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Abstract

Background and Objectives: The pathologic substrates or neuroanatomic regions responsible 

for similarities in behavioral features seen in autism spectrum disorder and late-life dementia 

remain unknown. The present study examined the neuropathologic features of late-life dementia 

in research volunteers with and without antemortem behaviors characteristic of autism spectrum 

disorders.

Methods: Antemortem cross-sectional assessment of autistic spectrum behaviors proximal to 

death in persons with diagnosis of mild cognitive impairment or dementia was completed using 

the Gilliam Autism Rating Scale, 2nd edition (GARS-2), followed by postmortem quantitative and 

semiquantitative neuropathologic assessment. All individuals who completed the GARS-2 prior to 

autopsy were included (n=56) and we note that no participants had known diagnosis of autism 

spectrum disorder. The GARS-2 was used as an antemortem screening tool to stratify participants 

into two groups: “Autism Possible/Very Likely” or “Autism Unlikely.” Data were analyzed using 

nonparametric statistics comparing location and scale to evaluate between-group differences in 

pathologic features.
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Results: Neurofibrillary tangles (NFT; p=0.028) density and tau burden (p=0.032) in the 

frontal region, the NFT density (p=0.048) and neuritic plaque burden (p=0.042), and the tau 

burden (p=0.032) of the temporal region, were significantly different in scale between groups. 

For measures with significant group differences, the medians of the Autism Possible/Very 

Likely group were roughly equal to the 75th percentile of the Autism Unlikely group (i.e., the 

distributions were shifted to the right).

Discussion: This study links behaviors characteristic of autism to increased pathologic tau 

burden in the frontal and temporal lobes in persons with late-life dementia. Additional studies are 

needed to determine causal factors and treatment options for behaviors characteristic of autism 

behaviors in late-life dementias.
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INTRODUCTION:

Behaviors characteristic of autism spectrum disorder (ASD), such as repetitive 

movements, impaired social awareness, and limited communication, have been observed 

in approximately 16% of late-onset dementia cases in individuals with no prior diagnosis 

of ASD.[1–3] Individuals with dementia exhibiting behaviors characteristic of ASD have 

clinical features different from those without such behaviors, including an earlier age of 

onset of cognitive impairment and lower cognitive functioning.[1] The neuropathologic 

substrates for ASD behaviors in late-life dementia remain poorly understood.

Increasing evidence suggests ASD and late-life dementia may involve neuroanatomic, 

pathologic, and/or neurochemical similarities.[4–10] Neuropathological analysis of persons 

with ASD suggests differences in frontal and temporal lobe brain development.[6–11] 

Frontotemporal dementia (FTD) has been described as a behavioral phenocopy of ASD 

with similarities of disturbances in social and emotional behaviors, as well as stereotypies 

(repetitive sounds and movements) associated with these conditions.[8,12] However, there is 

limited literature exploring these features across dementia types in persons with and without 

ASD-behaviors.

Understanding the clinicopathological relationships associated with antemortem behaviors 

characteristic of ASD in late-life dementia may help further define the shared neuroanatomic 

and or pathologic substrates for such behaviors. Such understanding may facilitate the 

development of shared intervention strategies designed to improve quality of life in both 

ASD and late-life dementia. The present study tested the hypothesis that individuals with 

late-onset mild cognitive impairment (MCI) or dementia and study partner (i.e., caregiver)-

reported behaviors characteristic of ASD would demonstrate increased pathologic burden in 

frontotemporal association cortices compared to those without such behaviors, irrespective 

of the underlying pathological lesions.
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METHODS:

Participants:

Study participants were drawn from the University of Kentucky Alzheimer’s Research 

Disease Center (UK-ADRC) longitudinal cohort.[13] Included individuals had antemortem 

diagnosis of MCI or dementia and Gilliam Autism Rating Scale, 2nd edition (GARS-2) score 

data. UK-ADRC standard clinical, genetic, and cognitive assessments were collected within 

24 months of GARS-2 completion (n=56). No participants meeting these inclusion criteria 

were excluded from the present study. This study was approved by the UK Institutional 

Review Board.

Diagnostic criteria:

The diagnosis of MCI was determined according to the consensus guidelines adopted by the 

National Institute on Aging-Alzheimer’s Association Workgroup on Diagnostic Guidelines 

for Alzheimer’s Disease.[14] The diagnosis of dementia was based on the criteria set forth 

by the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV).

[15] Additional details regarding etiology-specific dementia diagnostic criteria have been 

described elsewhere.[1] No participants had a known diagnosis of ASD.

Measures:

The GARS-2[16] was used to assess behaviors characteristic of ASD. Participants’ study 

partners completed the GARS-2, a 42-item assessment used to screen ASD in pediatric 

and adolescent populations,[16] ranking current behaviors on an ordinal scale from 0–3 (0= 

behavior is never observed, 1=seldom observed, 2=sometimes observed, and 3=frequently 

observed). GARS-2 scoring divides items into three subscales: behaviors, communication, 

and social interaction. Standard scores of the subscales were summed and used to determine 

the Autism Index Score (AIS) per standing scoring rules.[16] For this analysis, we followed 

the established ranges identified by the GARS-2 and classified participants as “Autism 

Possible/Very Likely” (AIS ≥ 70) or “Autism Unlikely” (AIS < 70). At the time of initial 

GARS-2 administration in 2014, there were no validated ASD assessments for older adults 

with cognitive impairment. The GARS-2 was selected due to the breadth of behaviors 

assessed.

Clinical Dementia Rating (CDR) Sum of Boxes[17,18] was used to characterize global 

cognition. The CDR uses semi-structured interviews by trained clinicians with primary 

informants (e.g., study partners/caregivers) to determine severity of impairment in six 

cognitive domains.[17,18] Following the interview, the clinician rates each domain on 

a 5-point scale indicating the level of impairment (0=none, 0.5=questionable, 1=mild, 

2=moderate, 3=severe) based on standard rules.[18] Ratings from all domains are summed 

to create the CDR Sum of Boxes score, which has a range of 0 to 18, with larger values 

indicating increased impairment. CDR was administered to participants annually at UK-

ADRC visits; for this study, we report on the CDR score obtained closest to GARS-2 

completion.
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The Neuropsychiatric Inventory (NPI) is an assessment of behavioral and psychiatric 

symptoms of dementia with high reliability and validity.[19–21] A trained interviewer asked 

study partners to indicate the presence of 12 behavioral and psychiatric domains. Each 

domain was rated as present or absent (yes/no). When study partners indicated the presence 

of a symptom, they were then asked to rate the severity of the symptom as mild, moderate, 

or severe. NPI was administered to participants annually at UK-ADRC visits; for this study, 

we report on the NPI score obtained closest to GARS-2 completion.

Pathological Analysis:

Comprehensive neuropathologic evaluation included assessment of common late-life 

dementia pathologies using both semi-quantitative rating scales and quantitative digital 

measures of regional pathological features. As previously described [22–24], at least 24 

samples were taken from each brain. Areas for sample extraction included the middle 

frontal gyrus (area 9), superior and middle temporal gyri (areas 21 and 22), inferior parietal 

lobule (areas 39 and 40) and occipital lobe including primary visual area (areas 17 and 18). 

Amyloid plaques were separated into diffuse plaques (plaques without neurites) and neuritic 

Aβ plaques (NPs) in each region. An arithmetic mean was calculated from counts of diffuse 

plaques (number / 2.35 mm2), NPs (number / 2.35 mm2), and neurofibrillary tangle (NFTs; 

number / 0.586 mm2) for each region in the 5 fields that were subjectively determined 

to have the greatest involvement.[23] Braak NFT staging following established criteria 

[25] was used to characterize the extent of NFT distribution. Lewy body pathology was 

assessed per region in the brainstem, limbic system and amygdala, or neocortex. Chronic 

cerebrovascular disease (CVD) severity was graded by a neuropathologist (PTN), which 

incorporated assessment of cerebral amyloid angiopathy, arteriolosclerosis, atherosclerosis, 

and total infarcts to form a composite measure similar to that described previously.[26] 

Presence (= 1) or absence (= 0) of lacunar, gross, and micro infarcts, arteriolosclerosis, 

and cerebral amyloid angiopathy were summed for a global measure of CVD (range 0–5). 

CVD was further assessed by region as listed below (with a range of 0–5 for each region). 

Presence or absence of limbic-predominant age-related TDP-43 encephalopathy (LATE) 

[27] in the hippocampus (i.e., Stage 1 LATE) was also assessed. Clinical FTD was absent 

in our sample (as in other community-based cohorts)[28]. Digitally quantified AD-type 

pathologies, including amyloid burden, amyloid density, NFT density, neuritic plaques (NP) 

burden, and tau burden were assessed by region in the neocortex: frontal (Brodmann area 

[BA] 9), occipital (BAs 17/18/19), inferior parietal (BA 39), and superior and middle 

temporal (BAs 21/22) lobes.[22,29] The neuropathologist was blinded to ASD status during 

assessment and reporting of neuropathology results.

Immunohistochemical and quantitative digital pathological analysis:

Immunohistochemical stains were performed using the PHF-1 antibody and the combination 

of Aβ stains as described previously,[22,30] and sections were counterstained with 

hematoxylin. For digital pathologic assessments, slides were loaded into an Aperio/Leica 

ScanScope, scanned at 40X magnification via the semi-automated method, and the images 

stored on a dedicated server. Immunoreactive staining was quantified as previously 

described in detail.[22,30] Briefly, the readouts were Amyloid burden (percentage of area 

with Aβ immunoreactivity); Amyloid count (number of discrete Aβ plaques in highlighted 
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area); Tau burden (% highlighted area with PHF-1 immunoreactivity); NFT density (number 

of discrete NFTs in highlighted area); and NP burden (number of counted neuritic plaques in 

highlighted area).

Statistical analysis:

Participant demographics were compared between groups (“Autism Possible/Very Likely” 

[AIS ≥ 70] vs. “Autism Unlikely” [AIS < 70]) using two-sample t-tests for interval level 

variables and chi-squared tests for categorical measures. Neuropathologic features including 

Braak stage, global presence of Lewy body pathology, chronic cerebrovascular disease 

severity, presence of LATE, and regional cerebrovascular disease were compared between 

groups using chi-square or Fisher Exact tests. Global CVD burden was analyzed using 

a t-test. Location and scale for regional, quantitative neuropathologic features including 

amyloid burden, amyloid density, NFT density, NP burden, and tau burden were compared 

between groups using nonparametric statistics (Wilcoxon, Ansari-Bradley) because these 

variables were not normally distributed. Computations were done using PC SAS 9.4.

RESULTS:

Clinical descriptions of the cohort are provided in Table 1. The sample included 16 

participants in the Autism Possible/Very Likely group and 40 participants in the Autism 

Unlikely group. Between-group analyses (Autism Possible/Very Likely versus Autism 

Unlikely) demonstrated no significant differences in age, education, sex, clinical diagnosis, 

or APOE4 carrier status in this sample (see Table 1). ASD symptoms were more frequent in 

severely impaired participants (p<0.001) determined by CDR Sum of Boxes scale collected 

closest to the time of the GARS-2 administration, as it has been suggested by previous 

works. [1,2] Participants in the Autism Possible/Very Likely group presented with greater 

overall severity of neuropsychiatric behaviors on the NPI (p=0.019) compared to those 

in Autism Unlikely group. The two groups did not significantly differ in length of time 

between assessments, GARS, and autopsy report.

Approximately 80% of cases had pathologic characteristics predominately of AD, with 

the remaining 20% of individuals demonstrating pathologic features consistent with LATE 

(16%), cerebrovascular (2%), or Lewy body disease (2%). No cases had frontotemporal 

lobar degeneration (FTLD) as a primary or comorbid pathology. There were no significant 

differences between groups in global measures of neuropathology (see Table 2).

Additional nonparametric analyses between groups were conducted based on the regional 

distribution of pathologic features. Figure 1 illustrates pathology present in a subject with 

behaviors characteristic of ASD compared to control. As illustrated in Table 3, the two 

groups differed significantly on scale for 6 of the 20 endpoints, with significance clustered 

in the frontal region (NFT density p=0.028 and tau burden p= 0.032) and the temporal 

region (NFT density p=0.048, NP burden 0.042, tau burden p=0.032).). The medians of 

all significant variables of the Autism Possible/Very Likely group were roughly equal 

to the 75th percentile of the Autism Unlikely group. Overall, the Autism Possible/Very 

Likely group had a significantly wider interquartile range in significant variables, indicating 

increased variability, than the Autism Unlikely group.
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DISCUSSION:

This study reports a positive relationship between tau pathology in the frontal and temporal 

regions and behaviors characteristic of ASD in later life dementia. CVD burden was also 

found to be higher in temporal regions for those with behaviors characteristic of ASD. 

Other pathologic features or regions of neuroanatomic involvement were not associated with 

ASD behaviors in this sample of community-dwelling participants with dementia. While 

use of the GARS-2 in this study was exploratory, these findings support several hypotheses 

regarding both neuroanatomic and potential neuropathologic involvement that link ASD and 

late-life dementia.

Growing evidence identifies various abnormalities in the neuroanatomical development of 

ASD, especially in the frontotemporal regions.[6,31–33] Previous studies have demonstrated 

overlap in behaviors and anatomical involvement in ASD and FTD.[2,8,12] Frontal 

and temporal lobes are associated with behavior, language, emotional regulation, and 

social awareness, all of which are commonly afflicted in both conditions.[8,34–37] It 

is noteworthy that no participants in our sample had neuropathological evidence of 

FTD. It is not surprising that FTLD pathology, the neuropathological substrate of FTD, 

which has a ∼1:750 lifetime risk, [28] is not a major contributor to such behaviors in 

a community-based cohort. Instead, AD-related tauopathy in the frontal and temporal 

cortices and CVD pathology in the temporal cortex were significantly higher in the Autism 

Possible/Very Likely group, underscoring that behaviors characteristic of ASD in dementia 

are not confined to FTD. Findings presented here demonstrate increased pathology in 

frontotemporal regions, supporting the hypothesis that neuropathologic changes in these 

regions may underlie ASD behaviors irrespective of distinct pathologic lesion type. It is 

possible that those who exhibit antemortem ASD behaviors have a more severe form of 

dementia than those who do not exhibit such behavior, as suggested previously.[38] Future 

analyses of anatomical substrates of these behavior may strengthen understanding of these 

relationships.

Interestingly, our analysis further defined localization by pathologic type and tau-related 

pathologies were found at increased levels in the ASD group in both frontal and temporal 

regions, as opposed to CVD that was found to only be increased in temporal but not in 

frontal cortices. CVD pathology was identified as trending toward significance in parietal 

and global measures in this sample. Gross pathological distribution suggests that, in 

addition to neuroanatomic localization of pathology, the specific type of pathology may 

play an important role in the development of ASD behaviors in late-life dementia. Recent 

evidence suggests that tauopathic changes may be associated with ASD.[4,39] A variety 

of neuronal insults have been shown to increase tauopathy in young individuals, including 

infectious, neoplastic, and trauma-related conditions, as well as a number of congenital 

conditions, such as myotonic dystrophy, lipofuscinosis, and Perry syndrome, many of 

which demonstrate ASD characteristics.[40] These data suggest that there may be shared 

mechanisms of neurodegeneration and behavioral phenotype between ASD in children and 

late-life tauopathic lesions associated with ASD behaviors. This may possibly be mediated 

through convergent pathways of cellular dysfunction, such as cytoskeletal integrity,[41] 
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neurotransmitter dysregulation,[42] interference with synaptic function, [43,44] and/or other 

neuronal abnormalities. [45–47]

Generalizability of the present findings is limited due to the small sample size, the highly 

educated and predominantly white cohort, and biases inherent in only studying those 

agreeing to autopsy.[48] Use of the GARS-2 was exploratory as this assessment has yet 

to be validated in an older adult population. Additional analyses of validity are needed 

in future studies using the GARS-2 in older adults. FTD and dementia with Lewy bodies 

(DLB) present with challenging behavioral phenotypes that have been linked to behaviors 

characteristic of ASD; however, our analysis was based on a community-based cohort, 

which naturally limits the numbers of FTD and pure DLB cases. As such, the present 

study may have simply been underpowered to detect associations. Additionally, we did 

not attempt to adjust analyses for confounding, for two reasons: 1) the small sample 

size; and 2) given a confounding variable is a shared cause of the outcome (here AIS 

score) and the exposure [49] (here neuropathology; i.e., we hypothesized that AIS score 

is driven by neuropathology), other potential causes of AIS score (e.g., dementia severity, 

home environment, relationship with caregiver, other health conditions) are either causal 

intermediaries between neuropathology and AIS score (i.e., dementia severity), not causes of 

neuropathology (i.e., home environment, relationship with caregiver), or not well understood 

(i.e., other health conditions in late-life that cause behaviors characteristic of ASD are not 

well documented).

The strengths of the current study include the use of a community rather than clinic-based 

sample, reducing the bias that can be associated with studies from selected clinics and 

subspecialists, suggesting a broader generalizability of our findings in relation to the 

population burden of dementia and the relationship with behaviors characteristic of ASD. 

Another major strength of the present study is the use of an extremely well-characterized 

cohort who have undergone longitudinal assessment and have agreed to autopsy a priori, 

thereby possibly limiting the extent of autopsy bias in our study.

In conclusion, these data report a novel link behaviors characteristic of ASD to increased 

levels of neuropathologic tau and CVD in the frontotemporal regions in subjects with 

late-life dementia. Identification of similar behavioral sequalae between neurodevelopmental 

and neurodegenerative conditions, further characterized by postmortem neuropathological 

patterns, may provide insights that will allow the development of innovative treatment 

approaches for conditions at both ends of the life spectrum. Further work toward 

understanding potential links between non-FTD tau-mediated neurodegeneration and ASD 

behavior is warranted.
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Figure 1. 
Figure Legend. Photomicrographs show p-Tau immunoreactive pathologic features in 

cortical regions of a person who died at age 72 years following new-onset autism spectrum 

symptoms (A,B), and a control subject, age 76 years at death (C,D). Both individuals had 

the APOE e4 risk allele, were clinically diagnosed with Probable Alzheimer’s disease, 

and subsequently had autopsy-confirmed Braak NFT Stage VI pathologic changes. For 

the individual with autism spectrum symptoms, the tau tangle pathology was more severe 

in the frontal (Panel A; Brodmann area 9) than parietal (Panel B; Brodmann area 39) 

cortical region. By contrast, in the individual lacking autism spectrum symptoms, the 

reverse was true: tau tangle pathology was more modest in the frontal cortex (Panel C) 

in comparison to that in the parietal cortex (Panel D). Notably, a large proportion of p-Tau-

immunoreactive staining in all sections was in neuropil threads rather than intracytoplasmic 

tangles. Immunohistochemical stains were performed using the PHF-1 antibody (a gift 

from Dr. Peter Davies), and sections were counterstained with hematoxylin. Scale bars = 

50microns.
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Table 1:

Participant demographics by autism-behavior status

Characteristic Autism Unlikely
(GARS AIS <70)

Mean (SD)

Autism Possible/
Very Likely

(GARS AIS ≥ 70) Mean (SD)

P value

N 40 16

Sex: M/F 19/21 8/8 0.87

Age at death 83.7 (7.9) 79.2 (10.1) 0.084

Years of education 17.2 (3.0) 16.9 (3.9) 0.76

APOE4 carrier: No/Yes 22/7 6/9 0.28

GARS-2 AIS 53.85 (9.04) 80.50 (7.50) N/A

CDR Sum of Boxes 6.43 (4.92) 11.53 (5.97) 0.0017

Neuropsychiatric Inventory Severity 4.55 (4.91) 9.63 (7.87) 0.019

Time between tests to GARS (n): 0.3447

0–12 months 22 11 −

13–24 months 18 5 −

Time between tests to autopsy (n): 0.0538

0–12 months 13 6 −

13–24 months 7 6 −

24+ months 20 4 −

Clinical Diagnosis (n):

 AD 23 10 −

 VD 2 1 −

 DLB 2 2 −

 FTD 2 2 −

 AD/VD 3 1 −

 MCI/VCI 8 0 −
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Table 2:

Description of neuropathology by autism-behavior status

Pathology Autism Unlikely 
(GARS AIS <70)

Autism Possible/
Very Likely 

(GARS AIS ≥ 70)

P value

Braak Stage (rating 3–6) N (%) 32 (82) 12 (80) 0.86

 Braak Stage 3 2 0 −

 Braak Stage 4 2 2 −

 Braak Stage 5 14 1 −

 Braak Stage 6 14 9 −

Neocortical/Diffuse LBs 6 2 0.59

Limbic predominant & amygdala LBs 15 6 0.61

Brainstem predominant LBs 2 0 0.50

LATE N (%) 19 (48) 7 (44) 0.80

Vascular Severity Composite 
(> 0) N (%)

32 (80) 9 (56) 0.070

Global CVD (SD) 2.37 (2.07) 1.25 (1.44) 0.052

CVD: N present/absent

 Frontal 22/18 6/10 0.24

 Occipital 14/26 3/13 0.79

 Parietal 23/17 5/11 0.076

 Temporal 23/17 3/13 0.0086
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Table 3:

Regional analysis of neuropathology by autism-behavior status.

Autism Unlikely
Autism Possible/

Very Likely P Value

Region Burden Median (Q1–Q3) Median (Q1 – Q3) Loc. Scale

Frontal Amyloid burden 95.58 (50.36 − 129.16) 94.88 (43.88 − 130.09) 0.93 0.69

Amyloid density 72.84 (45.68 − 105.22) 85.48 (34.09 − 109.24) 0.60 0.77

NFT density 3.24 (0.43 − 22.93) 21.79 (0.19 − 36.89) 0.58 0.028

NP burden 13.39 (1.26 − 89.79) 84.06 (1.33 − 128.78) 0.55 0.17

Tau burden 14.47 (2.50 − 89.79) 76.91 (2.73 − 137.54) 0.29 0.032

Occipital Amyloid burden 30.95 (13.20 − 46.73) 44.06 (29.18 − 71.96) 0.04 0.74

Amyloid density 37.09 (15.62 − 57.55) 50.45 (30.31 − 74.58) 0.09 0.66

NFT density 1.57 (0.03 − 12.91) 2.65 (0.18 − 26.78) 0.35 0.65

NP burden 8.20 (0.75 − 80.60) 18.95 (1.10 − 110.72) 0.62 0.35

Tau burden 8.66 (1.30 − 67.22) 30.66 (1.91 − 115.83) 0.36 0.47

Parietal Amyloid burden 82.05 (26.46 − 111.00) 75.55 (36.05 − 99.41) 0.74 0.13

Amyloid density 67.66 (24.60 − 98.04) 56.83 (32.28 − 84.16) 0.93 0.042

NFT density 5.40 (0.73 − 19.21) 14.42 (0.48 − 39.60) 0.22 0.46

NP burden 23.81 (5.22 − 88.59) 61.06 (1.94 − 123.37) 0.35 0.20

Tau burden 24.41 (5.59 − 92.73) 43.82 (3.38 − 144.73) 0.37 0.28

Temporal Amyloid burden 70.31 (39.08 − 99.34) 78.19 (39.12 − 111.25) 0.68 0.51

Amyloid density 51.65 (28.49 − 88.39) 61.59 (34.08 − 91.09) 0.65 0.51

NFT density 15.14 (1.70 − 36.15) 32.09 (1.05 − 57.44) 0.30 0.048

NP burden 78.69 (11.25 − 95.76) 91.06 (3.43 − 136.09) 0.60 0.042

Tau burden 55.36 (10.23 − 96.61) 93.90 (5.56 − 137.75) 0.39 0.032

Values represent the pixel and lesion counts by pathologic type per region. P-values calculated by comparing the location (Loc.) using Wilcoxon 
statistic (as illustrated by the median) and scale by using the Ansari-Bradley statistic (as illustrated by the range from Q1 to Q3, the middle 50% of 
the measurements, where Q1 is the lower quartile while Q3 is the upper quartile). Red indicates statistical significance.
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