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Abstract Nano-drug delivery strategies have been highlighted in cancer treatment, and much effort has

been made in the optimization of bioavailability, biocompatibility, pharmacokinetics profiles, and in vivo

distributions of anticancer nano-drug delivery systems. However, problems still exist in the delicate bal-

ance between improved anticancer efficacy and reduced toxicity to normal tissues, and opportunities arise

along with the development of smart stimuli-responsive delivery strategies. By on-demand responsiveness

towards exogenous or endogenous stimulus, these smart delivery systems hold promise for advanced

tumor-specificity as well as controllable release behavior in a spatial-temporal manner. Meanwhile, the

blossom of nanotechnology, material sciences, and biomedical sciences has shed light on the diverse

modern drug delivery systems with smart characteristics, versatile functions, and modification possibil-

ities. This review summarizes the current progress in various strategies for smart drug delivery systems

against malignancies and introduces the representative endogenous and exogenous stimuli-responsive
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smart delivery systems. It may provide references for researchers in the fields of drug delivery, biomate-

rials, and nanotechnology.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Medications against malignancies are usually hindered by poor
specificity and subsequent concerns of toxicity, and their thera-
peutic effects may also be challenged by deficient concentrations
at tumor sites, drug resistances, etc1. Despite the availability of
many other tactics for anticancer treatments, e.g., surgeries and
radiation therapies, their limited ranges of application still urge
the development of modern anticancer delivery strategies2. Nano-
drug delivery systems (NDDS) provide promising platforms for
anticancer therapy, holding potential for versatile improvements in
the in vivo distributions, behaviors, and performances of thera-
peutic agents3. Smart drug delivery systems have been a high-
lighted field in NDDS, which could provide targeting specificity,
controlled release, as well as the ability to cross biological bar-
riers, giving rise to enhanced therapeutic effects with minimized
systemic side effects4.

The development of functionalized modules and materials,
including modern biomaterials such as peptides and nucleotides,
has supported the design and research of various smart delivery
strategies. Stimuli-responsiveness towards endogenous or exoge-
nous factors offers on-demand transitions of vehicle structures
or properties, enabling spatial-, temporal- or dosage-specific
deliveries5. On the other hand, the diverse nano-drug delivery
vehicles also facilitate the rational design based on proper thera-
peutic agents and pro-drugs, as well as the applications of
combinational therapies, multi-responsive platforms, etc.

This review focuses on the recent advances in smart drug de-
livery strategies and systems. In this review, we highlighted the
main strategies and mechanisms of smart drug loading and release
for anticancer therapies, and also summarized the current delivery
systems supporting these strategies.

2. Strategies and mechanisms of smart drug loading and
release

Smart nanoparticles have constituted an excellent platform for
achieving efficient cancer therapy, which is considered an exten-
sively explored stimuli-responsive approach to specifically release
the cargoes at the tumor sites in response to endogenous (pH,
enzymes, or redox gradients) or exogenous stimuli (light, tem-
perature, ultrasound, magnetic field, and electric field). Such
stimuli-responsive nanoparticles can provide on-demand drug
release, thus achieving more delicate therapeutic effects and pre-
venting drug leakage in blood circulation for avoiding off-target
side effect6.

2.1. Endogenous stimulus-responsive DDSs

The intrinsic biological factors of tumor tissues differ significantly
from healthy tissues, mainly including low pH values, over-
expression of specific enzymes, increased redox-potential and
hypoxia, etc7. Based on these differences, the pH-, enzyme-, and
redox-responsive drug delivery systems (DDS) have been ratio-
nally engineered for smart drug loading and spatiotemporal
release in specific targets for enhanced therapeutic efficacy.

2.1.1. pH-Responsive DDSs
Currently, there are two main strategies for the development of pH-
responsive DDSs. One strategy is based on the structure or solu-
bility change of polymers containing ionizable functional groups8.
Various ionizable groups (e.g., carboxylic acids and amines) in the
nanoparticles can be protonated upon pH variations, disrupting the
hydrophilicehydrophobic equilibrium and triggering a dramatic
change of structure or solubility of the nanoparticles, thereby
realizing pH-responsive drug release9. The other strategy is based
on the cleavage or the degradation of acid-labile bonds. Chemical
bonds such as hydrazone, ester, imine, oxime, and ketal bonds are
stable at neutral pH but can be cleaved under acidic conditions.
Therefore, constructing nanocarriers with pH-cleavable chemical
bonds or using these bonds for drug conjugation can achieve
prompt drug release in acidic environment10. Through the above
strategies, various pH-responsive DDSs differentiating the patho-
physiological pH gradients in the body have been designed for
cancer therapy with high efficacy and low toxicity.

The pH gradients throughout the body can be divided into three
levels: organ, tissue, and cellular levels. At the organ level, the
most significant pH variation is that of the gastrointestinal tract
(GIT). Different segments of the GIT have their own characteristic
intraluminal pH levels, from the acidic stomach (pH 1e3) to the
alkaline intestine and colon (pH 6.5e7.5)11. Therefore, the pH
difference of these parts can be exploited to design DDS for
gastric retention or specific targeted intestinal drug delivery.
Currently, colorectal cancer is a common cancer type and the third
leading cause of death among the malignancies in the United
States12. However, therapeutic drug molecules such as proteins
and peptides are vulnerable to acidic and enzymatic degradation in
the stomach, raising challenges for their oral administration.
Fortunately, oral pH-responsive colon-targeted DDSs hold great
promise for colorectal cancer therapy13. Some pH-sensitive
polymers, e.g., cellulose acetate phthalates (CAP) and
methacrylate-based Eudragit� polymers, could withstand the
acidic pH of the stomach and be dissolved in the alkaline milieu of
the colon, which could be adopted to protect the encapsulated
anticancer drugs from degradation in the harsh condition of the
stomach. For instance, a colon-targeted, oral nanoparticle vaccine
was constructed by encapsulating protein vaccine into poly(D,L-
lactic-co-glycolic acid) (PLGA) nanoparticles, and then loading
PLGA nanoparticles into Eudragit FS30D microparticles14. The
mucosal uptake of microparticles was impeded due to their large
diameters (>10 mm) until they disintegrated into PLGA nano-
particles in the colon (pH > 7). Therefore, the microparticle could
avoid premature degradation and uptake of vaccines and precisely
deliver vaccines into the colon, thus inducing effective protective
immunity.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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At the tissue level, the extracellular pH (pHe) of the tumor
microenvironment (pH 6.7e7.1) is slightly lower than that of
healthy tissue and blood (pH 7.4). Tumor cells exhibit vigorous
growth and metabolism, and the irregular vasculature in tumors is
insufficient to supply nutrients and oxygen for the fast-growing
tumors, thus the tumors shift towards a glycolytic metabolism and
produce acidic metabolites such as lactic acid and CO2, lowering
the pH of tumor interstitium15. However, there is only a subtle pH
change in the tumor microenvironment as compared with the
normal physiological environment. Thus, the ideal tumor pHe-
responsive DDS should have a sharp response to pH variation.
Intriguingly, based on the cooperative self-assembly of block
copolymers with ionizable tertiary amine groups, Ma and co-
workers16 pioneered the development of ultra-pH-sensitive (UPS)
nanotechnology for cancer theranostics. The UPS nanoparticles
micelles exhibited ultra pH sensitivity within 0.25 pH unit, tunable
pH transition (pHt) ranging from 4.4 to 7.1, ultra-fast pH-triggered
dissociation (<5 ms), and exponential signal amplification (>100-
fold) upon pH-driven micelle dissociation, with extensive utili-
zation for cancer imaging and image-guided cancer surgery17.
Based on the UPS nanotechnology, ONM-100, an indocyanine
green (ICG)-encoded fluorescence nanoprobe is in phase II clin-
ical trial for image-guided cancer resection and metastatic lymph
node mapping. Moreover, the UPS nanoplatform has also been
widely used in chemical drug, gene, and vaccine delivery18.

At the cellular level, the pH of endocytic organelles is much
lower than that of cytoplasm (pH 7.2). Following endocytosis,
endosomal acidification occurs rapidly due to the vacuolar-type
ATPase (V-ATPase) proton pump-mediated proton influx into the
lumen of the organelles. Accordingly, the pHs of early endosome,
late endosome, and lysosome are dropped from about 6.3 to 5.5,
and finally around 4.719. The low pH of endocytic organelles is a
widely used trigger for pH-responsive DDS which can realize
organelle-specific activation and on-demand drug release. For
instance, an EGFR-targeted ultra-pH-sensitive nano-
photosensitizer was developed by Yan and coworkers for endo-
cytic organelles-specific photodynamic therapy (PDT)20. The
photoactivity of photosensitizer Ce6 was “OFF” at physiological
pH due to the FRET (Fluorescence Resonance Energy Transfer)
quenching at micelle state, which could be turned “ON” upon
micelle dissociation in the acidic endocytic organelles for cancer
cell killing. A UPS nanoparticle with sequential targeting ability
of early endosome and mitochondria was also developed for
exponential amplification of PDT efficacy21. The nanoparticle
could immediately dissociate at the acidic environment of the
early endosome, enabling the photoactivity activation of the
mitochondria-targeted photosensitizer TPP-PPa. Then, the acti-
vated TPP-PPa quickly escaped from the early endosome and
targeted the mitochondria for effective PDT upon laser irradiation.
However, the acidic environment and harsh enzymatic activity of
endocytic organelles are also harmful to some therapeutic mac-
romolecules such as proteins, small interfering RNA (siRNA), and
DNA. Therefore, to achieve the maximum therapeutic effects of
macromolecules, various pH-responsive DDS are also designed
for endosomal escape and cytosolic delivery based on the “proton
sponge” effect22, with cationic materials such as poly(ethylene
imine)s (PEIs)23.

2.1.2. Enzyme-responsive DDSs
The up-regulation of specific enzymes in the tumor microenvi-
ronment and inside the tumor cells has been exploited as
important triggers for smart drug delivery. Many enzymes like
proteases (e.g., matrix metalloproteinase/MMP and cathepsin B),
phospholipases (e.g., phospholipase A2), and peptidases (e.g.,
aminopeptidase), etc. have been investigated to construct
enzyme-responsive DDS for tumor-tropism drug delivery24. The
enzyme-responsive DDS could act in the following ways: (i)
Enzyme-triggered drug release either by constructing nano-
carriers with a structural scaffold susceptible to specific enzymes
or by using an enzyme-sensitive linker between the nanocarrier
and therapeutics. Du et al.25 developed a pH/cathepsin B
hierarchical-responsive micelle for the programmed delivery of
docetaxel (DTX). The micelle remained stable in blood circula-
tion, while dissociated into polymer-DTX conjugates under
acidic tumor microenvironment for deep tumor penetration and
enhanced cellular uptake. After being endocytosed into the ly-
sosomes, the GlyePheeLeueGly (GFLG) tetrapeptide linker of
polymer-DTX conjugates was cleaved by lysosomal cathepsin B,
then bioactive DTX was effectively released into the cytoplasm
for enhanced antitumor efficacy. (ii) Prodrugs, ligands, and
probes activation through the cleavage of enzyme-sensitive
bonds. Zheng et al.26 conjugated a photosensitizer (Pyro) and
1O2 quencher (BHQ3) with a matrix metalloproteinase-7 (MMP-
7)-cleavable peptide linker, enabling effective 1O2 quenching of
Pyro through FRET effect. Therefore, this construct was photo-
dynamically inactive until entering the tumor with high MMP-7
expression. Upon MMP-7-induced cleavage, the photoreactivity
of Pyro was recovered, thus producing cytotoxic 1O2 under
light irradiation. (iii) Enzyme-activated detachable PEGylation
layer for prolonged circulation and increased cellular internali-
zation at the target site. Han and coworkers27 prepared a dual-
enzyme-responsive, gemcitabine-loaded (GEM) nanovector by
conjugation of matrix metalloproteinase-9 (MMP-9)-detachable
poly(ethylene glycol) (PEG) protection layer, cathepsin
B-cleavable GEM, and tumor-homing motif cRGD peptide to
quantum dots (QDs). The nanovectors exhibited prolonged blood
circulation due to the PEG decoration. Then, the PEG shield layer
could be removed by the overexpressed MMP-9 after accumu-
lation in tumor tissue, enabling the exposure of cRGD for
enhanced cellular internalization. Once endocytosed into cancer
cells, the GEM could be released by elevated lysosomal cathepsin
B for tumor inhibition. Enzyme-responsiveness could assist in the
development of size-changeable nanoparticle systems, realizing
aggregation and retention at target sites, optimized targeting, and
internalization, etc28e30. Despite the huge progress made in the
development of enzyme-responsive DDS for cancer therapy,
several challenges remain to be solved. Firstly, some enzymes
share similar active sites and catalytic mechanisms, leading to
their similar substrate preferences31. Secondly, the enzyme
expression level varies greatly not only in different cancer types,
but also in tumors with a similar type yet in different individuals,
and in different parts of the tumor as well32.

2.1.3. Redox responsive DDSs
Redox homeostasis is critical for cell survival with diverse cellular
processes involved, and glutathione (GSH), a tripeptide that can
scavenge excess reactive oxygen species (ROS) through the
transformation of its heterogeneous forms (GSH/GSSG), plays a
key role in maintaining the intracellular redox balance33. Due to
the highly reductive and hypoxic microenvironment of tumor
tissues, the intracellular GSH level in tumor cells was four times
higher than that in normal cells34. In addition, the concentration of
GSH varies greatly between the intracellular environments (about
2e10 mmol/L) and the extracellular environments (about
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2e10 mmol/L). The remarkable concentration gradient of GSH
(about 100‒1000 times) serves as an attractive stimulus for tumor-
targeted intracellular drug delivery, especially for cytoplasmic
delivery of proteins and genes (DNA or siRNA). Various redox
responsive DDS have been developed by introducing reduction-
sensitive bonds (disulfide bonds, diselenide bonds, ditelluride
bonds, etc.) into the nanocarrier backbones or for drug conjuga-
tion35. The disulfide bond (SeS), prone to fast cleavage by GSH,
is the most commonly used linker for the fabrication of redox-
responsive DDS, due to its easy introduction into polymers and
drugs36. For instance, Wu and coworkers37 prepared a nano-
complex (siRNA/DOX@HMONs-ss-PAE) for redox-responsive
gene delivery to reverse the multidrug resistance (MDR). The
P-glycoprotein (P-gp) modulator siRNA and anticancer drug
doxorubicin (DOX) were loaded into the hollow mesoporous
organosilica nanoparticles (HMONs), which were capped with
poly (b-amino esters) (PAE) through a disulfide bond. When
endocytosed into tumor cells, the nanocomplex could translocate
from the endo/lysosome to the cytoplasm via the “proton sponge”
effect of cationic PAE, and then the encapsulated DOX and siRNA
were released due to the cleavage of the disulfide bond between
HMONs and capping PAE in the highly reductive intracellular
microenvironment. Thus, the P-gp-mediated MDR would be
reversed by siRNA, leading to enhanced intracellular DOX con-
centration for efficient chemotherapy of cancer cells.

In addition, tumor cells also have elevated ROS (e.g., H2O2,
superoxide, and hydroxyl radicals) generation than normal cells
due to their hypermetabolism38. Hence, various types of ROS-
responsive DDS have been explored for tumor-specific drug de-
livery on the basis of the high ROS level in tumor tissues. Many
ROS-responsive linkages are frequently used in cancer therapy,
including thioketal, thioether, peroxalate ester, boronic ester, etc39.
Xu et al.40 developed an innovative ROS-responsive poly-prodrug
nanoparticle for targeted cancer therapy. The nanoparticle was
composed of a poly-prodrug inner core of ROS-responsive
mitoxantrone (MTO) for ROS-triggered drug release, a PEG
outer shell for prolonged blood circulation, and an iRGD targeting
ligand for deep tumor penetration and specific tumor targeting.
Upon exposure to high-level ROS in tumor cells, the thioketal
bond in the poly-prodrug was cleaved, leading to the release of
intact drug molecules for efficient tumor inhibition.

2.2. Exogenous stimulus-responsive DDSs

In some cases, endogenously stimuli-responsive nanoparticles fail
to overcome the biological barriers in tumors due to insufficient
and intractable responses to some subtle alterations of the above
endogenous factors in the tumor microenvironment. Reasonably,
exogenously stimuli-responsive DDSs are considered alternative
nanoplatforms that are of great importance due to target-specific
and controlled drug release at the target sites.

Exogenous stimuli-responsive DDSs are smart drug delivery
systems that can actively release the cargo in response to external
stimuli including light, temperature, ultrasound, magnetic field,
electric field, and other stimuli, maximizing therapeutic efficacy of
cargos while reducing adverse side effects. The exogenous stimuli
can undergo a chemical or physical change to cause the alteration of
structures and surface properties of DDSs, which ensure their tumor
targeting, penetration, cellular uptake, and intracellular drug de-
livery to bemanipulated in a controllablemanner7. There arevarious
advantages of exogenous stimuli-responsive DDSs in cancer ther-
apy including (i) the location and intensity can be precisely
controlled by exogenous stimuli (e.g., light, magnetic or electric
field); (ii) the exogenous stimuli can be flexibly applied or removed;
(iii) multiple exogenous stimuli can be integrated into a single
nanoplatform for providing multifunctional properties, although
such DDSs would be unsuitable for treating distal or metastatic
cancer since their tumor locations are unknown.

2.2.1. Light-responsive DDSs
Light-responsive DDSs for cancer therapy have been extensively
developed, since light [e.g., near-infrared (NIR) and visible light]
is an attractive exogenous stimulus with a possibility to remotely
control the irradiation power and exposure time for selectively
treating local tumors. Lights can induce physicochemical changes,
such as photoisomerization/photocleavage reactions and photo-
thermal/photodynamic effects, thus improving the performance of
light-responsive DDSs. Compared with ultraviolet (UV) and
visible lights, NIR light with relatively deep tissue penetration
ability is of particular interest in cancer therapy. For instance, the
NIR light-responsive selenium-contained polymeric nanoparticles
loading indocyanine green and doxorubicin (I/D-Se NPs) were
designed for synergistic thermo-chemotherapy41. The prepared I/
D-Se NPs could produce ultrafast irreversible disassembly via
light-mediated selenium oxidation, thus promoting the NIR light-
responsive drug release in cell cytoplasm for synergistic cancer
therapy (Fig. 1)41. Zhao et al.42 reported the bifunctional light-
responsive platinum nanocomplexes (PtNCs) that produced
abundant heat via photothermal conversion from the Pt0 core upon
irradiation and simultaneously caused a rapid release of chemo-
therapeutic Pt2þ ions surrounding the Pt0 core, thus leading to a
light-triggered synergistic chemo-photothermal therapy. In
another study, the light-responsive palladium nanocrystals-
assimilated nanoscale metal-organic framework (NPMOF) nano-
particles were developed for synergistic hydrogen and photody-
namic therapy, with significant light-triggered singlet oxygen
(1O2) generation and persistent reductive hydrogen release,
causing an adequate disturbance in tumor milieu for synergistic
tumor therapy43. Recently, Chen et al.44 synthesized NIR-light
modulated BF2-azadipyrromethene (aza-BODIPY) nano-
aggregates that were actively transformed from wormlike nano-
fibers into spherical nanoparticles in vivo under light irradiation,
with prolonged circulation, deep tumor penetration, and subse-
quent enhanced antitumor efficacy. More recently, aggregation-
induced emission (AIE) luminogen-encapsulated lipid nano-
particles with robust NIR-I two-photon absorption were developed
for spatiotemporal deep-tumor imaging, and simultaneously pro-
ducing toxic hydroxyl radicals (�OH) and singlet oxygen (1O2)
upon light irradiation for tumor ablation45. Zwitterionic lumi-
nogen nanodots with AIE features also showed enhanced photo-
thermal conversion efficiency (35.76%) and ROS generation
performance under NIR-light irradiation, providing synergistic
phototherapy against breast cancer46. In another study, Ren and
co-workers47 successfully developed a light-responsive multi-
functional Bi2Se3-based nanoplatform loaded with glucose oxi-
dase and oxygenated perfluorocarbon, for improved tumor
starvation and light-mediated photothermal therapy (PTT). Light
irradiation not only enabled Bi2Se3 nanoshell to generate local
hyperthermia, but also triggered the release of capsulized oxygen
to recede local hypoxia.

Specifically, drug resistance has been a vital challenge in anti-
cancer therapies. Insufficient drug delivery to the tumor cells and
sublethal chemotherapeutic concentration could lead to acquired
chemo-resistance48e51, and the recruitment of tumor-infiltrating



Figure 1 Light-responsive polymeric nanoparticles (I/D-Se-NPs) with fast drug release and an efficient cytoplasmic translocation for syner-

gistic thermo-chemotherapy. Reprinted with the permission from Ref. 41. Copyright ª 2017 American Chemical Society.
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cytotoxic T lymphocytes (CTLs) and intratumoral secretion of
proinflammatory cytokine interferon gamma (IFN-g), which
consequently eliciting surface levels of immune regulators including
programmed death ligand 1 (PD-L1) could hamper immunothera-
peutic effects52e56. NIR-responsive nanoparticles were also re-
ported in dealing with chemo- and immuno-resistance of the tumor
through single or combination of multiple mechanisms including
hyperthermia effects, photothermal ablations, immunogenic cell
death (ICD) induced by laser irradiation, spatiotemporally tunable
release, etc., exhibiting prospects for comprehensive anticancer
therapy50,51,57e62 (Fig. 2, reprinted from Ref. 57).

Researchers have also been pursuing photodynamic therapies
with further reduced dark toxicity and side effects63. AIE has
emerged as a solution to the unwanted phototoxicity at non-target
sites, and smart delivery strategies also proved to be effective by
providing more specified location, on-demand activation or
release at the target sites64. Increased selectivity could be realized
by the conjugation of photosensitizers with targeting moieties, for
example, and the photosensitizer antibody-drug conjugates have
been extensively reviewed in previous articles, with highlights on
highly specific bioconjugation techniques65. Dual-responsiveness
with multiple triggers instead of single light-responsiveness also
add to the specificity of photosensitizers, and the on-demand
activation strategies with various on-off mechanisms further
alleviated the dark toxicity. Dong et al.66 prepared a calcium
carbonate-polydopamine composite hollow nanoparticle, and the
loaded photosensitizer was quenched by polydopamine and could
be released in acidic environment. Feng et al.67 developed a
nanoassembly system with pyridinium-functionalized tetraphe-
nylethylene encapsulated in the cavity of water-soluble calixarene,
which only exhibits yellow fluorescence upon light triggering due
to the restriction of intramolecular motion. The photosensitizer
could be displaced by 4,40-benzidine dihydrochloride and trans-
locate to mitochondria with restored photoactivity. Another work
also concerns photosensitizer activation by displacement, the
photosensitizer was quenched by macrocyclic amphiphile, and the
overexpressed adenosine triphosphates on tumor sites competi-
tively bind to the vehicle macrocyclic amphiphile, realizing
release and activation of the photosensitizer at the tumor site68.

2.2.2. Temperature-responsive DDSs
Temperature-responsiveDDSshave alsobeen extensively applied as
drug delivery vehicles in cancer therapy. Generally, the DDSs are
required to be stable and to retain the cargoes in normal body tem-
perature (up to 37 �C), however sensitively release the cargoes at
higher temperature (e.g., >40 �C) through significant physico-
chemical changes in response to a narrow temperature increase7.
The most popular temperature-sensitive polymeric materials
include poly(amidoamine) (PAMAM), poly[2-(2-methoxyethoxy)
ethyl methacrylate] (PMEO2MA), poly(N-isopropylacrylamide)
(PNIPAM) and poly(2-oxazoline)s (POxs). In response to lower
critical solution temperature (LCST), the temperature-sensitive



Figure 2 (A) MMP-2-sheddable and GSH-activatable prodrug vesicle for combined photodynamic immunotherapy. (B) The mechanism of

photodynamic immunotherapy against cancer combating IDO-1-induced adaptive immune resistance. Reprinted with the permission from Ref. 57.

Copyright ª 2019 American Chemical Society.
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polymers often show drastic changes in their aqueous solubility69.
Above their LCST, these polymers become insoluble in water, and
subsequently, the DDSs are destructed to release the cargo. For
example, PNIPAM-based nanocomposites were found to actively
release doxorubicin in response to increased temperature, as PNI-
PAM endured a reversible phase change beyond their LCST
(Fig. 3)70. In another study, PNIPAM-based thermo-sensitive poly-
pyrrole nanoplatforms were developed for synergistic photo-
thermal-chemotherapy71. Additionally, some cancerous tissues
exhibit abnormal increases (generally 1e2 �C) in temperature
compared with normal tissues. Such temperature change could be a
potential endogenous stimulus in drug delivery, which raises higher
requirements for the precise and tunable responsiveness of the ma-
terials. Current thermosensitive polymers and nanocarriers have
been intensively reviewed in Ref. 72.

Besides, temperature-responsive DDSs were also developed by
incorporating thermo-sensitive cargos inside the nanovehicles. For
instance, gold nanorods and iron oxide nanoparticles-incorporated
liposomes could release doxorubicin upon hyperemia (50 �C)
caused by light irradiation due to the collapse of the liposomes,
leading to the promoted tumor destruction73. Despite the extensive
progress in temperature-responsive DDSs, only very few thermo-
sensitive vectors are currently considered for clinical translation in
addition to liposomes and gold nanoparticles. It is highly important
to develop temperature-sensitive materials and vectors with high
biosafety.

2.2.3. Ultrasound-responsive DDSs
Ultrasound-responsive DDSs have various applications in cancer
therapy as they could specifically release payloads at the tumor
site in response to externally applied ultrasound, showing promise
for targeting ability, deep tumor penetration, and reduced side
effects by adjusting their frequency in a specific range. For
instance, high-frequency ultrasound waves (>20 kHz) could be
used to trigger drug release or improve the tumor permeability of
nanoparticles, while low ultrasound frequencies (<20 kHz) were
usually applied for imaging7,74. Ultrasound also induces several
physical effects such as cavitation, acoustic fluid streaming, and
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local hyperthermia, commonly adopted as triggers for ultrasound-
responsive cargoes release (e.g., anticancer agents, imaging
probes) from DDSs at the desired tumor sites75.

Many researches have supported the effectiveness of ultra-
sound triggering in accelerating drug release, endosomal escape,
tumor accumulation, and significant tumor growth reduction75e77,
and gene delivery has become a highlight in ultrasound-assisted
delivery against solid tumors78. Meng et al.79 designed an
ultrasound-responsive, self-healing hydrogel system loaded with
nanovaccines, realizing remote release control and repeated vac-
cine release for durable anticancer therapy. Ultrasound-induced
mild hyperthermia could also be utilized in DDS design, and
Ma et al.77 constructed doxorubicin and oxygen-encapsulated
cerasomal perfluorocarbon nanodroplets, which remained stable
during blood circulation, while ultrasound-induced mild hyper-
thermia upon sonication could cause the disturbance and gasifi-
cation of perfluorocarbon, producing drug release channels in
cerasomes that significantly accelerating the release of doxoru-
bicin and oxygen at the tumor site (Fig. 4)77. Besides the modu-
lation of DDSs, ultrasound has also been widely applied in
modulating the delivery barriers and assisting deep penetration
into the tumor sites, as well as inducing immunological responses,
as reviewed in Refs. 80 and 81.

2.2.4. Magnetic field-responsive DDSs
Magnetic field-responsive DDSs have gained considerable interest
in the field of cancer therapy, due to their targeting potentials from
the intrinsic tropism towards magnetic fields, and efficient local
hyperthermia under external alternating magnetic field (AMF) for
promoting on-demand drug release and effective cancer imaging
and therapy. Magnetic field-responsive DDSs are generally
comprised of a magnetic core with materials such as magnetite
(Fe3O4), maghemite (Fe2O3), hybrid iron oxide (graphene/Au/
Fe3O4), and other magnetic materials (ZnFe2O4), as well as a
coating outlayer with materials including polymers, lipids, pro-
teins, and mesoporous silica, etc. Superparamagnetic iron oxide
Figure 3 (A) Synthesis and thermo-triggered drug release from DOX@P

responsive release of doxorubicin and enhanced thermo-chemotherapy in b

2020, Springer Nature.
nanoparticles (SPIONs) are predominantly adopted due to their
targeting performance in external magnetic fields without retain-
ing any residual magnetism after its withdrawal82. Besides mag-
netic materials, anticancer drugs, contrast agents, photosensitizers,
plasmids, and antibodies could also be assimilated inside the
magnetic field-responsive DDSs for achieving multimodal thera-
peutic activities. For example, doxorubicin and bioactive proteins
were incorporated into magnetic MneZn ferrite polymeric nano-
particles for thermo-chemotherapy under AMF83. Furthermore,
the AMF-induced hyperthermia could also trigger on-demand
drug release from the magnetic field-responsive DDSs in the
diseased regions84. Generally, the magnetic field-responsive DDSs
are often required to provide target-specific delivery, because they
might affect healthy organs or tissues that are distributed with
magnetic field-responsive DDSs when exposed to the AMF.

2.2.5. Electric field-responsive DDSs
Based on the electro-responsive materials such as conductive
polymers (e.g., doped polypyrrole, polyaniline), polymer complexes
with conductive materials (e.g., graphene, metallic nanoparticles) or
hydrogel materials (e.g., alginate, chitosan), as well as installable
electrical drug delivery devices, the electric field also proves to be a
potential trigger for on-demand drug release85. DDSs comprised of
conductive materials could provide controlled drug release through
electro-chemical oxidation/reduction and the movement of charged
moieties86. Various researches have been done on electro-
responsive hydrogels, e.g., an injectable chitosan-graft-polyaniline
copolymer crosslinked with oxidized dextran with dual-responsive
drug release to both pH and electric field87, and different electro-
active moieties (e.g., aniline trimer88, graphene oxide89, poly-
acrylamide89, etc.) were studied, which was reviewed by Carayon
et al.90 Besides the activation of DDSs, electric field could also
exhibit various physiological effects on tissues and cells, assisting
the delivery of therapeutic agents. Electroporation, for example,
could transiently promote the permeability of drugs through cell
membranes, with intense research in the delivery of
NIPAM-ppy-FA nanocomposites. (B) The mechanism of temperature-

reast cancer. Reprinted with the permission from Ref. 70. Copyright ª



Figure 4 Ultrasound-triggered release of doxorubicin and oxygen from cerasomal perfluorocarbon nanodroplets. Reprinted with the permission

from Ref. 77. Copyright ª 2020 American Chemical Society.
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macromolecules such as proteins and genes91,92, while strong
electric fields could further realize ablation or cytotoxicity on tumor
cells and microorganisms by themselves93. Additionally, distinct
electric fields could be generated endogenously by injured or
pathological tissues compared with normal sites, e.g., Ying et al.94

developed an angiopepe2-modified electro-responsive hydrogel
nanoparticle system, with enhanced brain accumulation and in situ
drug release triggered by electroencephalograph epileptiform
abnormalities.

2.2.6. Other exogenous stimuli-responsive DDSs
Various other exogenous stimuli-responsive DDSs have also been
developed for remote-controlled cancer therapy, such as high-
energy radiation (X-rays and gamma-rays). For example, the
diselenide block copolymers-based nanoparticles loaded with
doxorubicin were constructed to trigger drug release under a
reduced dose (2 Gy) of X-ray radiation at the tumor site95. Be-
sides, X-ray exposure can also enhance tumor accumulation and
cellular uptake of albumin nanoparticles by increasing the
expression of caveolin-1 on tumor cells96.

Moreover, exogenous stimuli-responsive DDSs also offer op-
portunities to overcome biological barriers such as reversing MDR
and promoting lysosomal/endosomal escape. Besides, they can
also integrate some novel therapeutic modalities, including
photodynamic therapy, phototherapy, ultrasound, and magnetic
hyperthermia, which are good alternatives to conventional cancer
therapy.

2.3. Receptor-ligand-based smart DDS

Targeted delivery also contributes to modern smart DDSs. In
general, tumor-targeting drug delivery systems can be constructed
through two strategies: passive targeting and active targeting. In
the past, numerous studies were based on the passive targeting
strategy, but with decades of intensive research, there are
increasingly controversial opinions on the efficiency of passive
targeting based on the EPR effect. In 2017, Li et al.97 demon-
strated that the active and passive effects made different contri-
butions to the total accumulation of nanoparticles (NPs) in tumors,
and they found that the receptor-mediated targeting contributed
more than the EPR effect over time. In addition, NP transportation
through the inter-endothelial cell gaps in the tumor blood vessels
was considered to be one of the dominant factors of the EPR ef-
fect. Recently, however, Sindhwani et al.98 proved that the overall
gap coverage was only 0.048% of the blood vessel surface area,
which was 60-fold less than the required amount to explain the
observed NP accumulation. Therefore, the concept that the passive
effect occupies a central role in targeting drug delivery was
challenged, while both passive and active targeting are still under
intense research in cancer nanomedicine.

Among the frequently discussed issues of active targeting,
widespread concerns have been raised about the unwanted in-
teractions of DDSs with non-target sites including nonspecific
interactions, and specific interactions whereby both target sites
and non-target sites could express relevant receptors, nevertheless
at different expression levels (usually referred to as on-target off-
tumor effect). Various strategies have been proposed accordingly.
For example, Wang et al.50 developed tumor acidity-responsive
nanoparticles for reversible shielding of the targeting ligand.
The iRGD moiety was shielded from interactions with non-target
sites in systemic circulation, and was responsively exposed to the
acidic tumor microenvironment, assisting in tumor penetration and
cellular uptake.

2.3.1. The effect of spatial distribution of ligands on drug
delivery
Traditionally, ligands have been attached onto drug delivery sys-
tems (liposomes, nanoparticles, micelles, etc.) with required
quantities, and the targeting effect might be increased by elevating
the density of ligands within certain limits99. However, ligands are
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usually present on the surface of vehicles in a random distribution
pattern due to their symmetrical structure, resulting in a limited
ability to recognize receptors and incomplete use of ligand ma-
terials. Moreover, it will increase the probability of forming pro-
tein coronas with the plasma binding protein during the transport
process in the blood circulation if the density of the ligand is
greatly increased. For instance, folic acid-modified liposomes will
adsorb large amounts of natural IgM after intravenous injection,
leading to a series of unexpected off-target effects, rapid clearance
and enhanced immunogenicity100.

The above problems can be effectively relieved by accurately
controlling the presentation mode of multivalent ligands on the
carrier to construct a non-uniform distribution of ligands. In this
way, efficient utilization of ligands and the enhancement of the
effectiveness and specificity of targeted delivery could be realized.
Sempkowski et al.101 designed lipid-based vesicles (Fig. 5A)
containing HER-2-targeting short peptides (KCCYSL), and sticky
vesicles were constructed so that ligands (shown in green) were
uniformly distributed over the surface of the vesicle during cir-
culation (pH 7.4), and preferably partitioned within the lipid
phase-separated domain in the acidic tumor interstitium
(7.0 > pH > 6.0), resulting in low reactivity in the circulation and
high reactivity even in cells with few copies of targeted receptors.
This strategy increased the local ligand density of lipid vesicles
and their ability to recognize target tissues in acidic environments,
and decreased specific interactions with normal cells with low
receptor expressions. Moreover, Poon et al.102 constructed self-
assembling linear dendritic polymers (LDPs) by hydrophilic/hy-
drophobic interaction (Fig. 5B). The experiments demonstrated
that the titer relationship did not increase linearly but reached
saturation dynamics. Once passing the allowable number of
ligand-receptor binding events within the binding space, the
presence of excess ligands clustered in a small binding area and
would result in steric binding interference, lowering the binding
energy. Their findings indicated that changing the focus from
ligand density to specific manipulation of ligand cluster presen-
tation on molecularly targeted NPs may have important implica-
tions for cell targeting, leading to the development of more smart
and effective targeted delivery systems.

In addition, Janus nanoparticles (JPs) are composed of two or
more anisotropic compartments103. It makes them ideally suitable
for modification with different functional molecules to achieve
asymmetrical multivalent ligand modification. Recently, Liu
et al.104 developed an entirely synthetic, multivalent, Janus
nanotherapeutic platform named Synthetic Nanoparticle Anti-
bodies (SNAbs). For myeloid-derived immunosuppressor cells
(MDSCs)-targeting SNAbs, they modified onto one “face” of the
JPs with G3 peptides which efficiently targeted MDSCs, and cp33
peptide was modified on the opposite “face” for the binding to Fcg
receptors (FcgRs) on immune effector cells. The anisotropy in
biological functions of the different faces enabled the effective
pairing of target cells with effector cells.

2.3.2. The effect of ligand-receptor binding/dissociation kinetics
on drug delivery
Even if ligand-modified drug delivery systems are demonstrated
efficient in vitro, the cellular uptake and intracellular transport of
NPs are still challenging in pursuing satisfactory in vivo perfor-
mances. Various extracellular physiological barriers exist, and the
competitive affinities of non-target regions for the ligands act as a
specific extracellular barrier sequestrating ligand-modified drug
delivery systems. In the past, most studies focused only on the
affinity constant (KD) in the assessment of this competitiveness.
However, ligand-receptor interaction is a dynamic process
orchestrated by several parameters including binding (Kon),
dissociation (Koff), and KD Z Koff/Kon, thus similar affinities can
be indicative of a completely different process of interaction.
Therefore, a more comprehensive discussion of the binding/
dissociation process is necessary.

A high affinity for the cell membranes or the membrane re-
ceptors is commonly believed to be beneficial to the targeted
delivery of anti-tumor drugs. In the extracellular process, however,
when the binding affinity with non-target regions becomes too
strong, the extracellular affinity barrier occurs with as-increased
strength, impeding the subsequent journey to the target sites105.
Many solid tumors such as pancreatic ductal adenocarcinoma
(PDA), non-small cell lung cancer (NSCLC) and certain breast
cancers, display tumor-associated fibroblast cells (TAFs) in their
microenvironment, which could also form a major component of
the binding site barrier (BSB)106, intercepting in the way of
vehicle delivery and reducing their final accumulation in tumor
cells107,108. Miao et al.109 demonstrated that NPs were preferen-
tially distributed in fibroblasts due to the strong binding affinity
between NPs and TAFs (KD Z 10.11 nmol/L). Therefore, the
number of NPs uptaken by tumor cells was reduced and the barrier
effect of TAFs-induced BSB was increased. Typically, for brain
tumor-targeted delivery, previous efforts have exploited the
transferrin (Tf)/transferrin receptor (TfR) pathway to enhance the
brain uptake of macromolecules through receptor-mediated
transcytosis. However, Yu et al.110,111 demonstrated that a reduc-
tion in Tf/TfR affinity could enhance the receptor-mediated
transcytosis of anti-TfR across the mouse bloodebrain barrier
and achieve the drug concentration needed for treatment (Fig. 6A).
In a therapeutic circumstance, the enhanced peripheral antibody
concentrations could compensate for the relatively reduced affin-
ity towards the TfR, ensuring the final interaction with the target
cells and the overall internalization. Strategies such as cleavable
ligand modification have been proposed according to such prob-
lems112. For example, Lei et al.113 developed a nanocleaner
modified with KLVFF peptide and acid-cleavable DAG peptide,
which could assist in cellular uptake and detach in acidic endo-
somes, promoting the transcytosis of the DDS from endothelial
cells into brain.

The dynamic characteristics of ligand-receptor interaction can be
used to design the corresponding smart drug delivery system for
different tumor tissues. In the case of solid tumors above, it would be
an effective solution to construct a fast-binding/fast-unbinding
model to circumvent the affinity barrier and BSB. But for tumor
cells at dynamic or flowing state, such as the leukemia cells and
circulating tumor cells, the presence of fluidic shear stress in blood
circulation might be not favorable for the binding of ligand-modified
nanodrugs with their target receptor, so it would be necessary to
construct a fast-binding/slow-unbinding model. Song et al.114 used
two avb3 ligands (RGDm7 and DT4) with different binding rates to
assemble dual-targeting nanovesicles. RGDm7 served as a “slow-
binding/slow-unbinding” ligand (KD Z 6.193 mmol/L) and
contributed to the stable bindingwithavb3115. In themeantime, DT4
showed rapid association and dissociation (KDZ 0.797 mmol/L) and
made the vesicles adhere quickly to the flowing tumor cells and
transfer the drug to the nucleus116. It was demonstrated that the
potency of the dual-targeting vesicles for flowing tumor cells was
superior to that for static tumor cells.

Similarly, the unsuitable affinity of receptor-ligand could also
impede the intracellular transport process. The design of



Figure 5 (A) pH-tunable sticky vesicles (left) and conventionally functionalized nanoparticles with pH-independent uniform distributions of

targeting ligands (right). Reprinted with the permission from Ref. 101. Copyright ª 2016, American Chemical Society. (B) Chemical structure

and self-assembly of linear dendritic polymers (LDP). Reprinted with the permission from Ref. 102. Copyright ª 2010, WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim.
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appropriate affinity could result in rational kinetic processes and
regulations of intracellular transport, thus achieving a better
therapeutic outcome. Manthe et al.117 used polystyrene nano-
carriers targeting the intercellular adhesion molecule-1 (ICAM-1)
to investigate the relationship between cellular uptake and intra-
cellular transport of the nanocarriers with varying degrees of af-
finity (Fig. 6B). The results indicated that nanocarriers with high
affinity (KD Z 177.2 pmol/L) had clear advantages in binding and
uptake, but the nanocarrier-receptor detachment post-transport
was more compromised, and this led to enhanced lysosomal
transport from the basolateral side. In contrast, the low-affinity
(KD Z 401.4 pmol/L) nanocarriers, which could detach more
easily from the basolateral cell surface and traffic more slowly to
lysosomes, would also experience lower binding and uptake on the
apical side. Improving the first steps in this process could hinder
the latter steps, and vice versa. Therefore, it was important to
achieve a balance where nanocarriers had an intermediate affinity
(KD Z 218.7 pmol/L) for apical binding and uptake without
hindering the basolateral detachment or facilitating massive
lysosomal trafficking. This is in accordance with the discussions in
the previous section. In other words, only appropriate number of
ligand modification and intermediate affinity can achieve satis-
factory targeted delivery of anti-tumor drugs.

3. Carrier-based smart drug delivery

The development of varied carriers or vehicles have enabled
versatile design and modification for the interface between ther-
apeutic agents and patients. Both conventional and newly-
developed carrier platforms provide fundamental supports for
the various smart drug delivery strategies. In this part, several
representative drug carriers and their recent developments are
discussed, including lipid-based carriers, polymeric nanoparticle-
based carriers, micelles, self-assembled chemical drugs-based
DDSs, nucleotide-based DDSs, self-assembled peptide-based
systems, and cell-derived/biomimetic delivery systems, with
multiple points of view.

3.1. Lipid-based carriers for smart drug delivery

Lipid-based carriers have been under intensive investigations in
anticancer delivery, demonstrating satisfactory performance in
drug delivery, with relatively mature synthesis of lipid materials as
well as scale-up manufacturing processes118,119. Besides the
conventional liposomes, various other lipid vehicles have
emerged, e.g., lipid nanoparticles120e122. Lipid-based carriers
have seen various successful clinical translations, and their ca-
pacity in cargo loading and functionalizations enabled the further
development of lipid-based smart delivery systems118.

Liposome is the most common vehicle in lipid-based nano-
carriers, and have been widely applied for chemotherapeutic de-
livery due to their unique ability to encapsulate hydrophilic and
hydrophobic agents and targeting characteristics caused by the
enhanced permeability and retention (EPR) effect or ligand
modification123. Since 1995, liposomal doxorubicin, Doxil� was
first approved by U.S. Food and Drug Administration (FDA) to
treat ovarian cancer and AIDS-related Kaposi’s sarcoma124.
Subsequently, liposomal daunorubicin (DaunoXome�), mifa-
murtide liposomes (Mepact�), and vinCRIStine sulfate liposomes
(Marqibo�), etc. were developed for various cancers125.

Liposomes make a promising platform to improve tumor
deposition and achieve on-demand drug release. Many pH-
sensitive liposomes, for example, are designed to disintegrate in
the acidic lysosomal environment after internalization, releasing
encapsulated drugs in the desired target. Furthermore, some pH-
sensitive liposomes were reported to exhibit enhanced tumor
accumulation and cellular internalization, caused by changes in
physicochemical properties such as size and surface charge126,127.
Additionally, other stimuli-responsive smart liposomes in
response to internal triggers (e.g., enzymes, and redox potential)
and external guides (e.g., magnetic field, ultrasound, and NIR
excitation) have emerged as promising drug delivery systems
pioneering in antitumor smart drug delivery5. Alpizar et al.128

designed light-triggered liposomes for target therapy, which
could successfully evade innate immune cells and then be inter-
nalized with surface potential switching from neutral to posi-
tive upon in situ irradiation. Ji et al.129 constructed a matrix
metalloproteinase-2 (MMP-2)-responsive peptide-hybrid lipo-
some to specifically release pirfenidone at the pancreatic tumor
site and down-regulate the multiple components of extracellular
matrix (ECM), enhancing the antitumor efficacy of encapsulated
gemcitabine. These stimuli-responsive liposomes exhibit prom-
ising application in enhancing drug delivery and achieving on-
demand drug release in targets.

Liposomes could also serve as combination delivery platforms
for multiple therapeutic agents, enabling smart combinational



Figure 6 (A) A model in which the affinity of anti-TfR is inversely proportional to the absorption of TfR in the brain. Reprinted with the

permission from Ref. 111. Copyright ª 2011, The American Association for the Advancement of Science. (B) Model for the role of nanocarrier

(NC) affinity on transcytosis and lysosomal trafficking. (The thickness of each black arrow represents the efficiency of the step indicated, where

increasing arrow thickness corresponds to faster rate. The orange dotted lines indicate that the effect of NC valency on the efficiency of the

secretion part of transcytosis was not assessed.) Reprinted with the permission from Ref. 117. Copyright ª 2020, Elsevier B.V.
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therapy strategies such as chemo-photothermal therapy. Photo-
thermal ablation can synergistically enhance the therapeutic effect
of chemotherapeutics by elevating cell membrane permeability
and triggering drug release at the target site123. ICG is a quin-
tessential NIR dye for several clinical applications approved by
FDA. Liposomal co-encapsulation of chemotherapeutics and ICG
remarkably prolonged the blood circulation time and enhanced the
tumor accumulation, proving satisfactory chemo-photothermal
combinational therapeutic effect130. Liposomes with chemo-
photothermal therapy are expected to become the next clinically
effective anti-tumor strategy.

Lipid nanoparticle (LNP) is another lipid-based carrier with a
solid core structure, and has become a promising platform for
the delivery of hydrophobic and hydrophilic small-molecule
drugs as well as biological agents such as oligonucleotides,
peptides, and vaccines120,131. Various LNP vaccines have been
quickly developed and played vital roles in the COVID-19
pandemic, e.g., the Moderna vaccine132, and the application of
LNP in nucleic acid (NA) delivery has also been highlighted133.
Endosomal escape is a vital process for many NA drugs, and the
utilization of ionizable lipids and functional helper lipids could
provide essential pH-responsiveness in the endosome134.
Onpattro� (anti-transthyretin siRNA-loaded LNP) contains an
ionizable cationic lipid (DLineMC3eDMA) which could
convert the potential of liposomes to positive in the endosomal
environment, resulting in the release of siRNA in target
cells135,136. With the accumulating library of lipid materials with
various functions and characteristics, LNPs holds great potential
for versatile delivery of a universal selection of therapeutic
agents, with greatly shortened time for formulation screening
and optimization. To this end, however, the actual quality of
relevant lipids in both laboratory research and scaled-up pro-
duction requires more emphasis.
Besides liposomes and LNPs, lipids assist in various prom-
ising platforms such as nanostructured lipid nanocarriers
(NLCs), lipid-drug conjugates, self-emulsifying systems,
etc137e140. Lipid-based smart vehicles promise a bright future
for cancer treatment in the next decade or so. They might
become a major arsenal for safer and more efficient treatments
by ensuring proper drug localization in tumors and on-demand
drug release. Although substantial advances have been made,
efforts are still needed to solve the problems of scale-up and
clinical verification to transfer lipid-based therapy from labo-
ratories to clinics.

3.2. Polymeric nanoparticles-based smart drug delivery

Nanoparticles based on biocompatible and biodegradable poly-
mers such as polylactic acid (PLA), PLGA, PEG, and N-(2-
hydroxypropyl) meth-acrylamide (HPMA) have gained popu-
larity for nanocarrier fabrication. Through chemical conjunction
or physical encapsulation, polymer nanoparticles could deliver
chemotherapeutics, proteins, and nucleic acids to the tumor
site141. Several polymeric nanoparticles have been approved for
clinical application, e.g., Eligard� (Tolmar) containing poly(D,L-
lactide-co-glycolide) has been approved by the FDA for prostate
cancer therapy142. The clinical trials of BIND-014 (docetaxel-
loading polylactide core with PEG corona and ACUPA-targeting
ligands), CRLX101 (nanoparticle with camptothecin-conjugated
polymer backbone based on cyclodextrin and PEG), and AZD-
2811 Accurin (AZD-2811-encapsulated PLAePEG block copol-
ymer nanoparticle) also provide valuable experiences for the
translation of smart polymeric nanoparticles. In recent years,
combined with specific ligands and responsive groups, smart
polymeric nanoparticles are at the forefront of antitumor drug
delivery with their unique advantages.
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Due to high synthetic versatility and ease of conjugations,
polymers were suitable for functionalization and ligand modifica-
tion. For example, Qiu et al.143 synthesized an IL12 plasmid
(pIL12)-loaded polyplex constructed with esterase-responsive
cationic polymer PQDEA, which was further coated with various
lipids as well as DSPEePEG conjugated with tumor-targeting
ligand AEAA. Responsive to the high-level esterase in tumor
cells and tumor-associated macrophages (TAMs), these smart
nanoparticles turned anionic and quickly released the cargo, thus
efficiently producing IL-12, activating anticancer immune re-
sponses, and remodeling the tumor microenvironment. Zou et al.144

functionalized cNGQGEQc peptide onto reversibly crosslinked
PEGeP(TMCeDTC)ePEI and cNGQePEGeP(TMCeDTC)
chimeric polymersomes (cNGQ/RCCP), achieving prolonged cir-
culation, efficient targeting, and GSH-responsive release. Yin
et al.145 took advantage of the affinity of hyaluronic acid (HA) for
CD44 to create HAessePTX, which could be specifically absor-
bed by tumor cells via CD44-mediated endocytosis and disrupted
by reducing glutathione to release PTX.

The acidic tumor microenvironment provided the basis for
intelligent response at low pH. For example, dual sensitive dual
drug backboned shattering polymer self-assembled nanoparticle
(DD-NP) was triggered intracellularly to break down and release
the dual drugs payload in a chain-shattering manner under the
intracellular acidic microenvironment for optimal anticancer ef-
ficacy. Cong et al.146 claimed that DD-NP could be a good
example of nanomedicine tackling the major challenges together,
including precise composition, direct fate monitoring of drug,
drug evaluation, and screening on reliable cancer models, vali-
dating the possible use of DD-NP in the clinic. In another
example, Tang et al.147 synthesized charge-switchable polymeric
nanoparticles, which were consisted of PEGeblockepoly[(1,4-
butanediol)-diacrylate-b-5-amino-1-pentanol] (PEGePDHA),
and conjugated with 2,3-dimethyl maleic anhydride (DMA). In the
slightly acidic environment of tumor tissues, the anionic shell was
removed, inducing the conversion of the surface charge from
negative to positive, which resulted in higher intra-tumor accu-
mulation, more efficient cellular uptake, and stronger cytotoxicity.
These charge-convertible polymers represented a class of typical
intelligent polymers that can afford tunable physical and structural
changes that are envisioned to address critical issues in response to
the stimulus at the tumor site148.

Photoactivatable polymeric nanoparticles enabled remotely
controlled drug and imaging agent delivery. For example, Sen-
thilkumar reported photo-responsive poly(p-phenylene vinylene)
conjugated polymer nanoparticles (CPNs) functionalized with
donor-acceptor Stenhouse adduct (DASA) and folic acid units for
drug delivery and imaging149. Notably, drug-loaded CPNs
exhibited excellent biocompatibility in the dark, indicating perfect
control of the light trigger over drug release. In another work,
Zeng et al.150 reported the synthesis of an amphiphilic triblock
copolymer, PolyPt/Ru, consisting of biocompatible PEG,
reduction-responsive Pt(IV), and red-light-responsive Ru(II)
moieties, which further improved the selectivity of the cancer
treatment, though photoactivation at the irradiated tumor tissue
(Fig. 7).

Functionalization always leads to a more complex structure
and changes the original characteristics of the polymer. Polymeric
nanoparticles without biodegradability may cause serious side
effects after their accumulation at the tumor site. With the rapid
emergence of novel polymeric nanoparticles, safety evaluation is
important to identify polymeric candidates.
3.3. Micelle-based smart drug delivery

Many chemotherapeutics are hydrophobic small molecules, and
the hydrophobicity often becomes a major barrier for their sys-
temic delivery to solid tumors. Over the past few decades, poly-
meric micelles (PMs) have provided a promising platform for the
delivery of poorly soluble drugs. PMs are usually self-assembled
from amphiphilic block copolymers with nanoscale size
(commonly 10e100 nm). Among these polymers, poly(ethylene
glycol) (PEG), poly(vinyl alcohol) (PVA), poly(N-vinyl-2-
pyrrolidone) (PVP), poly[N-(2-hydroxypropyl) methacrylamide]
(PHPMA), and polysaccharides are commonly used as core-
forming segments, enabling the encapsulation of hydrophobic
molecules. Besides, polyesters and poly(amino acid) (PAAs) have
drawn broad attention for shell forming151, and the hydrophilic
outer shell could protect the drug-loaded core. The core-shell
structure of micelles has enhanced the encapsulation and selec-
tive tumor targeting of many therapeutic agents. For example,
PEGebePLA micelles for PTX have realized enhanced drug
solubilization, biocompatibility, and dose escalation152.

Up to now, various micelle formulations including Paclical,
Genexol-PM, and Nanoxel-PM have been approved for PTX de-
livery. Also, hydrophilic polypeptides have been developed to
mimic the conformation of synthetic hydrophilic polymers. Ban-
skota et al.153 developed new unstructured polypeptides called
zwitterionic polypeptides (ZIPPs), which could self-assemble into
micelles after conjugation with hydrophobic paclitaxel, with a 17-
fold-longer half-life compared to free paclitaxel in the HT-29
colon cancer model.

Recently, intelligent polymeric micelles have been developed
to respond to different stimuli, including light-, ultrasound-,
temperature-, pH-, enzyme-, redox-sensitive systems, for
achieving spatiotemporal control of their therapeutic effects. For
example, Li and coworkers154 fabricated a micelle drug delivery
system based on poly(AAmecoeAN)egePEG with an upper
critical solution temperature (UCST) of 43 �C, with thermal-
sensitive drug release combined with microwave hyperthermia.
Su et al.155 developed a pH and MMP-2 dual-responsive Azi-
deePEGePAsp (Dip/Bz) copolymer for antitumor drug delivery,
spatiotemporally controlling the release of PD-1 and PTX from
MMP-2 enriched tumor tissues. Additionally, surface modification
of PMs with ligand molecules such as peptides, antibodies, and
small molecules also has wide applications for advanced tumor
therapy. For example, iRGD-modified micelles were developed
for avb integrin and neuropilin-1-mediated bloodebrain barrier
penetration and targeted delivery to glioma cells156. PMs system
has also been regarded as a promising platform for imaging and
diagnosis, such as tumor micro-environment and tumor tissue
imaging, etc. Among these materials, star polymer-based unim-
olecular micelles are widely investigated, which could be obtained
through rational structure design, and different kinds of imaging
probes can be encapsulated or labeled157.

The past decade has witnessed explosive development of
biodegradable micelles for targeted and controlled anticancer drug
delivery. Considering their advantages such as reduced immuno-
genicity, biocompatibility, biodegradability, highly structural and
chemical variability, amphiphilic block copolymers like PHPMA,
PVA and polyesters have the potential to achieve clinical trans-
lation. Nevertheless, the clinical translation is a lengthy, costly,
and complex process, successful examples of PMs from bench to
bed are few. Several challenges associated with their use concern
the disassembly, degradation, clearance, and metabolism of PMs



Figure 7 Illustration of amphiphilic triblock copolymer PolyPt/Ru (A) and the self-assembly, circulation and internalization process of PolyPt/

Ru (B). Reprinted with the permission from Ref. 150. Copyright ª 2020, Wiley-VCH GmbH.
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in the blood stream, besides, the long-term effects of some PMs
remain to be studied, especially following repeated and cumula-
tive administration151. Thus, polymers for stable micellar struc-
ture, active targeting ligands, and combination delivery of
multiple drugs are potentially effective approaches.

3.4. Self-assembled chemical drugs-based smart drug delivery

Conventional organic nanocarriers usually consist of lipids or
polymeric materials, such as liposomes, vesicles, micelles, and
polymeric nanoparticles (NPs)158. Interestingly, some chemical
drugs or prodrugs are also adopted to participate in the con-
struction of these nanocarriers themselves159e161. The most
remarkable feature of chemical drug-based nanoassembly is its
self-delivery capacity, namely drugs or prodrugs could simulta-
neously serve as both cargoes and vehicle materials in the nano-
systems159,160,162. As a result, chemical drug-based nanoassembly
usually shows ultrahigh drug loading capacity, sometimes even
reaching 50%159,160,162. Recently, this kind of nanocarrier has
drawn more and more attention as a promising and efficient drug
delivery system. In this section, we focus on the latest trends in
chemical drug-based nanoassembly (Fig. 8), including pure drug-
based nanoassembly and prodrug-based nanoassembly.

3.4.1. Pure drug-based nanoassembly
Over the years, several anticancer drugs have been formulated into
nanomedicine with the help of carrier materials, such as pacli-
taxel, doxorubicin, and irinotecan158. However, low drug-loading
efficiency and carrier material-related toxicity have been widely
regarded as the main obstacles to the clinical translation of
nanomedicines. Therefore, the rational design of carrier-free
nanomedicines has always been a high priority. Several chemo-
therapeutic drugs have been recently found to show self-assembly
characteristics in water, such as 10-hydroxycamptothecin, doxo-
rubicin, and curcumin159,163e165. Moreover, photosensitizers such
as 1,10-dioctadecyl-3,3,30,30-tetramethylindotricarbocyanine io-
dide (DiR) and zinc meso-tetra(4-pyridyl) porphyrin (ZnTPyP)
were also found to successfully self-assemble into stable NPs for
imaging-guided photothermal therapy (PTT) or photodynamic
therapy (PDT)166,167. In addition to single drug nanoassembly, the



Smart drug delivery systems for precise cancer therapy 4111
co-assembly of two or more drugs was also explored for multi-
modal cancer therapy168e170.

The self-assembly or co-assembly of drugs was found to be
driven by multiple interactions, including hydrophobic force,
hydrogen bonding, pep stacking, and electrostatic interactions,
etc.159. Despite the self-assembly capacity of hydrophobic drug
molecules, amphipathic polymers or PEG were usually utilized in
these systems to further enhance the colloidal stability and pro-
long the circulation time159. Distinguished from polymeric mi-
celles, PEG polymers mainly acted as PEGylation modifiers
instead of carrier materials in pure drug-nanoassembly159.

3.4.2. Prodrug-based nanoassembly
Despite their simple fabrication process and ultrahigh drug
loading capacity, it is still challenging for pure drug-based nano-
assemblies to achieve tumor stimuli-responsive drug release. In
contrast, rational design of small-molecule prodrugs and prodrug-
nanoassemblies could not only modify the physicochemical
properties of drugs but also realize selective drug release, e.g., by
inserting tumor-specific stimuli-sensitive linkers in the prodrug
molecules160. Moreover, many drugs are not able to form nano-
assemblies themselves, but proper chemical modifications could
endow them with self-assembly capability160.

According to the molecular structures of prodrugs, small mo-
lecular prodrug-based nanoassembly could be summarized as
three types: (i) nanoassembly of amphiphilic prodrugs; (ii)
nanoassembly of hydrophobic prodrugs; and (iii) nanoassembly of
dimeric prodrugs160,171. Among them, relatively few studies have
been focused on amphiphilic prodrug-based nanoassembly, due to
their relatively large critical aggregation concentrations (CACs)
and unsatisfactory dilute stability in blood160,171. An increasing
number of hydrophobic drugs and prodrugs have been found to
have self-assembly capacity, despite the past views that they could
hardly form stable NPs in water159,160,171. Notably, the nano-
assembly of hydrophobic prodrugs showed excellent stability after
modification with a small amount of PEG polymers. The self-
assembly ability and good stability of hydrophobic drug nano-
assemblies could be attributed to multiple intermolecular in-
teractions/forces including hydrophobic forces, hydrogen bonding,
pep stacking, and electrostatic interactions; while the assembly
of amphiphilic prodrugs is mainly considered to be driven by
hydrophobic forces159,160,171.

Despite the specific self-assembly features, the effective hy-
drolysis of hydrophobic prodrugs remains challenging. To address
this problem, tumor stimuli-responsive strategies by inserting
chemical linkers in the prodrugs has been proved to be effec-
tive160. Recently, a wide range of redox-responsive prodrug-
nanoassemblies have been developed by utilizing reduction-,
oxidation- or redox dual-sensitive chemical linkers, such as thio-
ether bond, disulfide bond, trisulfide bond, thioketal bond, and
diselenide bond, etc172e177. In addition to triggering the tumor-
specific activation of prodrugs, the bond angles and/or dihedral
angles of these redox-responsive linkers play crucial roles in the
stability and in vivo drug delivery efficiency of prodrug-
nanoassemblies174e177.

In addition to monomeric prodrug-based nanosystems, the
nanoassembly of dimeric prodrugs represents another unique
nanoplatform, including homodimer-nanoassembly and hetero-
dimer-nanoassembly171. The nanoassemblies of homodimer syn-
thesized by conjugating two identical drug molecules could
exhibit higher drug loading efficiency than monomeric prodrug-
nanoassemblies, sometimes even up to 80%171,175,176. Moreover,
the nanoassembly of heterodimers synthesized by coupling two
different therapeutic agents provides a new platform for combi-
nation cancer treatment171,178. Notably, most dimeric prodrugs
demonstrated relatively poor assembly ability when compared
with monomeric prodrugs, especially the homodimers with sym-
metric molecular structures175. Moreover, although heterodimer-
nanoassembly provides a natural platform for combination can-
cer therapy, the molar ratios of drugs were strictly limited to 1:1,
which is detrimental to exerting the synergistic effects in different
cases171. Still, heterodimers of two drugs with different thera-
peutic modes might be more flexible in producing synergistic
effects, such as chemo-photodynamic heterodimers178.

3.5. Nucleotide-based smart drug delivery

The nucleotide is a type of organic molecule consisting of a
nucleobase, a sugar ring, and a phosphate, while such simple
structure is highly important in biology. It is the basic element of
endogenous nucleic acids for a broad range of physiological
functions, such as DNA, mRNA, and microRNA. From a chemical
standpoint, DNA has w106-fold higher stability than RNA due to
its deoxyribose structure179. As such, DNA is preferably chosen
by nature as the carrier to store genetic information, forming a
WatsoneCrick base pairing structure as discovered in 1953. Later
in the 1980s, it was found that DNAwas able to form much more
complicated architectures than merely linear duplexes, based on
which the concept “structural DNA nanotechnology” was coined
to describe the higher-order DNA structures. Since then, various
elegant DNA nanostructures have been designed with arbitrary
sizes, shapes, and functions, such as DNA polyhedra, DNA
origami, DNA dendrimer, DNA nano-train, DNA nano-flower,
providing versatile vehicles for smart drug delivery161,180.
Besides the evolution of structure, the functions of DNA have also
been extensively expanded by virtue of the rapid progress of
molecular biology and chemical biology, resulting in the discov-
ery of various types of functional nucleic acids181. One typical
example is the aptamer, which is artificially obtained through a
combinatorial process called SELEX. Theoretically, aptamers can
be isolated to selectively bind any target of interest, and currently,
a wide range of aptamers have been discovered with binding
substrates of metal ions, small molecules, proteins, and even the
whole cells182. Among them, the tumor cells recognition aptamers
have attracted particular attention, which elicits the development
of both tumor diagnostic probes and tumor-targeting drug delivery
systems183.

Compared with many other synthetic polymers, the endoge-
nously derived DNA has various appreciable advantages as drug
loading carriers for in vivo delivery. Owing to the development of
the solid-phase synthesis technique, DNA is readily commercially
available for large-scale synthesis via automated phosphoramidite
chemistry with relatively low prices, making it accessible to most
ordinary research labs. In addition, DNA with various modifica-
tions for subsequent conjugation as well as fluorophore-labeling
can be easily designed, which significantly expanded the func-
tionalities of the DNA-assembled nanostructures, such as the de-
livery of multiple drugs, active targeting modifications, and
imaging-guided tumor therapy. The biomimetic DNA is highly
biocompatible and biodegradable, which meets the stringent de-
mand as drug carriers for in vivo applications. More importantly,
DNA has a well-characterized conformation and geometry, in
which the double-stranded B-DNA is w2 nm in diameter with a
helical repeat of 3.4 nm for every 10.5 base pairs. Through the
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precise A/T and G/C base-pairing, DNA nanostructures with
different sizes, shapes, and dimensions can be rationally designed
via tuning the building block DNA sequences and incubation
conditions161. Besides base-pairing-based assembly, DNA nano-
structures can also be formed by more elegant strategies, such as
polymerase chain reaction (PCR), rolling circle amplification
(RCA), enabling the in situ generation of nanoparticles with a high
level of reproducibility and efficiency161.

While the nucleotide has quite a simple chemical structure, the
nucleotide-based nanoassemblies are able to deliver a wide range of
therapeutic drugs, including chemotherapies, photodynamic agents,
radio-therapeutics, oligonucleotides-based, and even protein-based
drugs161,180. The drugs can be loaded into DNA nano-architectures
via either physisorption or chemical conjugation. Among various
antitumor drugs, the most commonly used example is DOX, which
can readily sandwich into two adjacent pairs of bases (especially G/
C pairing), achieving ultra-high drug loading into DNA nano-
assembly through a simple preparation procedure184. This is
inspired by the antitumor mechanism of DOX, which enters the cell
nucleus and intercalates among base pairs in genetic DNA, thereby
preventing DNA replication and ultimately inhibiting protein
expression. A similar binding pattern was also employed to load
porphyrin derivative (TMPyP4), a photodynamic therapy agent185.
Overall, such strategy is simple, cost-effective, yet highly efficient,
while it has specific requirements for the loaded drugs, such as
planar or extended planar components within their structures. More
generalized methods to load the payloads are through sequence
hybridization and chemical conjugations. For nucleic acids-based
drugs, direct hybridization is the most straightforward way to
integrate into DNA nanostructure, which has been used to deliver
siRNA, microRNA, DNAzyme, and CRISPR/Cas9 system186. For
many other drugs, however, tedious chemical conjugations are
required to incorporate them into DNA nanostructures. Although
DNA itself has limited functional groups for chemical conjugations,
the chemical solid-phase synthesis generates ester, amide, and di-
sulfide bonds within DNA, allowing for subsequent conjugation of
drugs with different chemical properties. However, chemical mod-
ifications are only feasible for limited lengths of DNA sequences,
and the following drug conjugations need complicated chemical
synthesis with low yield. In some cases, the combination of different
strategies was employed to construct multiple-model therapeutic
systems to conquer the extreme complexity and heterogeneity of
tumor187. To enable tumor targeting delivery, the aptamers and other
active ligands have been equipped into DNA nanostructures for
targeted tumor therapy188,189.

Smart delivery systems should release their payload after reaching
the targeting site for action. DNA nanostructures can exploit various
internal and external stimuli to trigger drug release. For example, pH
and GSH are the most widely employed internal triggers for anti-
tumor nano-delivery systems, by virtue of acidic tumor microenvi-
ronment and up-regulatedGSH levels in cancer cells. It is known that
cytosine-rich sequences (i-motif domain) undergo a conformational
change in response to slightly acidic pH, based on which the pH-
responsive DNA nano-delivery systems were formed by the inte-
gration of i-motif190. Li and coworkers191 developed aDNAhydrogel
that was crosslinked via disulfide bonds, which was cleavable in
presence of GSH, resulting in burst drug release inside cells. Like-
wise, a photodegradable DNA-cross-linked hydrogel was designed
for drug loading, and external stimulus of light-induced gel-sol
conversion to trigger the rapid release of the encapsulated mole-
cules192. Compared with other polymers, the elegance of DNA as
drug carriers is their capability to sense various biological molecules.
For instance, complementary sequences can be designed to hybridize
with target mRNA/microRNA193, and aptamers can recognize ATP
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and nucleolin194,195, all of which have been employed to construct
DNA-based smart drug delivery system. The landmark work was
reported byLi and coworkers195, who developed aDNAnanorobot to
deliver thrombinvia incorporating an aptamer that targeted nucleolin,
a protein specifically expressed on tumor-associated endothelial cells.
The aptamer served both as a targeting domain and also a molecular
trigger to activate theDNAnanorobot, throughwhich thrombin could
be specifically delivered to tumor-associated blood vessels for
intravascular thrombosis, resulting in tumor necrosis and tumor
growth inhibition.

3.6. Self-assembled peptide-based smart drug delivery

Biological and bio-inspired building blocks have attracted wide-
spread attention in smart drug delivery technologies owing to their
advanced functions for both nanotechnology and biomedicine.
Among various building-block molecules, peptides with self-
assembly characteristics are of particular interest, not only
because of their biological origin and biodegradability, but also
because of their specific bioactivity derived from rationally
designed sequences196. In this section, we focus on the bioactivated
in vivo assembly (BIVA) nanotechnology, the modular structures of
peptide materials, and corresponding conditioned self-assembly
mechanism, as well as their application in the imaging and thera-
pies against tumor (Fig. 9). BIVA technology could provide active
targeting and assembly, inducing tumor-specific accumulation and
prolonged retention. Based on different modules, versatile functions
could be endowed onto the BIVA system, including but not limited
to prolonged circulation, targeting, self-assembly, imaging, etc. Ren
et al.197 reported a BIVA optical nanofiber probe with five different
functional modules which could self-assemble on the tumor sur-
face, with prolonged tumor imaging and precise recognition of
<2 mm orthotopic pancreatic tumor in vivo.

Modular design enables efficient production, maintenance, and
customization across modern engineering technologies. In the
terms of peptide design, modular peptide building blocks with
various functions, such as targeting motif, response motif, self-
assembly motif, and functional motif, are employed for the con-
struction of delivery platforms, providing advanced scope and
accuracy in their metabolic steps, associated enzymes, and bio-
logical function parts, and assisting in the programmable and
controllable regulation of the assembled structure and the
morphology198. Combining with molecular dynamics (MD)
simulation, the pre-designed compound and its assembled
behavior can be further predicted. Remarkably, the molecular
assemblies can be synthesized, assembled, and characterized in a
rapid manner with desirable performance199. Also, recent reports
suggest the potential of biosynthesis for the efficient combination
of diverse modules and cargos with diverse structures in anti-
cancer immunotherapies and relevant other applications200.

Enzymatic triggers are commonly adopted self-assembly
mechanisms in vivo, including enzymatic elimination, cycliza-
tion, and polymerization, as well as metal ion coordination. For in
situ self-assembly of peptides in physiological conditions, a sim-
ple and efficient approach is to modify molecules with responsive
molecular elimination to remove hydrophilic and steric hindrance
parts, thus the overall balance of hydrophobicity and hydrophi-
licity could lead to in situ assembly201,202. Additionally, pep
interactions could also serve as a driving force to influence the
reaction pathways of cyclization, altering self-assembly
states203,204. Besides, the polymerization based on elongation of
the peptide monomers-induced polymeric phase transition can
provide an efficient route to form divers self-assembly. These
nanoscale architectures and polymers have myriad possibilities
when directly incorporated by polymerization and in situ assem-
bly205,206. Coordination-based self-assembly, a strategy that uses
metal coordination as an important force to direct the association
of peptide molecules, has recently developed into an elegant
method for the precise design of theranostic systems by combining
the advantages of both peptide self-assembly and metal coordi-
nation interactions207. Assembly is an equilibrium process be-
tween the individual building units and their aggregated state, the
practical self-assembly of molecules should be precisely
controlled by concentration in solvent208.

The BIVA technology-based peptide candidates exhibit
promising drug delivery capability and advanced drug substitute
ability for cancer therapy209,210 and unique advantages, including
reduced side effects, optimized pharmacokinetics and
pharmacodynamics211e213.

3.7. Cell-derived/biomimetic smart drug delivery

Endogenous materials have been widely used in the research of
drug delivery systems because of the advantages of good
biocompatibility, low immunogenicity, and retention of endoge-
nous biological functions. In recent years, endogenous materials
such as biomembrane-coated vectors and extracellular vesicles
(EVs) have received more and more attention. Compared with
traditional nanomaterials, biomembrane-coated NDDSs can
mimic many natural characteristics of their cells of origin214e216.
The current biomembrane-coated nanomaterials in research
mainly include red blood cell (RBC) membrane217, platelet
membrane218, immune cell membrane219, tumor cell mem-
brane220, and hybrid cell membrane221. RBCs and platelets have
been intensively studied due to their non-nucleus characteristics.
Yang et al.222 synthesized a thermal-sensitive nitric oxide (NO)
donor S-nitrosothiols (SNO)-pendant copolymer [poly(-
acrylamide-co-acrylonitrile-co-vinylimidazole)-SNO copolymer,
PAAV-SNO] with upper critical solution temperature (UCST), and
RBCs were together adopted to fabricate an erythrocyte
membrane-camouflaged nanobullet for codelivery of NIR-II
photothermal agent IR1061 and indoleamine 2,3-dioxygenase 1
(IDO-1) inhibitor 1-methyl-tryptophan (1-MT), realizing stealth in
the circulation as well as light- and heat-regulated release at the
tumor site. Platelet membranes consist of CD47 and P-selectin,
which could help escape from macrophages and provide high
affinity with tumor cells, respectively223. Wang et al.224 utilized
platelet membranes to coat the nanoparticles formed by chitosan
oligosaccharide (CS)-PLGA copolymer (PCS-PLGA NPs) for
delivering anticancer drug bufalin, which exhibited prolonged
half-life and significant accumulation in the tumor site due to
P-selectin. Immune cell membranes, e.g., macrophage, T cell, and
natural killer cell membranes, etc., can effectively reduce opso-
nization and non-specific clearance, and provide cellular recog-
nitions or targeting abilities225. Also, the application of hybrid cell
membranes might retain the inherent functions of both cell
membranes. Jiang et al.226 designed erythrocyte-cancer hybrid
membrane-camouflaged melanin nanoparticles using RBC mem-
brane and MCF-7 membrane, the bionic nanoparticle exhibited
prolonged blood circulation time and more accurate targeting to
MCF-7 cells.

Exosomes are a type of EVs, containing components from the
parent cell such as DNA, RNA, lipids, proteins, etc.227 Besides,
exosomes possess natural composition, low immunogenicity,
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reduced cytotoxicity, favorable penetration through physiological
barriers, and tumor cell-derived exosomes exhibit specific target-
ing towards parent tumor cells228. Also, extra characteristics and
smart functions could be endowed on exosomes with ligand
modification, cargo loading, etc.229 These exosomes were used as
ideal carriers for delivering nucleic acids and proteins to tumor
sites230. Towards the large-scale production of targeted and ther-
apeutic exosomes, cell nanoporation technology was adopted by
Yang et al.231, achieving increased exosome production and
transcription of therapeutic mRNA, as well as the expressing of
targeting peptide on the N terminus of exosomal CD47. The
produced exosomes realized efficient penetration through the
bloodebrain barrier and targeted delivery to the glioma sites with
enhanced therapeutic effect. The exosomes could also provide
various biological properties for the modification of NPs232. In
recent years, biomimetic drug delivery systems have been exten-
sively studied, but for clinical applications, more in-depth re-
searches are needed.

4. Future perspective

At present, with the emphasis on precision and comprehensiveness
in clinical cancer treatments, new requirements are put forward for
tumor-targeted NDDS, urging the development of flexible and
adjustable formulation, controllable interval and dosage of
administration, spatiotemporally-precise delivery, and easy clin-
ical translations. The construction of NDDS by smart self-
assembly has become an important trend in modern smart/
stimuli-responsive drug delivery. Based on supramolecular
in vivo self-assembly, a tumor-selective cascade activatable self-
detained system (TCASS) could significantly enhance the smart
accumulation of self-assembly NDDS on desired targets, and
promote the penetration and retention at tumor sites via
aggregation/assembly-induced retention (AIR) effect202. Addi-
tionally, on the combination of host-guest interactions233 and
biomarker displacement activation (BDA)68 strategy, some over-
expressed tumor markers in the tumor microenvironment may
competitively bind with the macrocyclic host, and enable
controllable release of the anti-tumor agent from its disguised
form and restoring its anti-tumor activity. This host-guest complex
exhibits high efficacy and low cytotoxicity, hence this kind of
supramolecular system is expected to become an important
development direction of multifunctional nanomedicine.

In recent years, the global trend of pharmaceutical products has
shifted from chemicals to biopharmaceuticals. However, the per-
formance of conventional NDDS proves insufficient to solve the
problems of poor stability and low encapsulation in the delivery of
biological macromolecules such as peptides, proteins, vaccines,
and gene drugs. A strategy of supramolecular peptide therapeutics
(SPT) was proposed for the improvement of the stability and
anticancer efficacy of the peptides in vivo. The phenylalanine was
introduced into the N terminal of anti-tumor peptide (KLAK), and
the encapsulation efficiency of supramolecular peptide complex
reached 97% through host-guest interactions between the
phenylalanine and cucurbit uril234. Considering the huge demand
for peptide-based pharmaceuticals for clinical purposes, SPT
might provide a versatile and potential bridge for clinical trans-
lations of bioactive peptides and proteins. Nanotechnologies also
have widespread applications in vaccinology to such an extent that
there is a very active research area known as “nanovaccinology”,
especially in tumor-targeting. However, conventional formulation
strategies still have to face the difficulty of complicated prepara-
tion processes, low antigen loading, and weak immune response.
A Nano-B5 platform was built through an in vivo production
process combining the self-assembly capacities of pentamer do-
mains from the bacterial AB5 toxin and the loading capacity of
unnatural trimer peptides to encapsulate diverse antigens
including peptides and polysaccharides. The full-biosynthesis
process of protein skeleton could avoid the introduction of
exogenous materials and ensure the safety of the vaccine, and the
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utilization of fusion expression or protein glycosylation modifi-
cation strategies could easily achieve high-efficacy loading of
different antigens without chemical coupling. Compared with pure
antigen, nanovaccines could avoid the rapid clearance of antigen
and achieve effective enrichment in lymph nodes, and rapidly
activated antigen-presenting cells (APCs) for T cell activation
without additional adjuvant, thus enhancing the level of subse-
quent immune response, and offering a platform technology for
combining diverse modular chassis components and antigen car-
gos to generate various high-performance nanovaccines200.

In addition, various individualized gene therapy drugs have
also been gradually developed. Traditionally, most gene therapy
delivery systems focus only on one therapeutic target, such as
DNA in the nucleus or mRNA in the cytoplasm. However,
spatiotemporal features of transcription (nucleus) and translation
(cytoplasm) of target genes differ widely. Thus, the utilization of
branched DNA structure with circular supramolecule as the core
can efficiently load components through base complementary
pairing-based self-assembly of nucleic acids and supramolecular
host-guest recognition mechanism, then the gene-editing (sgRNA/
Cas9) and gene-silencing (antisense) components can achieve
level-by-level responsive release. This strategy takes advantage of
the responsiveness of the assembly structure to tumor markers,
realizing the synergistic dual-drug codelivery for gene editing
system and gene silencing system, and offering new strategies for
the treatment of malignancies235.

Despite the great progress in smart NDDS, several challenges
remain in the design of biologically functional controllable com-
ponents, e.g., the prediction of in vivo stimuli-responsive behavior,
the standardized evaluation criteria, clinical translation and in-
dustrial production. Although novel functional materials have
been under continuous development, in-depth research of their
in vivo degradation and safety issues remains in urgent need.
Artificial intelligence (AI), big data and multi-scale simulation
technology can be introduced into the construction of smart
NDDS to change the paradigm of pharmaceutical research into
data-driven mode236e238. Specifically, a structurally diverse
hydrogel library with more than 2000 motifs239 can link the
chemical features of carriers with their self-assembly properties
and accurately predict the gel formation ability by deep learning.
Hydrogels offer scalable and tunable delivery platforms which can
load a variety of drugs by hydrophobic domains, affinity-mediated
binding, or covalent integration240,241. These kinds of design and
prediction tools represent a future direction of the smart anticancer
NDDS. Carrier module libraries and drug libraries could be
established in various combinations in terms of different patients
and tumor classification. Accordingly, the tumor-targeting smart
NDDSs are expected to be realized with simple formulation
design, easy preparation, good biocompatibility, and benefit for
advancing the precise treatment for cancer patients.
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