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For allogeneic hematopoietic cell transplantation candidates lacking a suitable human leukocyte antigen
(HLA)-identical sibling, 8/8 HLA allele-matched unrelated donors (URDs) remain the gold standard.1

However, many patients in the increasingly diverse United States population2 lack 8/8 URDs.3 Mis-
matched adult donor and cord blood (CB) grafts are increasingly important to ensure donors for all,
although the extent to which alternative donors extend access is not established. Also, disparities in
donor characteristics are likely, given, for example, that non-Europeans (those with full or part non-
European ancestry) have less access to CB3,4 grafts, and African patients have fewer haploidentical
donors.5

We evaluated the extent to which alternative donors facilitate the provision of allografts and their graft
characteristics by recipient ancestry in consecutive patients 19 to 65 years old over a 6-year period.
Our hypothesis was that there are ongoing disparities in the provision of any alternative donor and
provision of “optimal” alternative donors. Patient ancestry was defined as previously described6 and
“optimal” donors according to published criteria (see below). During the study period (January 2016 to
April 2021), in the absence of a suitable HLA-identical sibling, 8/8 URDs had priority, followed by
double unit CB grafts (often preferred for patients <60 years) or haploidentical donors. Mismatched
(5-7/8) URDs have been used more recently. For adult alternative donors, the youngest suitable readily
available donor was usually chosen, especially recently.7 Unit quality, CD34+/total nucleated cell dose,
and 8/8 HLA-allele match-grade guided CB graft selection.8 To determine trends over time, we
compared early (January 2016 to January 2018 [25 months]), middle (February 2018 to February 2020
[25 months]), and pandemic (March 2020 to April 2021 [14 months]) periods.

We studied 601 adults (median age, 53 years; range, 19-65); 587 (98%) had hematologic malig-
nancies (including 117 with acute leukemia on clinicaltrials.gov NCT02677064). Over one-third
(n = 226 [38%]) were non-European (72 African, 56 Asian, 57 White Hispanic, 10 Middle Eastern,
and 31 mixed non-European), whereas 375 (62%) were European. Overall, just over half (n = 340
[57%]) received 8/8 URDs. The remainder received CB (n = 139 [23%]), haploidentical (n = 69
[11%]), or 5 to 7/8 URD (n = 44 [7%]) grafts. Very few patients (n = 9 [1.5%]) were deemed to have
“no graft” at the time of donor evaluation, although almost all were non-European (6 African, 2 White
Hispanic, and 1 mixed European).

Of transplanted Europeans, most (263/374 [70%]) received 8/8 URDs compared with only one-third of
transplanted non-Europeans (77/218 [35%]; P < .001). Only a minority of Europeans (111/374 [30%])
received HLA-disparate grafts (60 CB, 29 haploidentical, and 22 5 to 7/8 URD). Of non-Europeans,
two-thirds (141/218 [65%]) received HLA-disparate grafts (79 CB, 40 haploidentical, and 22 5 to
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Figure 1. Comparison of characteristics that fulfill “optimal graft” criteria in European and non-European transplant recipients by stem cell source. (A) 8/8

URD (n = 340), (B) CB (n = 139), (C) haploidentical donor (n = 69), and (D) 5 to 7/8 URD (n = 44). Compared with Europeans, non-European patients were more likely to

receive (A) older 8/8 URDs, (B) CB grafts that were more likely to be low-dosed and/or highly mismatched, (C) similarly aged haploidentical donors (although a higher

percentage of non-Europeans had donors >40 years), and (D) older 5 to 7/8 URDs. Also, non-European 5 to 7/8 URD recipients received more HLA-mismatched grafts

(compared with European mismatched URD recipients) (D). Box plots (A-B,D) present age medians (solid horizontal lines), IQR (boxes), and range (bars). Dotted lines reflect

“optimal” donor age cutoffs for adult donors: 35 years for 8/8 and 5 to 7/8 URDs (A,D), and 40 years for haploidentical donors (C). P values were generated by Student t tests

(A,C-D) and chi-squared tests (B).
7/8 URD). Of the 66 transplanted African patients, few (13/66
[20%]) received 8/8 URDs; 27 received CB, 16 haploidentical,
and 10 5 to 7/8 URD transplants. When analyzing by period, the
relative proportions of patients receiving 8/8 URD, CB, and hap-
loidentical transplants remained unchanged over time for both
Europeans and non-Europeans. However, increasing the use of
5 to 7/8 URDs (4% from January 2016 to January 2018, 8% from
February 2018 to February 2020, and 14% from March 2020 to
April 2021) decreased the “no graft” incidence to 1% of patients
recently.

We then analyzed the provision of “optimal” donors defined as 8/8
URDs ≤35 years,1,7,9 double unit CB grafts with each unit of
5626 RESEARCH LETTER
optimal quality, a CD34+ dose ≥1.5 × 105/kg, and ≥4/8 HLA
allele-match,7,10,11 haploidentical donors ≤40 years without high
titer (mean fluorescence intensity >5000) recipient donor-specific
HLA antibodies12-16 or 5 to 7/8 URDs <35 years (per ClinicalTrials.
gov NCT04904588 ACCESS trial). Figure 1 shows comparisons
of “optimal” donor characteristics by patient ancestry and donor
type. For 8/8 URD recipients, compared with Europeans, non-
Europeans had older donors (median, 33 years vs 26 years;
P < .001) (Figure 1A) with more than double the proportion over
35 years (29/77 [38%] vs 42/263 [16%]). White Hispanic (7/17
[41%]) and African (11/13 [85%]) patients had the highest
proportions of 8/8 URDs over 35 years. For CB recipients,
25 OCTOBER 2022 • VOLUME 6, NUMBER 20
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Figure 2. Provision of “optimal” adult donors/CB grafts over time by recipient ancestry. The likelihood that non-Europeans received an “optimal” graft did not improve.

Results by (A) year of transplantation are shown, (B) by period for all transplanted patients, and (C) for 8/8 URD recipients only. Lines displayed in (A) show linear models of best

fit through the data. The P values in (B-C) were generated by chi-squared tests.
non-Europeans (32/79 [41%], most commonly White Hispanic or
African) were more likely than Europeans (12/60 [20%]) to receive
a graft with 1 or both units having a low cell dose and/or <4/8 HLA-
match (P = .01) (Figure 1B). For haploidentical transplants,
although donor age by ancestry was not different (median, 28 years
vs 27 years; P = .15) (Figure 1C), more non-Europeans had donors
over 40 years (6/40 [15%] vs 2/29 [7%]). Finally, for 5 to 7/8 URD
recipients, compared with Europeans, non-Europeans had older
25 OCTOBER 2022 • VOLUME 6, NUMBER 20
donors (median, 27 vs 22 years; P = .04) (Figure 1D) with almost
twice the proportion ≥35 years (6/22 [27%] vs 3/22 [14%]).

As shown in Figure 2A (inset), while 78% of transplanted patients
received an “optimal” donor overall, this was more likely in Euro-
peans than non-Europeans (84% vs 67%; P < .001). White His-
panic and African patients had the lowest proportions with
“optimal” grafts. When analyzed over time, either by year
(Figure 2A) or time period (Figure 2B), the disparity between the
RESEARCH LETTER 5627



ancestry groups is not improving. Notably, when evaluating Euro-
pean 8/8 URD recipients (n = 263), the proportion with optimal
grafts (ie, donor ≤35 years) has increased over time to 95%,
whereas of the 77 non-European 8/8 URD recipients, only 61%
received a graft from a young donor, and this is not improving
(Figure 2C).

In our real-world experience, 8/8 URD access for non-Europeans is
not improving, and prioritizing younger donors is possible for nearly
all European, but not non-European, patients. CB, haploidentical,
and 5 to 7/8 URD grafts increasingly provide “donors for all” with
the use of HLA-mismatched URDs, greatly reducing the likelihood
of “no graft.” However, within each donor type, there are persistent
disparities in the provision of an “optimal” graft, with non-
Europeans, particularly White Hispanic and African patients,
being the most at risk for suboptimal grafts.

We acknowledge for each donor type, “optimal” graft definitions
will evolve. Additional specifications for 8/8 URDs may consider
HLA-DP match,17,18 next-generation sequencing HLA-matching,19

or minor antigen mismatches.20 For CB, an improved under-
standing of the relative importance of CD34+ cell dose vs 8/8 HLA
allele-match and the safety of 3/8 HLA-matched or single-unit
transplants is needed.8,11 For haploidentical donors, donor rela-
tionship,15 age, and HLA-matching refinements21 could be
considered. For ≤7/8 URDs, the number and loci of HLA mis-
matches, mismatches with high peptide divergence,22 and the
HLA-B leader genotype may be relevant.23 Most importantly, timely
adult donor availability is critical, especially for acute leukemia
patients for whom an optimal donor facilitates transplantation in the
time required for best patient care. We are now analyzing the
speed to allograft in acute myelogenous leukemia patients,24 and
future studies should consider time to donor availability.

Our analysis cannot address which donor type may be the best in a
given setting. However, importantly, when considering whether one
stem cell source is better than another, either for an individual or in
analyses comparing outcomes by donor type, the specific graft
characteristics should be considered. Also, for patients with >1
potential stem cell source,25 we propose transplant centers
implement selection algorithms that consider “optimal donor” def-
initions instead of a rigid hierarchy of one source over another. For
example, for patients without 8/8 HLA-matched donors, selecting
young mismatched adult donors over low-dose CB grafts or high-
dose CB grafts over older mismatched adult donors (or those with
delayed availability) may be appropriate. Moreover, improving
transplantation approaches using all donor types will be required to
optimize therapy for all, regardless of ancestry.
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