Skip to main content
. 2022 Oct 26;10:953752. doi: 10.3389/fpubh.2022.953752

Table 3.

Types of multipliers.

Type of multiplier Multiplier Equation
Output Simple m(o)=m(o)j=i·L1=i=1nlij
Total m¯(o)=m¯(o)j=i·L2=i=1n+1l¯ij
Truncated m¯[o(t)]=m¯[o(t)]j=i·L2(11)=i=1nl¯ij
Income Simple m(h)=m(h)j=hc·L1=ni=1hi·lij
Total m¯(h)=m¯(h)j=h¯c·[L2(11)L2(21)]=i=1n+1hi·l¯ij
Truncated m¯[h(t)]=m¯[h(t)]j=hc·L2(11)=i=1nhi·l¯ij
Type I m(h)I=m(h)jI=m(h)· (h^c)=m(h)jhj
Type II m(h)II=m(h)II=L2(21)· (h^c)1=m¯(h)jhj
Employment Simple m(e)=m(e)j=ec·L1=i=1nei·lij
Total m¯(e)=m¯(e)j=e¯c·[L2(11)L2(21)]=i=1n+1ei·l¯ij
Truncated m¯[e(t)]=m¯[e(t)]j=ec·L2(11)=i=1nei·l¯ij
Type I m(e)I=m(e)jI=m(e)· (e^c)1=m(e)jej
Type II m(e)II=m(e)jII=L2(21)· (e^c)1=m¯(e)jej
Value-added Simple m(d)=m(d)j=dc·L1=i=1ndi·lij
Total m¯(d)=m¯(d)j=d¯c·[L2(11)L2(21)]=i=1n+1di·l¯ij
Truncated m¯[d(t)]=m¯[d(t)]j=dc·L2(11)=i=1ndi·l¯ij
Type I m(d)I=m(d)jI=m(d)· (d^c)1=m(d)jdj
Type II m(d)II=m(d)jII=L2(21)· (d^c)1=m¯(d)jdj
Import Simple m(m)=m(m)j=mc·L1=i=1nmi·lij
Total m¯(m)=m¯(m)j=m¯c·[L2(11)L2(21)]=i=1n+1mi·l¯ij
Truncated m¯[m(t)]=m¯[m(t)]j=mc·L2(11)=i=1nmi·l¯ij
Type I m(m)I=m(m)jI=m(m)· (mc)1=m(m)jmj
Type II m(m)II=m(m)jII=L2(21)· (m^c)1=m¯(m)jmj

Source: Beko et al. (35) and Jagrič et al. (21).