, MA,

USA) plus protease inhibitor cocktail (Cat# 11836170001;

Sigma). Lysates were collected and centrifuged for 15 min at

~19 000 � g. Total protein amounts were quantified using the

Pierce™ protein assay kit (Cat# 23225, ThermoFisher

Scientific).
Western immunoblotting

Total tau and total GSK3b protein amounts were detected with

anti-tau 46 antibody (Cat# T9450, 55 kDa, 1:1000; Sigma-

Aldrich) and anti-GSK3b antibody (Cat# 22104-1-AP, 47 kDa,

1:1000; Proteintech, Chicago, IL, USA). Phospho-tau-Ser262

antibody (Cat# ab131354, 47 kDa, 1:1000; Abcam, Cambridge,

MA, USA) was used to detect tau phosphorylated at Ser262.

AT8 antibody (Tau-PS202/PT205, Cat# MN1020, 55 kDa, 1:500;

ThermoFisher Scientific) was used to measure the amount of

tau phosphorylated at Ser202 and Thr205. Phospho-GSK3b-
Ser9 (Cat# MA5-14873, 47 kDa, 1:1000; ThermoFisher Scientific)

and phospho-GSK3b-Tyr216 (Cat# ab75745, 47 kDa, 1:1000;

Abcam) antibodies were used to measure GSK3b phosphory-

lated at Ser9 and Tyr216, respectively. Postsynaptic density

protein-95 (PSD-95) amounts were detected with anti-PSD-95

antibody (Cat# 2507S, 85 kDa, 1:1000; Cell Signaling Technol-

ogy, Danvers, MA, USA). Antibodies detecting b-actin (Cat#

A5441, 42 kDa, 1:5000; Sigma-Aldrich) and glyceraldehyde-3-

phosphate dehydrogenase (Cat# 5174S, 36 kDa, 1:5000; Cell

Signaling Technology) served to control for differences in total

protein amount loaded. Protein quantification was performed

as described.36

Enzyme-linked immunosorbent assay

A mouse/rat testosterone enzyme-linked immunosorbent

assay (ELISA) kit (Cat# TE187S-100; Calbiotech, El Cajon, CA,

USA) was used to measure testosterone concentrations in

brain homogenates, serum, or plasma according to the

manufacturer. Another kit (Cat# KGE010, ThermoFisher Sci-

entific) was used to measure testosterone concentration in

aqueous buffers. However, we could not use this Thermo-

Fisher kit to measure the testosterone concentrations in brain

tissues potentially owing to the low sensitivity. We, therefore,

used the Calbiotech kit (Cat# TE187S-100) to measure testos-

terone concentrations in brain tissues. In the validation
studies, we used the diluted buffer provided in the Calbiotech

kit (Test 2) and the aqueous buffer (Test 3) to dissolve the

testosterone powder provided in the ThermoFisher kit,

respectively, which generated two standard curves similar to

the standard curve of the Calbiotech kit (Test 1)

(Supplementary Fig. 1).

Immunostaining

AT8 antibody (Tau-PS202/PT205, Cat# MN1020, 55 kDa, 1:100;

ThermoFisher Scientific) was used to measure the amount of

tau phosphorylated at Ser202 and Thr205 in primary neurones

and SH-SY5Y cells. Immunoglobulin G (IgG) Alexa Fluor Plus

594 (Cat# A32742, 1:500; ThermoFisher Scientific) served as the

secondary antibody. Mountingmediumwith 40,6-diamidino-2-

phenylindole and aqueous fluoroshield (Cat# ab104139;

Abcam) was used in total cell counts. Experiments and quan-

tification were performed blind.
Cell viability

A LIVE/DEAD™ Viability/Cytotoxicity Kit for mammalian cells

(Cat# L3224; Invitrogen, Waltham, MA, USA) was used to

measure viability of primary neurones and SY5Y cells

following manufacturer instructions.
Spontaneous excitatory postsynaptic current
recordings

Electrophysiological recordings of spontaneous excitatory

postsynaptic currents (sEPSCs) in cultured primary hippo-

campal neurones were performed as described.37 Re-

cordings were made at room temperature 4 h after

sevoflurane anaesthesia or control conditions on culture

Day 7. Our pilot study found that cultured neurones on Day

7 could generate stable sEPSCs. Recording electrodes were

pulled from thin-walled borosilicate capillary glass (World

Precision Instruments) using a PP-830 Puller (Narishige,

Toyko, Japan). SEPSCs were recorded in the whole-cell

configuration or using an Axopatch™ 200B amplifier (Mo-

lecular Devices, Foster City, CA, USA) with voltage clamped

at e60 mV, low-pass filtered at 2 kHz, digitised at 10 kHz

using Digidata® 1550B (Molecular Devices), and stored with

Clampex software (Molecular Devices) for offline analysis.

Neurones exhibiting a significant change in series resis-

tance (>20%) were excluded from analysis. Patch electrode

resistance was 3e5 MU, and series resistance (6e8 MU) was

not compensated. Recording of each neurone lasted 30e60

min. Electrode internal solution contained (mM): CsCl, 140;

ethylene glycol tetraacetic acid, 2.5; MgCl2, 2; 4-(2-

hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES),

10; triethanolamine, 2; and K2ATP, 4 (pH 7.3); osmolarity

was 300e310 mOsmol L�1. The extracellular (bath) solution

contained (mM): NaCl, 140; CaCl2, 1.3; KCl, 5.0; HEPES, 25;

glucose, 33; strychnine, 0.001; and bicuculline, 0.02 (pH 7.4);

osmolarity was 325e335 mOsmol L�1. Amplitude and fre-

quency of sEPSCs were analysed using Mini Analysis soft-

ware (Synaptosoft, Inc., Decatur, GA, USA). The detection

threshold for sEPSCs was 12 pA. Overlapping sEPSCs were

excluded from analysis. We chose healthy neurones with a

clear cell membrane, homogeneous cytoplasm, good

refraction, and a transparent cell body for whole-cell

recording. Only those sEPSC data from neurones with

giga-seal and membrane resistance >100 MU were included

in the data analysis.
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Fig 1. Differences between neonatal and adult male mice in brain testosterone concentrations, tau phosphorylation, and cognitive

function after sevoflurane anaesthesia. (a) Concentrations of testosterone in brain of neonatal and adult mice (n¼2 mice per group per

day). (b) Brain concentrations of testosterone in P6 and P60 male mice (n¼5 mice per group). (c) Effect of sevoflurane on brain testosterone

concentrations in P6 male mice (n¼3 mice per group). (d) Western immunoblot showing the effects of sevoflurane on the amounts of tau

and tau-phospho-Ser202/Thr205 in the cerebral cortex of P6 male mice. (e) Quantification of western immunoblots in P6 male mice (n¼6

mice per group). (f) Western immunoblot showing effects of sevoflurane on the amounts of tau and phosph-tau-Ser202/Thr205 in cerebral

cortex of P60 male mice. (g) Quantification of western immunoblots in P60 male mice (n¼3mice per group). Effects of sevoflurane on escape

latency and platform crossing number in the Morris water maze test in (h and i) neonatal male mice (n¼10 mice per group) and (j and k)

adult male mice (n¼12 mice per group). Student’s t-test was used to analyse difference in (b) and (e). ManneWhitney U-test was used to

analyse difference in (c), (g), (i), and (k). The overall P-values in (h and j) refer to interaction of group (control vs sevoflurane) and day (Days

30e36 or Days 84e90) in two-way repeated-measures analysis of variance. Day-specific post hoc P-values are Bonferroni corrected for

multiple comparisons. Boxes in (i) and (k) indicate median and inter-quartile range; upper and lower bars indicate minimum and

maximum. *P<0.05; **P<0.01. Error bars indicate standard deviation. MWM, Morris water maze; P, postnatal; PS, phosphorylated serine; PT,

phosphorylated threonine; N.S., not significant.
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Co-immunoprecipitation

We used SY5Y cells for co-immunoprecipitation (co-IP) ex-

periments because these cells are easier to culture and can

provide large amounts of protein for co-IP. Cultured cell co-IP

experiments required more sensitive nanobeam studies to

confirm potential interactions between tau and GSK3b, and to

identify the influence of testosterone on such interactions.

Specifically, protein extracted from SY5Y cells was immuno-

precipitated overnight with a total tau antibody (anti-tau, Cat#

556319, 1:1000; BD Pharmingen, San Diego, CA, USA), and then

incubated in a Protein A Sepharose® IgA (25 ml, Cat# 17-5280-

01; GE Healthcare, Chicago, IL, USA) and Protein G Sepharose

IgG (25 ml, 17-0618-01, GE Healthcare) agarose mixture for 3 h.

The antibodyeantigeneagarose mixture was then centrifuged

and analysed via a western immunoblot with GSK3b antibody

(Cat# 22104-1-AP, 47 kDa, 1:1000; Proteintech). We did not

quantify the co-IP data, but independent experiments were

performed three times separately.

Nanobeam sensor assessment of taueGSK3b
interactions

Weused nanobeam sensor technology to study the interaction

of tau and GSK3b at a single molecule level as described.38,39

Tau (1 mM) was placed in the nanobeam sensor, and recom-

binant active GSK3b (50 nM) (Cat# ab60863; Abcam) was added

to the microfluidic channel. When tau interacted with GSK3b,
the nanobeam spectrum shifted to a longer wavelength. A

subsequent wash removed proteins from the nanobeam

sensor, shifting the spectrum back to the shorter wavelength.

After one detection cycle, the nanobeam sensor was regener-

ated. Testosterone (100 nM) (58-22-0; MilliporeSigma, St Louis,

MO, USA) and GSK3b were injected into the microfluidic

channel to measure testosterone inhibition of the interaction

of tau with GSK3b. A home-made microfluidic channel device

(100 � 50 mm) with two inlets and one outlet was used for

sample delivery. The peak of each spectrum was obtained

using a Lorentzian fitting algorithm.38
Statistical analysis

Based on our previous studies,13e17,27 sufficient power to

detect a significant effect should be achieved using 10e12mice

per group for behavioural experiments, three to sixmice or cell

(neurone) samples per group for the western immunoblot and

ELISA analyses, five neurone samples per group for the sEPSC

recordings, and three to four cell (neurone) samples per group

for the immunostaining studies.

The difference in learning between treatment groups, based

on escape latency in the Morris water maze test, was analysed

using a repeated-measures two-way analysis of variance

(ANOVA). Post hoc comparisons with Bonferroni correction were

used to compare escape latencies across groups on each day of

the test only when there was an effect of days within a given

group. Platform crossing number was compared across groups

using ManneWhitney U-tests. Student’s t-test was used to

analyse differences in brain testosterone concentrations be-

tween P6 and P60 male mice (Fig. 1b; N¼5), phosphorylated tau

(phospho-tau) amounts between control and sevoflurane in P6

male mice (Fig. 1e; N¼6), and testosterone concentrations be-

tween the control condition and testosterone treatment in

P6eP8male mice (Fig. 2b; N¼6). The ManneWhitney U-test was

used to analyse differences in brain testosterone concentra-

tions between control and sevoflurane in P6 male mice (Fig. 1c;
N¼3), and brain phospho-tau concentrations between control

and sevoflurane in P60 male mice (Fig. 1g; N¼3). The effects of

sevoflurane and testosterone on brain, cultured cells, and pri-

mary neuroneswere analysed using two-way ANOVA and post hoc

tests with Bonferroni correction. Given the unequal variance

amongst groups, sEPSC amplitude and frequency were

compared using unequal variance Student’s t-test. Data are

expressed as percentages, arbitrary units, or real numbers, and

presented asmean (standard deviation) for protein analysis and

Morris water maze escape latency, or as median with inter-

quartile range (IQR) for Morris water maze platform crossing

numbers. P<0.05 was considered statistically significant, and

significance testing was two-tailed in a two-group comparison.

For Bonferroni correction, adjusted P-values, calculated by

dividing real P-values by sample size, are reported. Statistical

analysis was conducted using GraphPad Prism version 8.0

(GraphPad Software, San Diego, CA, USA) and SPSS Statistics

version 21.0 (IBM; Armonk, NY, USA).

Results

Sevoflurane increased tau phosphorylation and
cognitive impairment in neonatal male mice, but not
in adult male mice

Brain testosterone levels increased from P0 to P60 (Fig. 1a),

with adult male mice having higher levels than neonatal male

mice (Fig. 1b; 3.03 [0.29] vs 0.44 [0.12]; P<0.01). Sevoflurane did

not significantly alter testosterone concentration in neonatal

male mouse brain (Fig. 1c). Sevoflurane increased tau phos-

phorylation in neonatal male mouse cortex, as evidenced by

increased phospho-tau at S202 and T205 without a significant

increase in total tau (Fig. 1d). The ratio of phospho-tau to tau

was 133 (20)% in sevoflurane-treated vs 100 (6)% in control

neonates (Fig. 1e; P<0.01). Sevoflurane did not increase tau

phosphorylation in adult mouse cortex (Fig. 1f and g; 103 [8]%

vs 100 [13]%; P¼0.77).

The standard curve generated by the testosterone ELISA kit

(Test 1) (Cat# TE187S-100; Calbiotech) and the two standard

curves generated employing the diluted buffer of this Calbio-

tech kit (Test 2) and aqueous buffer (Test 3) used to dissolve the

testosterone provided by the ThermoFisher testosterone ELISA

kit (Cat# KGE010) were very similar (Supplementary Fig. 1).

There were no significant differences in either tau or phospho-

tau amounts in brain between neonatal male or neonatal fe-

male mice under either control condition or sevoflurane

anaesthesia (Supplementary Fig. 2).

For the Morris water maze test, there was a significant

interaction between treatment (sevoflurane vs control) and

time (P30eP36) on escape latency in neonatal male mice

(Fig. 1h; F¼3.07; P<0.01), with sevoflurane increasing the

escape latency on the final 3 days of the 7 day test (P34, P35,

and P36). Sevoflurane-treated neonates performed less plat-

form crossings than control mice (Fig. 1i; 2.2 [IQR: 1.0e3.3] vs

5.4 [IQR: 3.8e6.5]; P<0.01). Sevoflurane did not cause cognitive

impairment in adult mice (Fig. 1j and k).

Testosterone attenuated the sevoflurane-induced tau
phosphorylation and cognitive impairment in
neonatal male mice

Given the higher testosterone levels in adult vs neonatal male

mouse brain, and that only neonatal male mice had increased

tau phosphorylation and cognitive impairment after sevo-

flurane anaesthesia, we asked whether testosterone could
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Fig 2. Testosterone attenuates sevoflurane-induced tau phosphorylation and cognitive impairment in neonatal male mice. (a) Concen-

trations of testosterone in the brain of neonatal male mice (P6eP10 and P30; red dots) after administering testosterone from P6 to P8 (n¼2

mice per group per day). (b) Concentration of testosterone in the brain tissues of P8 male mice after injection of testosterone from P6 to P8

(n¼6 mice per group). (c) Effects of sevoflurane, testosterone, and sevoflurane plus testosterone on the amounts of tau, phospho-tau-

Ser202/Thr205, and phospho-tau-Ser262 in the hippocampus of neonatal (P8) male mice. Quantification of the ratio of (d) phospho-tau-

Ser202/Thr205 to total tau and (e) phospho-tau-Ser262 to total tau (n¼3 mice per group). (f) Effects of sevoflurane, testosterone, and

sevoflurane plus testosterone on the amounts of glycogen synthase kinase-3b (GSK3b), phospho-GSK3b Ser9, and phospho-GSK3b Tyr216

in the hippocampus of neonatal (P8) male mice. Quantification of (g) the ratio of phospho-GSK3b Ser9 to total GSK3b and (h) the ratio of

phospho-GSK3b Tyr216 to total GSK3b (n¼3 mice in each group). (i) Effect of sevoflurane on escape latency of neonatal mice pretreated with

testosterone in the Morris water maze test. (j) Effect of sevoflurane on platform crossing number of neonates pretreated with testosterone

in the Morris water maze test (n¼10 mice per group). Student’s t-test was used to analyse difference in (b). Two-way analysis of variance

(anova) was used to analyse difference in (d), (e), and (gei). ManneWhitney U-test was used to analyse differences in (j). The overall P-value

in (i) refers to the interaction of group (control vs sevoflurane) and day (Days 30e36) in the two-way repeated-measures anova. Day-specific

post hoc P-values are Bonferroni corrected for multiple comparisons. Boxes in (j) indicate median and inter-quartile range; upper and lower
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postnatal; PS, phosphorylated serine; PT, phosphorylated threonine; Ser9, serine-9; Tyr216, tyrosine-216.
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attenuate sevoflurane-induced cognitive impairment in

neonatal male mice.

Treatment with testosterone three times (P6, P7, and P8),

but not once (P6), attenuated sevoflurane-induced tau phos-

phorylation (Supplemental Fig. 3a and b). Testosterone treat-

ment on P6, P7, and P8 increased testosterone levels in

neonatal brain at P8 (Fig. 2a and b; 1.76 [0.1] vs 0.39 [0.05] ng

ml�1; P<0.01) and attenuated sevoflurane-induced tau phos-

phorylation in neonatal hippocampus (Fig. 2c), both at S202

and T205 (Fig. 2d; F¼23.35; P<0.01) and S262 (Fig. 2e; F¼35.18;

P<0.01).
A similar interaction of sevoflurane and testosterone on tau

phosphorylation occurred in neonatal cortex (Supplementary

Fig. 3cee). Compared with vehicle treatment, testosterone-

treated neonates showed a smaller decrease in GSK3b
phospho-Ser9 (Fig. 2f and g; F¼7.89; P¼0.02) and a smaller in-

crease in GSK3b phospho-Tyr216 (Fig. 2f and h; F¼11.94;

P<0.01) in the hippocampus after sevoflurane anaesthesia. A

similar interaction between sevoflurane and testosterone on

GSK3b phospho-Ser9 and phospho-Tyr216 also occurred in

neonatal male mouse cortex and primary neurones

(Supplementary Fig. 3feh). These results showed that testos-

terone attenuated sevoflurane-induced tau phosphorylation

in neonatal brain by inhibiting sevoflurane-induced activation

of GSK3b.
Sevoflurane induced cognitive impairment in neonates not

treated with testosterone before anaesthesia, as evidenced by

increased escape latency and decreased platform crossing in

the Morris water maze test. Neonates treated with testos-

terone before sevoflurane anaesthesia showed no significant

difference in either measure (Fig. 1h and i vs Fig. 2i and j).

Testosterone inhibited sevoflurane-induced
interaction between tau and GSK3b

We used SY5Y cells for co-IP studies because they are easier to

culture and yielded sufficient protein for co-IP experiments.

After determining the testosterone concentration that atten-

uated sevoflurane-induced tau phosphorylation and activa-

tion of GSK3b in SY5Y cells (100 nM; Supplementary Fig. 4aec),

we showed that sevoflurane, testosterone, and their interac-

tion do not decrease cell viability (Supplementary Fig. 4deg),

validating the use of these cells to study binding or interaction

of sevoflurane with testosterone. Sevoflurane anaesthesia

increased the interaction between GSK3b and tau (Fig. 3a),

demonstrating that sevoflurane promoted binding or interac-

tion between the two proteins. Testosterone mitigated this

binding or interaction (Fig. 3a).

We used nanobeam technology (Fig. 3b), including a

microfluidic channel for tau and GSK3b interaction with or

without testosterone (Fig. 3c), to study the real-time dynamic

interaction between tau and active GSK3b at the single-

molecule level (Fig. 3d). The shift from green or purple to red

represented the specific and nonspecific binding or interaction

of tau and GSK3b; the shift from red to blue or light blue rep-

resented specific interaction or binding between tau and

GSK3b after the washout of the weak interaction between tau

and GSK3b. The interaction between tau and active GSK3bwas

reduced in the presence of testosterone, as evidenced by a

larger signal reduction between GSK3b plus testosterone and

the second wash (Fig. 3e, Phase II, uncoloured background,

Dl¼0.20 nm) vs between GSK3b plus vehicle and the first wash

(Fig. 3e, Phase I, coloured background, Dl¼0.36 nm). Thus,

testosterone may reduce sevoflurane-induced tau
phosphorylation and GSK3b activation by inhibiting the

interaction between tau and GSK3b.
Testosterone attenuated sevoflurane-induced tau
phosphorylation and sEPSC reduction in neurones

Testosterone attenuated sevoflurane-induced tau phosphor-

ylation in primary neurones, rescuing the increases in

phospho-tau-S202/T205 and tau-262 (Fig. 4aec) and in the

number of phospho-tau-S202/T205-positive cells (Fig. 4d and

E; F¼13.66; P<0.01). Testosterone also attenuated sevoflurane-

induced decreases in GSK3b phospho-Ser9 (Fig. 4f and g;

F¼18.85; P<0.01) and increases in GSK3b phospho-Tyr216

(Fig. 4f and h; F¼10.86; P¼0.01).

Testosterone attenuated sevoflurane-induced reduction in

the amount of PSD-95 in primary neurones (Fig. 5a and b) and

in the amplitude (Fig. 5c and d; F¼4.31; P¼0.05) and frequency

(Fig. 5c and e; F¼1.42; P¼0.25) of their sEPSCs. These data

suggest that sevoflurane may decrease neuronal activation,

which can be attenuated by testosterone treatment.

Discussion

We performed in vivo (mice), in vitro (primary neurones and

SY5Y cells), and nanobeam (single molecule) studies to explore

the underlying mechanisms of age-dependent sevoflurane-

induced tau phosphorylation and cognitive impairment.

Neonatal male mice, which were more vulnerable to the

neurotoxic effects of sevoflurane, had lower levels of brain

testosterone than adult male mice did. Treatment with testos-

terone before sevoflurane anaesthesia attenuated sevoflurane-

induced tau phosphorylation and cognitive impairment in

neonatal male mice. Testosterone also attenuated sevoflurane-

induced tau phosphorylation in SY5Y neuroblastoma cells and

primaryneurones, and reduced the interactionbetween tau and

GSK3b. In addition, testosterone rescued sevoflurane-induced

inhibition of the amplitude and frequency of neuronal sEPSCs.

These results suggest possible protective effects of testosterone

on anaesthetic neurotoxicity, potentially via inhibiting the

taueGSK3b interaction, pending further confirmative studies.

The objective of the present study was not to investigate

whether supplementation of testosterone could be used to

treat anaesthetic neurotoxicity, but rather to determine the

potential underlying mechanism by which sevoflurane in-

duces age-dependent cognitive impairment in mice.

Previous studies have shown that anaesthesia with one

minimum alveolar concentration isoflurane for 4 h in P7 rats

can cause neuronal death at 12 h after anaesthesia in both

male and female rats, but only impairs recognition of objects

and produces social memory deficits in male rats at P38.24

Isoflurane anaesthesia at P4 induces greater neurotoxicity

and neurobehavioural deficits than at P7 in female mice.25

Male progeny, but not female progeny, of sevoflurane-

exposed parents showed abnormalities in behavioural

testing and expression of the KCC2 co-transporter. Male F1

rats of both exposed parents showed impaired spatial memory

and KCC2 expression.26 These results suggest that there could

be sex-dependent differences in anaesthetic neurotoxicity.

However, Loepke and colleagues40 showed no sex difference in

long-term neuronal density, spontaneous locomotion, or

cognitive function after isoflurane anaesthesia in P7 mice.

Boscolo and colleagues41 reported that female P7 rats were

more vulnerable to cognitive impairment after anaesthesia

with midazolam, nitrous oxide, and isoflurane.
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Brain testosterone concentrations were shown to be higher

in P6 male rats than in P60 male rats.42 In contrast, we showed

that P6 male mice had lower concentrations of brain testos-

terone than P60 male mice. The reason for this difference is

not known. To our knowledge, there have been no studies that

compared brain concentrations of testosterone between P6

and P60 male mice. Moreover, the developmental stages be-

tween rats and mice are different, as puberty occurs between

P42 and P55 in male rats,43 but at P30 in male mice,44,45 which

could contribute to the different findings in brain testosterone

concentrations between rats and mice. Finally, blood testos-

terone concentrations in P6 male rats or P6 male mice are

lower than those in P60 male rats or P60 male mice,45 consis-

tent with our study.
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antagonist46 or gonadectomy47 attenuated isoflurane-induced

behavioural deficiencies in neonatal male rats. Treatment

with testosterone plus isoflurane caused cognitive impair-

ment in neonatal female rats.48 However, the data from the

present study suggest that treatment with testosterone can

mitigate sevoflurane-induced cognitive impairment in

neonatal male mice. The reason for such difference remains

unknown. In the aforementioned studies, neonatal rats

received isoflurane for 6 h at P7; androgen receptor antagonist

flutamide at P2, P4, and P646; or testosterone at P1eP6. In the

present study, neonatal mice received sevoflurane 3% for 2 h

with and without testosterone on P6, P7, and P8. In both

studies, the rodents received anaesthesia with oxygen 40%.
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The role of testosterone in cognitive function is still not

conclusive. Both human49 and animal50 experiments suggest

dose-dependent effects of testosterone on cognitive function.

Although testosterone may have neuroprotective effects via

inhibiting tau phosphorylation (present study), androgen re-

ceptor antagonism and gonadectomy may have neuro-

protective effects via changes in chloride transporters46 and

beingmore developmentally similar to females,47 respectively.

Testosterone plus isoflurane could cause cognitive impair-

ment in female neonatal rats via changes in chloride trans-

porters.48 Other studies have shown that testosterone can

improve cognitive function in animals and humans,49e53 but

conflicting reports exist.54e56 Future studies should compare

the effects of testosterone, androgen receptor antagonist, or

gonadectomy under the same anaesthetic techniques in rats

or mice with measurement of testosterone concentrations in

both blood and brain.

We did not find significant differences in sevoflurane-

induced brain tau phosphorylation between neonatal male

and female mice (Supplementary Fig. 2), consistent with

another study.40 These findings suggest potential ceiling ef-

fects of sevoflurane-induced tau phosphorylation in neonatal

mice by different mechanisms (e.g. mitochondrial

dysfunction17).

We recently showed that tau levels in hippocampus and

cortex are higher in neonatal than in adult mice, which could

account for the increased tau phosphorylation in neonatal

mice after sevoflurane anaesthesia.17 The increased tau level

in neonatal mice was attributable to increased amounts of

Nuak1, an adenosine monophosphate-activated protein

kinase-related kinase57 that phosphorylates tau at Ser356,

preventing tau degradation, ultimately leading to accumula-

tion of total tau.58 In turn, the increased level of Nuak1 in

neonatal brain was caused by decreased impaired mitochon-

drial function and reduced ATP levels.17 Testosterone may

protect mitochondrial function by improving cell survival and

mitochondrial membrane potential, and reducing nuclear

fragmentation and reactive oxygen species generation, as

shown in human astrocytes.59 Testosterone also enhanced

mitochondrial function in rat brain by increasing mitochon-

drial reduced nicotinamide adenine dinucleotideeubiquinone

oxidoreductase chain 1 protein level and mitigating oxidative

damage.60 Future work should determine whether neonatal

mice accumulate more tau in brain attributable to impaired

mitochondrial function resulting from lower testosterone

levels.

Despite its strengths, our study has several limitations.

First, we used only in vitro electrophysiology to show that

testosterone could attenuate sevoflurane-induced reduction

in neuronal activation, which was not necessarily associ-

ated with the cognitive impairment observed in the Morris

water maze. Second, we only performed a single blood gas

analysis during the three 2-h anaesthetic exposures. This

measurement probably does not rule out disturbances of

blood gas values at other time points. Third, Deng and

colleagues61 reported that isoflurane anaesthesia predomi-

nantly caused caspase-3 activation in the cortex of neonatal

mice and in the hippocampus of adult mice, suggesting

brain-region- and age-dependent anaesthetic neurotoxicity.

We did not determine brain-region-dependent tau phos-

phorylation between neonatal and adult male mice because

the objective of the present study was to reveal

testosterone-associated mechanisms by which sevoflurane
causes age-dependent changes in tau phosphorylation and

cognitive function.

In conclusion, our results suggest that the lower brain

testosterone level in neonatal male mice is one of the mech-

anisms underlying age-dependent tau phosphorylation and

cognitive impairment after sevoflurane anaesthesia. Testos-

terone attenuated sevoflurane-induced tau phosphorylation

and cognitive impairment by decreasing binding and interac-

tion between tau and GSK3b, a kinase that phosphorylates tau.

Testosterone might also mitigate sevoflurane-induced inhibi-

tion of action potential firing in neurones. These findings pave

the way for further research on the effects of anaesthesia on

the developing brain.
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