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Abstract

The prevalence of obesity is increasing worldwide. Experimental animal studies demon-
strate that maternal obesity during pregnancy directly affects cardiac structure and function
in their offspring, which could contribute to their increased cardiovascular disease (CVD)
risk. Currently, a systematic overview of the available evidence regarding maternal obesity
and alterations in cardiac structure and function in human offspring is lacking. We systemati-
cally searched the electronic databases Embase, MEDLINE and NARCIS from inception to
June 29, 2022 including human studies comparing cardiac structure and function from fetal
life onwards in offspring of women with and without obesity. The review protocol was regis-
tered with PROSPERQO International Prospective Register of Systematic Reviews (identifier:
CRD42019125071). Risk of bias was assessed using a modified Newcastle-Ottawa scale.
Results were expressed using standardized mean differences (SMD). The search yielded
1589 unique publications, of which thirteen articles were included. Compared to offspring of
women without obesity, fetuses of women with obesity had lower left ventricular strain, indic-
ative of reduced systolic function, that persisted in infancy (SMD -2.4, 95% confidence inter-
val (Cl) -4.4 standard deviation (SD) to -0.4 SD during fetal life and SMD -1.0, 95% CI -1.6
SD to -0.3 SD in infancy). Furthermore, infants born to women with obesity had a thicker
interventricular septum (SMD 0.6 SD, 95% CI 0.0 to 1.2 SD) than children born to women
without obesity. In conclusion, cardiac structure and function differs between fetuses and
children of women with and without obesity. Some of these differences were present in fetal
life, persisted in childhood and are consistent with increased CVD risk. Long-term follow-up
research is warranted, as studies in offspring of older age are lacking.
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Introduction

The prevalence of obesity is increasing worldwide [1,2], with some countries reporting up to
half of women entering pregnancy with overweight or obesity [3]. Obesity before or during
pregnancy is associated with adverse pregnancy outcomes, such as gestational diabetes mellitus
(GDM), preeclampsia and preterm birth [4-7]. In addition, children born to women with obe-
sity during pregnancy are more likely to develop obesity, type 2 diabetes and cardiovascular
diseases (CVD) [8,9]. Furthermore, maternal obesity is associated with an increased risk of
congenital heart disease in their children and premature death from cardiovascular events as
compared to children born to women without obesity during pregnancy [10,11].

The exact pathophysiology of this increased CVD risk in offspring of women with obesity
during pregnancy remains to be determined [9,10]. The increased CVD risk could be partially
explained by the higher risk of hypertension and obesity observed in offspring of women with
obesity [12,13]. However, experimental studies in animals demonstrate that maternal obesity
during pregnancy directly affects cardiovascular development in their offspring which could
also explain the increased CVD risk in the offspring [14-17]. For example, a mouse model
demonstrated that maternal obesity during pregnancy resulted in systolic and diastolic dys-
function in the fetus, which persisted throughout adulthood and was independent of off-
spring’s body weight and postnatal diet [17]. In addition, offspring born to obese mice and
sheep demonstrated cardiac hypertrophy and fibrosis [14,15].

To our knowledge, no systematic review has addressed the relation of maternal obesity in
humans and cardiac alterations in their offspring, excluding congenital heart disease. We
therefore conducted a systematic review on the available evidence on this topic.

Methods

We performed a systematic review according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses guidelines. The review protocol was registered with PROSPERO
International Prospective Register of Systematic Reviews (identifier: CRD42019125071, first
version on April 12 2019, updated version February 10™ 2021). Ethical approval: This article
does not contain any studies with human participants performed by any of the authors.

Search strategy

A medical information specialist (JL) performed a systematic search in OVID MEDLINE,
OVID EMBASE and NARCIS (scholarly information in the Netherlands) from inception to
June 29, 2022. Search terms included controlled terms (i.e. MeSH-terms in MEDLINE) and
free text terms for the following concepts: [1] obesity/ weight gain; [2] (a) fetal heart, fetal pro-
gramming or prenatal exposure or (b) (pre)-pregnancy and offspring and [3] heart function or
structure. Animal studies were excluded. No other restrictions, including date and language
restrictions, were applied. For the complete search strategy, see S1 Table. We additionally
searched the reference lists of included papers and the papers citing these studies using Web of
Science for additional relevant publications. Citations were imported and deduplicated using
EndNote®) [18].

Two reviewers (TdH and MR) independently screened titles and abstracts for eligibility
using Rayyan as a web tool (http://rayyan.qcri.org). Disagreements were resolved through dis-
cussion with a third reviewer (AvD) until consensus was reached. The full texts of relevant arti-
cles were screened for eligibility. If full texts were not available through the library system, we
contacted authors directly to request full texts. Full text screening was done by the same two
independent reviewers.
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Inclusion and exclusion criteria

Studies were eligible if they:

« reported on cardiac function or structure as measured by echocardiography or magnetic res-
onance imaging (MRI) and

o reported on the outcomes of fetuses and offspring from mothers with maternal obesity,
defined as body mass index (BMI) > 30 kg/m? before and/or during pregnancy and

« reported on the outcomes of fetuses and offspring of control pregnancies with a BMI <30
kg/m” before and/or during pregnancy

Preconception BMI was defined BMI measured within 6 months before pregnancy. Confer-
ence abstracts were included only if the contained enough data relevant to the outcomes of
interest and to adequately assess risk of bias.

We excluded studies if 1) It was not possible to differentiate between the outcomes of
women with obesity and those of controls, 2) they focused on the incidence of congenital
heart disease in offspring, or 3) they included women exclusively based on their higher GDM
risk.

Outcomes

Primary outcomes were determined on the basis of clinical utility and validity of the measures
according to the American Society of Echocardiography Pediatric and Congenital Heart Dis-
ease Council [19]: (1) markers of left ventricle (LV) structure and dimension, including inter-
ventricular septum diameter at end diastole (IVSd), left ventricular internal diastolic diameter
(LVIDd), end-diastolic left ventricular posterior wall thickness, left ventricle mass (LVM),
LVM indexed for body surface area (BSA) (LVMI), relative wall thickness, end-diastolic vol-
ume indexed for BSA (EDVi) and end-systolic volume indexed for BSA (ESVi), (2) markers of
systolic function, including shortening fraction (SF), ejection fraction (EF), tissue Doppler
derived peak systolic velocity (s’), longitudinal strain (LS) and tricuspid annular plane systolic
excursion (TAPSE), (3) markers of diastolic function, including isovolumic relaxation time,
mitral valve E/A ratio, tissue Doppler derived early (e”) and late (a’) diastolic velocity, and (4)
global cardiac functioning as expressed with the myocardial performance index. We included
LS measurements derived from the apical 4-chamber view, or all apical views (2-, 3- and
4-chamber). LS has a negative value, but we will refer to lower strain as a value closer to zero,
meaning reduced systolic function. Other echocardiographic outcomes and MRI derived
parameters were assessed as secondary outcomes.

Data extraction and quality assessment

Data extraction was performed by two independent reviewers (TdH and MR). We stratified
the cardiac outcomes for the following developmental stages: (1) fetuses, (2) neonates (< 28
days of age) (3) infants (28 days to 1 year of age), (4) children (1 to 12 years), (5) adolescents
(12 to 18 years) and (6) adults (>18 years). For each included study the following parameters
were collected: (1) study design, (2) definition of maternal obesity, (3) timing of maternal BMI
measurement, (4) fetal/offspring’s age at outcome assessment, (5) number of participants and
(6) relevant outcomes, including the numbers, mean/standard deviation (SD) for normally dis-
tributed variables, and median/range for variables that were not normally distributed. We also
collected information on potential confounders, including: prevalence of type 1 and type 2 dia-
betes, GDM and hypertensive disorders of pregnancy, gestational age, birthweight, sex, mater-
nal age, offspring blood pressure and offspring heart rate. Since cardiac mass and dimensions
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in the pediatric population are usually adjusted for BSA or weight we also collected offspring
anthropometrics at time of measurement [20]. In case of fetal studies, maternal blood pressure
and heart rate was collected if available. If, in addition to groups with and without obesity, a
study consisted of a third group of women with type 1 or 2 diabetes or GDM, we excluded
this/ these group (s). If not all required data was present in the full text, we contacted the
authors for additional data. If maternal BMI followed a normal distribution and was catego-
rized in more than two groups in the original paper, we calculated the pooled means and SD to
create a group with obesity (BMI >30 kg/m?) and a control group (BMI <25 kg/m?) group
where possible. If only the 95% CI for normally distributed variables was available, SD was cal-
culated manually.

For the assessment of the methodological quality of the articles two independent reviewers
(TdH and MR) used the Newcastle-Ottawa Scale (NOS) for cohort studies [21]. Studies were
assessed on three categories; selection, comparability and outcome. For cross-sectional studies,
we used the NOS for cohort studies excluding the assessment of the follow-up period. S4 and
S5 Figs demonstrate our adjusted NOS risk of bias form for cohort and case-control studies,
respectively. A maximum of 9 or 7 stars could be awarded to cohort and cross-sectional stud-
ies, respectively. Low risk of bias was defined as a final score of 8-9 or 6-7 stars, moderate risk
of bias was given for 7 or 5 stars and high risk of bias for 6 or 4 stars or less for cohort and
cross-sectional studies, respectively. Funnel plots were used to assess possible publication bias
in outcomes that included 10 or more studies [22].

Statistical analyses

Meta-analyses. Two or more articles reporting on the same cardiac outcome in the same
developmental stage were included for pooled analyses using Cochrane Collaborations Rev-
Man Software version 5.4 (The Cochrane Collaboration, Copenhagen, Denmark) [22]. If one
article reported on repeated measurements at different developmental stages, we included the
measurement that best matched the other studies for meta-analyses. Meta-analyses were per-
formed using a random effects model. Due to differences in methods of assessment, for exam-
ple strain being measured only in four-chamber view, or both two- and four-chamber view,
we reported standardized mean differences (SMD) with 95% confidence intervals (CI). We
defined low and high heterogeneity according to I* cut-offs of 30% and 75%, respectively [23].
Articles were not excluded in our meta-analyses due to high heterogeneity, but potential
sources causing high heterogeneity were discussed.

Outcomes that could not be included in our meta-analyses due to inability to extract a 2x2
table or single measurements were described narratively. If the same cardiac outcome measure
was described at different ages, either within one article or in different articles, we constructed
boxplots for a visual representation of the development over time. In our boxplots we plotted
the SMD of cardiac outcomes against time. The SMD and 95% CI were derived from single
measurements or when available, from our meta-analyses.

Sensitivity and subgroup analyses. Maternal obesity is often accompanied by pregnancy
induced hypertension and hyperglycemia in pregnancy [24,25]. These comorbidities are inde-
pendently associated with alterations in offspring’s cardiac outcomes [26,27]. To evaluate if
cardiac outcomes in offspring of women with obesity before or during pregnancy are indepen-
dent from maternal hypertension and maternal glucose regulation disorders we performed
sensitivity analyses excluding articles that included women with type 1 or 2 diabetes, GDM or
hypertensive disorders of pregnancy. We also performed subgroup analyses exploring possible
sex differences in the outcomes.
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Results

Description of included studies

The literature search identified 1589 unique publications (see Fig 1). After title and abstract
and full-text screening, thirteen articles were included. For the rationale and reasons for exclu-
sions, see Fig 1. These thirteen articles contained data from ten original studies, comprising
offspring of 1068 women with and 7615 women without obesity before or during pregnancy.

Additional records

(n=0)

39 artides excluded, with reasons

19=no clear obese and non-obese

11= conference abstracts with

limited information

3=no full-text available

Records identified Records identified Records identified
in MEDLINE in EMBASE in NARCIS
(n=595) (n=1244) (n=3)
i reFords 1275 of records
after duplicates ———P»
excluded
removed
group
A 4
52 articles included
for full-text ————>
eligibility

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0275236.g001

13 studies included
in qualitative
synthesis

3= wrong outcome
1=no english available
1=insufficdient data

1=included animal data

\ 4

12 studies included
for meta-analyses
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Ten articles included data measured by echocardiography [28-38], and two articles reported
on data measured by MRI [39,40].

Table 1 shows the characteristics of the included studies. Six articles reported on outcomes
in fetuses (n = 1483) [28-33], three articles on outcomes in neonates (n = 187) [34,35,39],
three on outcomes in infants (children <1 year of age) (n = 234) [34-36] and three articles
reported on outcomes in children older than 1 year of age (n = 6966) [38,40,41]. No articles
reported on cardiac structure or function in adolescents or adults born to women with obesity.
S2 Table demonstrates the outcomes measured per included study.

Four articles reported on repeated measures [30,33-35]. Ingul et al. [30] included fetal car-
diac outcomes at 14, 20 and 32 weeks of gestation. Lee-Tannock et al. [33] described cardiac
measurements in fetal life every four weeks from inclusion until delivery. Guzzardi et al. [34]
reported on cardiac outcomes in neonates and infants, including measurements at birth and 3,
6 and 12 months of age. The article of Nyrnes et al. [35] consisted of partly the same cohort as
Ingul et al., but reported on cardiac outcomes measured at 1-3 days and 6-8 weeks after birth.
To best match the other included studies, data measured at 32 weeks of gestation by Ingul
et al. and 28-32 weeks of gestation by Lee-Tannock et al. were used in our meta-analyses on
fetal outcomes. For the neonatal stage, we included outcomes at birth from Guzzardi et al. and
1-3 days of age from Nyrnes et al. Outcomes at 3 months of age from Guzzardi et al. and out-
comes at 6-8 weeks of age from Nyrnes et al. were included in the infant stage.

Cardiac structure

Meta-analyses for cardiac structure were possible for IVSd in fetal life and during infancy,
EDVi and ESVi in the neonatal stage, LVMI in the neonatal, infancy and childhood stage and
relative wall thickness in childhood (see Table 2 and S1 Fig for forest plots). IVSd did not differ
in fetuses from women with obesity as compared to controls (SMD 0.1, 95%CI -0.43, 0.70).
However, two studies showed that during infancy IVSd was increased in infants born to
women with obesity as compared to controls (SMD 0.6, 95% CI 0.04, 1.19). LVMI did not dif-
fer between neonates, infants and children born to women with or without obesity before or
during pregnancy (SMD -0.1 95% CI -0.79, 0.61, SMD 0, 95% CI -0.80, 0.79 and SMD 0.22,
95% CI -0.02, 0.45, respectively). EDVi and ESVi in the neonatal stage did not differ between
those born to women with and without obesity (SMD -1.9, 95% CI -4.09, 0.30 and SMD 0.0
95% CI -1.09, 1.05, respectively). Relative wall thickness was not significantly different between
children born to women with and without obesity (SMD 0.34, 95% CI -0.38, 1.07).

Cardiac structural outcomes not available for meta-analyses were displayed in boxplots.
Boxplots for the association of offspring’s IVSd, EDVi, ESVi, LVMI and LVIDd with maternal
obesity through different developmental periods are displayed in Fig 2. Fetuses of mothers
with obesity had a lower LVIDd at 14 weeks as compared to controls, but this difference disap-
peared later in life. A single study demonstrated that, at 6 years of age, children born to
women with obesity have a significantly higher LVMI as compared to controls. Another study
demonstrated a significantly thicker left ventricular wall thickness at end-diastole in children
born to women with obesity as compared to controls (Table 3).

Single studies reported no associations between end-diastolic left ventricular posterior wall
thickness in infants and maternal obesity. Relative wall thickness was higher in infants born to
women with obesity as compared to controls, but this difference was not visible in children.
Kulkarni et al. [32] reported on non-normally distributed data in fetuses and demonstrated
that obesity before or during pregnancy was not associated with increased IVSd (fetuses of
mothers with obesity: median 2.0, interquartile range (IQR) 1.6-2.9; fetuses of lean mothers:
median 1.9, IQR 1.4-2.5) [32].
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Table 1. Characteristics of included studies.

Developmental Study Type of BMI thresholds Moment of BMI | Age child at DMI&II/GDM Hypertensive pregnancies N
stage study Group with | Control measurement follow up Group with | Control | Group with | Control | Group with | Control
obesity obesity obesity obesity
Fetal Ali 2020% Cross- > 30 kg/m2 <30 kg/ 20-35 weeks GA 20-35 weeks No DM I/1I PE: None 183 838
. 2
sectional m GA Unknown GDM HT: no description
Bayoumy Cohort | >30kg/m* | <25kg/ Preconception 30 weeks No DM /Il & GDM Unknown 30 25
2020 m’ GA
Ece 2014 Cross- > 30 kg/m® | 19-25 kg/ Preconception +/- 32 weeks | No DM I/Il & GDM No pre-eclampsia or 54 44
sectional m? GA hypertension
Ingul Cohort | >30kg/m® | <25kg/ Preconception 14 weeks DMII: 3/ None HT: 2/52 None 49 23
2016™* m? GA 49 (6.1) (3.8)
20 weeks | GDM: 3/49 PE: 2/52
GA (6.1) (3.8)
32 weeks
GA
Kulkarni Cross- >30kg/m® | <30kg/ 25 weeks GA +/- 25 weeks | No DM I/Il & GDM HT: 5/26 No 26 70
2017% sectional m? GA (19.2) description
Lee- Cohort | >30kg/m* | <25kg/ No description 18-20 weeks Unknown Unknown 43 98
Tannock m? GA
2021 20-24 weeks
GA
24-28 weeks
GA
32-36 weeks
GA
36-40 weeks
GA
Neontal/Infant Groves 2021 Cohort | >30kg/m? | 20-25 kg/ First trimester <3 days No DM /Il & GDM No description 31 56
2
m
Cade 2017° Cohort 30-45kg/ | <30kg/ Preconception 1 month No DM I/II & GDM No description 24 23
m’ m>
Guzzardi Cohort | >30kg/m® | <30kg/ Preconception Birth No DM I/II | No DM No description 9 43
9%.1 2 .
2018 m 3 months GDM: /1
44.4% GDM:
6 months 22.2%
12 months
Nyrnes Cohort | >28kg/m* | 18.5-25 Preconception 1-3 days GDM: 7/28 0 No description 28 20
Aok 2
2018 kg/m 6-8 weeks (25)
Children Santos 2019" | Cohort | >30kg/m* | <25kg/ Preconception 10 years Unknown No description 167 2187
2
m
Toemen Cohort | >30kg/m* | <25kg/ Preconception 6 years GDM: GDM: No description 402 3508
2016" m’ 13/396 | 15/3400
(3.2) (0.4)
Wang 2021 Cohort | >30kg/m? | 20-25 kg/ Preconception 4 years 5(22.7)* 107 No description 22 680
m’ (15.7)*

*&" consisted partly of the same subjects.

% Unpublished data.

% Study included women with (pre)gestational diabetes. However these were categorized in another group and therefore not included in the maternal obesity group.

*Unknown which type of diabetes.
BMI = Body mass index.
GA = Gestational age.
DM = Diabetes Mellitus.
GDM = gestational DM.
HT = hypertension.

PE = pre-eclampsia.

https://doi.org/10.1371/journal.pone.0275236.t001
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Table 2. Summary of meta-analyses for primary outcomes of cardiac structure and function in offspring born to women with obesity compared to offspring of con-

trol group results are presented as standardized mean difference (SMD) [95% confidence interval].

Number of studies

included
Maternal obesity

IvSd 4 139

LVMI 4 33

EDVi 2

ESVi 2

RWT 2

TAPSE 4 176

LV global strain 5 157

RV global strain 2 52

EF 3 33

SF 2 52

Lve 3 133

Lva 3 133

IvVSe 2 103

IvSa 2 103

MPI 3 263

MV e/a 3 129

IVRT 2 80

* =p<0.05.

Aresults presented are not corrected for confounding variables.
IVSd = Interventricular septum at end-diastole.
LVMI = Left ventricular mass index.

EDVi = LV end diastolic volume indexed for BSA.
ESVi =LV end systolic volume indexed for BSA.
RWT = relative wall thickness.

TAPSE = Tricuspid annular plane systolic excursion.
LV = Left ventricle.

RV = Right ventricle.

EF = Ejection fraction.

SF = Shortening fraction.

SV = Stroke volume.

MYV = Mitral valve.

MPI = Myocardial performance index.

IVRT = Isovolumic relaxation time.

https://doi.org/10.1371/journal.pone.0275236.t002

Systolic function

Number of participants

Control

163
66

190
161
43
66
43
92
92
67
67
952
137
114

Fetal

SMDA (95% CI)
0.1 [-0.43, 0.70]

-1.2 [-2.30,0.01]
2.4 [-4.42,-0.36]"

0.4 [-1.52,0.78]
-1.5 [-4.01, 0.97]
0.2 [-0.16, 0.46]
0.5 [-0.52, 1.47]
0.5 [-0.03, 0.96]
0.0 [-0.28, 0.23]
1.6 [-6.42, 9.65]

Neonatal

SMDA (95% CI)
-0.1 [-0.79, 0.61]

-1.9 [-4.09, 0.30]
0.0 [-1.09, 1.05]

0.1 [-0.40, 0.68]

Infant Children

SMDA (95% CI)
0.6 [0.04, 1.19]*
0.0 [-0.80, 0.79]

SMDA (95% CI)

0.22 [-0.02, 0.45)

0.34 [-0.38, 1.07]

-1.0 [-1.56, -0.33]*
-1.1 [-2.83,0.63]
0.6 [-0.58, 1.68]
0.2 [-1.23, 1.54]

Meta-analyses for systolic function demonstrated that maternal obesity was associated with
lower LV strain in fetal life (SMD -2.4, 95% CI -4.42, -0.36) and infancy (SMD -1.0, 95% CI
-1.56, -0.33) as compared to controls. RV strain, EF, SF and TAPSE were not significantly dif-
ferent between neonates or infants born to women with and without obesity before or during
pregnancy (Table 2 and S2 Fig).
Boxplots were available for LV strain, RV strain, SF, EF, TAPSE and LV s’ (Fig 2). LV strain
in fetuses and offspring of women with obesity was consistently lower at every measured time
point, ranging from 14 weeks of gestation until 4 years after birth. RV strain was also lower in
fetuses and neonates of women with obesity as compared to controls at almost all time points

PLOS ONE | https://doi.org/10.1371/journal.pone.0275236 November 8, 2022

8/20


https://doi.org/10.1371/journal.pone.0275236.t002
https://doi.org/10.1371/journal.pone.0275236

PLOS ONE

Maternal obesity and offspring’s cardiac health

®  Left ventricular mass index
®  Interventricular septum thickness
LV dimensions and volumes
+ and A indicate repeated measurements o Leftventricular internal diameter at
end-diastole
24 ®  End diastolic volume indexed for BSA
€nd systolic volume indexed for
BSA
5 ' IT} { - }
: rl g 4
Ey ITITTT%TT \Tru T(TQJ 1.5
g YT TR
’ }
EE
— T T T T T T T T T T T T T T/
¥ EEE S S EEE
.sa“". éaé" qpi" &5* ‘pﬁ" q@éb ée“" q‘e& é&‘é & .}"’* \é‘é\ @f 6\o‘g\ @o“& &0‘\\\\ a.*@ "0*09
> SN P ONA N
\@9 '19@:»{»’%‘&:5 '5‘1?’.,5?“ @ o0 o g
Systolic function
*indicate repeated measurements
4 i "
e Ejection fraction
2 m  Shortening fraction
5 ¥ .
Tricuspid annular plane
Y W SIS O " Fodorn i
I SR S S S LISl Sy EI ﬂ [} systolic excursion
o
a -2
=
7]
-4 {
T T T T T T T T T T T T T T T T T T T
S 0 WP EC I TR EILEESE L
B8 € S S S
& K & ¥ EgLE QD & & & & & WY
& SRS ¥ ¢ EXN TS
NS D o R PR N 2 o o
& & oV o o> > < v
N v v ¥ & o
Diastolic function
* indicate repeated measurements
2+ ® Mitral valve e/a ratio
;] |
®
I R 0 GNP A O O
a LR R ¢ J I f
=
[ZN
— T T T T T T T /T
N
F&EE S S & s
KPR R o o8 *
Tissue doppler imaging
* indicate repeated measurements
21 9
L -
a'iil " 2
;: 2 A s
i
3
o .44
2 4
7]
-6
T
S
q\"&
K
Strain
*indicate repeated measurements
2 2 @
e Left ventricular strain
.................... E.!,,Ei = Right ventricular strain
S Ei (1K) E ) [}
2 oy
n
o
[=] -4
=
[

T
- . 3
N2 N8 oF S & & & 2
.x\z@ q\ee g?’ \ed" & Q"rbgb* &o‘:‘&a o
RO N7 R

PLOS ONE | https://doi.org/10.1371/journal.pone.0275236 November 8, 2022

9/20


https://doi.org/10.1371/journal.pone.0275236

PLOS ONE

Maternal obesity and offspring’s cardiac health

Fig 2. Boxplots. a: Boxplots demonstrating associations between maternal obesity and cardiac alterations in offspring
measured at maltiple timepoints in different individuals, as expressed by standard mean deviations (SMD) and 95%
confidence intervals (Cl). b: Boxplots demonstrating associations between maternal obesity and cardiac alterations in
offspring measured at multiple timepoints in different individuals, as expressed by standard mean deviations (SMD)
and 95% confidence intervals (Cl).

https://doi.org/10.1371/journal.pone.0275236.9002

(Fig 2). Fetuses and infants of women with obesity demonstrated significant lower LV s” and
TAPSE at a few time points as compared to controls (see Fig 2). Kulkarni et al. reported on
non-normally distributed data and demonstrated a significantly higher EF in fetuses of
women with obesity as compared to fetuses of women without obesity (median 60%, range 55
to 66; median 68%, range 61 to 76, respectively, p = 0.01). No significant differences in single
studies were found for ejection time and isovolumic contraction time (Table 3).

Diastolic and general function

In fetal life, no associations between maternal obesity and LV ¢’ or a’ were found (Table 2). In
addition, isovolumic relaxation time, MV E/A and myocardial performance index did not dif-
fer between fetuses from mothers with obesity as compared to controls (Table 2 and S3 Fig for
forest plots). The association between LV ¢’, 2> and MV E/A with maternal obesity at every
measured time point were also demonstrated in a boxplot (Fig 2). The difference in LV €’ and
a’ between infants born to women with obesity and controls seemed to increase after birth,
with infants born to women with obesity demonstrating lower velocities. This difference was
most pronounced for LV ¢’ velocity. MV e/a did not seem to differ between fetuses and infants
of women with obesity and their controls.

Secondary outcomes

Santos et al. [40] found that, at age 10, children born to women with obesity had a higher peri-
cardial fat mass as measured with MRI indexed to height as compared to children born to lean
women and women with underweight (median 13.3 g, 95% CI 5.5, 25.1 and median 10.4 g,
95% CI 4.4, 21.9, respectively).

Quality assessment
Thirty eight percent of included studies had low risk of bias, 8% had moderate risk of bias and
54% had high risk of bias (see S6 and S7 Figs). Most bias occurred due to self-reporting of

Table 3. Primary outcomes available in single studies born to women with obesity vs born to women without obe-
sity data presented as standardized mean difference [95% CI] unless stated otherwise.

Fetal Infants Children
RWT 0.1 [0.01 to 0.11]*
LVPWd -0.3 [-0.97, 0.47] 0.62 [0.19, 1.04]*
ET -0.1 [-0.47, 0.32]
IVCT 0.0 [-0.36, 0.43]

* = p<0.05.

RWT = Relative wall thickness.

LVPW(d = Left ventricular posterior wall thickness.
ET = Ejection time.

IVCT = Isovolumic contraction time.

https://doi.org/10.1371/journal.pone.0275236.t003
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weight, making blinding for maternal BMI status during fetal image acquisition impossible.
All of our meta-analyses demonstrated considerable heterogeneity (see S1-S3 Figs). Due to the
low number of studies included, funnel plots were deemed not appropriate and publication
bias could not be assessed.

Sensitivity and subgroup analysis

Five of thirteen (39%) articles excluded women with GDM. Two studies included women with
diabetes, but the incidence of type 1 or 2 diabetes and GDM was not mentioned among
women with obesity or controls [33,41]. Two other articles did not mention type 1 or 2 diabe-
tes and GDM [31,40]. In the remaining studies, the prevalence of GDM ranged from 3.2% to
44.4% among women with obesity. Three articles (30%) described the prevalence of hyperten-
sive pregnancies and/or pre-eclampsia. In summary, subgroup analyses to assess the mediating
effect of type 1 or 2 diabetes, GDM or preeclampsia in the association of maternal obesity with
offspring cardiac outcomes were not feasible as a result of insufficient data.

Eight articles (62%) reported offspring sex, but none mentioned sex specific effect sizes on car-
diac outcomes. Therefore, we could not explore possible sex differences in our meta-analyses.

Studies including infants did not always mention anthropometric measures at time of echo
which could potentially have affected cardiac structure outcomes in our meta-analyses. IVSd
was measured in the study of Cade et al. [36] and Nyrnes et al. [35], where the latter found no
statistical difference in weight at time of echo between infants born to women with obesity and
controls. The study of Cade et al., including neonates one month after birth, did not mention
body weight at time of echo. However, no significant difference in birthweight between neo-
nates born to women with obesity and controls was found.

Discussion

In this systematic review and meta-analysis of thirteen studies including 1068 fetuses and off-
spring of women with obesity before or during pregnancy and 7615 controls, we found evi-
dence that cardiac structure and function differs between fetuses and children of women with
obesity and those born to women without obesity. Some of these differences were already pres-
ent in fetal life and persisted throughout childhood. LV strain was lower in fetuses of women
with obesity and persisted after birth, indicating reduced cardiac function as compared to off-
spring of women with normal weight. There was also evidence of structural cardiac changes
related to maternal obesity, as infants of mothers with obesity showed an increased IVSd as
compared to controls. Since impaired strain and increased IVSd are associated with an
increased CVD risk in later life [42,43], these alterations could contribute to the increased
CVD risk observed among offspring of women with obesity. However, data regarding the asso-
ciation between maternal obesity and cardiac alterations beyond childhood are lacking, so
how these maternal obesity-associated alterations in cardiac structure and function relate to
future CVD risk should be the aim of future research.

We found an association between maternal obesity and increased IVSd in infancy. Several
epidemiological studies have found that structural cardiac changes in young adults are predic-
tive of future CVD events [44]. For example, in healthy young adults, increased IVSd is inde-
pendently associated with an increased future risk for hypertension [43,45]. Although these
associations of cardiac structure with future CVD risk have not been described in children, it
is known that markers of cardiac structure track throughout childhood to adolescence and
beyond [46,47]. Therefore, the altered cardiac structures we found in children of women with
obesity might persist to adulthood and provide an explanation for the increased CVD risk in
offspring of women with obesity.
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Strain measurements describe the deformation of the heart during the cardiac cycle and
provide important information on cardiac function [48]. In a low risk-population, cardiac
strain measurements predict long-term risk of cardiovascular morbidity and mortality and are
therefore important markers of cardiac health [49]. Although strain is a reliable measure of
fetal cardiac function, assessing strain in fetuses is challenging due to the small size of the fetal
heart and the high fetal heart rate [50]. In addition, in women with obesity, fetal strain mea-
surements could be compromised due to the limitations of visualizing fetal structures caused
by maternal abdominal subcutaneous adipose tissue [51]. However, the studies included in
our meta-analyses attempted to increase image reliability, either by demonstrating moderate
agreement in the interobserver analyses, excluding measurements that failed to be tracked or
by taking the mean strain in three consecutive cycles. Strain values are known to track
throughout childhood, suggesting that the impaired strain associated with maternal obesity in
fetal life and infancy might track to childhood and beyond and explain the increased CVD risk
in offspring of mothers with obesity [52]. We did not find other signs of systolic dysfunction
in offspring born to women with obesity. However, animal studies have also described systolic
dysfunction in offspring born to obese dams [17]. Therefore, we hypothesize that maternal
obesity is indeed a risk factor for systolic dysfunction in their children. However, this finding
must be validated in future larger studies.

Although animal studies found diastolic dysfunction in fetuses of obese animals due to car-
diac fibrosis and the consequent reduction of ventricular compliance [14], we did not find
signs of diastolic dysfunction in fetuses of women with obesity as compared to their controls.
However, single studies demonstrated lower LV e’ and a’ velocities in fetuses and neonates
born to women with obesity as compared to controls, indicating impaired diastolic function
(Fig 2).

Effect of offspring’s age on maternal obesity associated cardiac differences

We found an association of maternal obesity with higher IVSd during infancy, but not in fetal
life. This is in contrast to studies assessing the association of GDM and cardiac alterations in
offspring, where maternal hyperglycemia in utero and the resulting fetal hyperinsulinemia,
leads to myocardial hypertrophy [27], which gradually normalizes after birth [53]. The obeso-
genic pregnancy is characterized by lower glucose levels and different hemodynamic and met-
abolic effects during fetal life as compared to diabetic pregnancies, which could explain the
different trajectories. Also, measurement of fetal IVSd is sometimes complex due to the posi-
tion of the fetus and its small heart dimensions and the suboptimal views caused by maternal
abdominal subcutaneous adipose tissue [51,54]. Therefore, the lack of a difference in IVSd in
fetuses of women with obesity and their controls might be due to measurement error and
small size of the study groups.

Our boxplots demonstrated differences in cardiac structure and function of fetuses and
children born to women with obesity as compared to their controls (Fig 2A and 2B). Although
these differences did not all reach statistical significance, there was a clear trend towards infe-
rior cardiac structure and function in children born to women with obesity. The study with
the oldest children [38] demonstrated that children born after maternal obesity had a signifi-
cantly higher LVMI but no difference in SF (not corrected for childhood’s BMI) as compared
to their controls at 6 years (Fig 2A) [38]. This suggests that there is a sustained effect of mater-
nal obesity on cardiac alterations in their children. In a mouse model, cardiac hypertrophy in
offspring of obese rodents was hypothesized to act as a protective mechanism for cardiac dys-
function [17]. Blackmore et al. postulate that the cardiac hypertrophy eventually subsides due
to inadequate cardiac function and therefore inability to provide for the protective mechanism.
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We hypothesize that LVMI increases gradually in children born to women with obesity. This
could be the result of a protective mechanism to compensate for subclinical cardiac systolic
functional impairment as demonstrated with impaired longitudinal strain.

Unfortunately, no data was available on cardiac alterations in adolescents and adults
exposed to maternal obesity during pregnancy. To determine if the associations of maternal
obesity during pregnancy and cardiac alterations in their offspring are sustained throughout
life, longer follow-up studies are warranted, preferably including longitudinal assessments of
cardiac structure and function in children born to women with obesity and their controls.

Underlying mechanisms for increased CVD risk in children born to women
with obesity

Obesity during pregnancy is associated with increased blood pressure and obesity in children,
which are factors known to influence cardiac structure and function [13,55,56]. However,
Blackmore et al. demonstrated that cardiac dysfunction in mice born to obese dams preceded
changes in body weight, indicating that cardiac dysfunction in offspring occurs independent
of body weight [17]. In humans, studies in healthy children demonstrated that increased car-
diac mass was not, or only to a very limited degree, related to increased blood pressure [57,58].
This suggests that the association of maternal obesity with offspring’s cardiac structure and
function is at least partly independent of offspring’s blood pressure and body weight. We
could not sufficiently test this hypothesis in our meta-analyses, because few studies reported
analyses adjusted for blood pressure and weight of children (S3 Table).

Maternal obesity is associated with an increased risk of GDM which has previously been
associated with cardiac alterations in fetuses [27,59]. Therefore, it is likely that some of the
effect of maternal obesity on cardiac alterations in their offspring is mediated by maternal gly-
cemic dysregulation. However, cardiac alterations in children born to women with diabetes
have previously been described as transient [53]. We found that LVMI was higher in children
aged 6 years born to women with obesity as compared to controls. Previous research did not
find a significant difference in LVMI in children born to women with and without GDM [60].
In women with obesity a wide range of metabolic abnormalities are present in addition to gly-
cemic dysregulation. Elevated leptin, insulin and lipid levels are features of obesity, each of
which might also contribute to differences in cardiovascular development in the next genera-
tion [61,62]. An increase in these biochemical factors is known to induce impaired smooth cell
proliferation, which can impair angiogenesis, vasoconstriction and increased platelet aggrega-
tion [63-65]. Together with the inflammatory state common to obesity, which can impair pla-
cental development and function and result in decreased blood flow to the fetus resulting in
aberrant fetal cardiac function and development [63-65]. As a result, this could lead to signifi-
cant hemodynamic changes in the fetal circulation in order to maintain the cardiac output,
which could also provide an explanation for the differences found during fetal life [66].

Alternatively, the cardiac alterations described in this review could be transient and not
responsible for the increased CVD risk in children born to women with obesity. Several other
mechanisms have been described that could also explain the increased CVD risk in children
born to women with obesity. Epigenetic modifications caused by adverse prenatal environ-
ment may be a possible mechanism underlying fetal programming of CVD [67,68]. Myocar-
dial miRNAs expression (small RNA molecules involved in regulation of cellular processes
such as proliferation, cell death and fibrosis) have been demonstrated to differ in fetuses of
obese baboons as compared to fetuses of normal weight baboons [67]. Interestingly, the
affected miRNAs have been associated with cardiac hypertrophy and enhanced fibrosis. In
children, maternal obesity is also associated with altered DNA methylation [69,70]. This is
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demonstrated in a sibling study showing different methylation patterns of genes associated
with improved cardiometabolic health in children born after their mother underwent bariatric
surgery, as compared to their siblings born before bariatric surgery [71]. This suggests that epi-
genetic modifications could be a possible underlying mechanism responsible for the increased
CVD risk in children born to women with obesity during pregnancy.

Limitations

Our results should be interpreted within the framework of its inherent limitations. First, due
to the observational design of the included studies, we cannot draw conclusions regarding cau-
sality between maternal obesity and offspring’s cardiac structure or function. Second, due to
the small number of studies, we could not include more than three articles per meta-analysis,
therefore not all primary outcomes could be evaluated at an aggregated level. We found no
data on adolescent and adult offspring, making our conclusions less robust. Third, we could
not investigate the mediating effects of GDM, hypertension during pregnancy, body size and
offspring’s sex due to limited availability of such information in the studies included. Fourth,
our risk of bias assessment demonstrated high risk of bias in 54% of the included studies. This
was largely due to group allocation based on self-reported BMI, which is usually underesti-
mated in populations with obesity (and overestimated in the lower ranges of BMI). Further-
more, studies did not always clearly report if the data analysis was carried out blinded. Fifth,
there was high heterogeneity between studies (S1-S3 Figs). This could be the result of differ-
ences in gestational age at birth, maternal age at inclusion and offspring blood pressure. Unfor-
tunately, few studies reported on these variables (S3 Table), which precludes the assessment of
the cause of this heterogeneity. The study of Bayoumy et al. [29] demonstrated a significantly
lower SMD in LV strain at 30 weeks of age as compared to other fetal studies. This was due to
very small standard deviations of the outcome parameters presented in the article, with as a
result a high standardized mean difference. If we exclude this ‘outlier’ from our meta-analyses,
the difference in LV strain between fetuses from women with and without obesity is smaller,
but remains statistically significant, suggesting the results found in our meta-analyses are
robust. Furthermore, overweight women (i.e., women with a BMI 25-30kg/m?) were some-
times included in the control group, depending on the study’s definition of cases and controls.
This could impair the discriminative power of the studies, as offspring in the control group
might also experience a suboptimal perinatal environment. Therefore, our results must be
interpreted with care and be replicated in future studies. Last, some articles measured women’s
BMI during the second half of pregnancy. A maternal BMI > 30 kg/m2 in this period might
reflect gestation-related weight gain and does not necessarily reflect maternal preconception
obesity. This could have resulted in women incorrectly being identified as having obesity.

Conclusions

Children of women with obesity during pregnancy have signs of reduced cardiac function as
compared to children of women without obesity. In addition, children born to women with
obesity have increased IVSd as compared to controls. Since these structural and functional car-
diac changes are found to be associated with increased susceptibility to CVD in later life, this
could (partly) explain the increased CVD risk in children born to women with obesity. How-
ever, current literature on the association of maternal obesity on cardiac structure and func-
tion in offspring is sparse and limited to fetuses, infants, and young children. This highlights
the need for long-term follow-up studies assessing the association of maternal obesity and car-
diac structure and function after early childhood. In addition, not many studies describe the
association between maternal obesity and offspring’s cardiac structure and function and most
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included studies were small and there was considerable heterogeneity amongst the included
studies. Therefore, more studies assessing this association are necessary to explore the associa-
tion between maternal obesity and offspring’s cardiac structure and function. However, given
the high prevalence of maternal obesity and the increase in CVD risk in offspring being born
after maternal obesity, it is of particular public health interest to invest in strategies to reduce
obesity in women to optimize cardiovascular development and health in the next generation.
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