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Abstract 

Background:  Gut microbes were closely related to women’s health. Previous studies reported that the gut microbes 
of premenopausal women were different from those of postmenopausal women. However, little was known about 
the relationship between gut microbiota dysbiosis and menopausal syndrome (MPS). The aim of this study was to 
explore the relationship between MPS and gut microbes.

Methods:  Patients with MPS (P group, n = 77) and healthy women (H group, n = 24) at menopause were recruited in 
this study. The stool specimen and clinical parameters (demographic data, follicle stimulating hormone (FSH), lutein-
izing hormone (LH), estradiol (E2), et al) of participants’ were collected. We evaluated the differences in gut microbes 
by 16S ribosomal RNA gene sequencing. We used LEfSe to identify gut microbes with varying abundances in different 
groups. The Spearman correlation coefficients of clinical parameters and gut microbes were calculated. PICRUSt was 
used to predict the potential KEGG Ortholog functional profiles of microbial communities.

Results:  The abundance of 14 species differed substantially between the MPS and menopausal healthy women (LDA 
significance threshold > 2.0) according to LEfSe analysis. Using Spearman’s correlation analysis, it was discovered that 
E2 had a positive correlation with Aggregatibacter segnis, Bifidobacterium animalis, Acinetobacter guillouiae (p < 0.05, 
these three species were enriched in menopausal healthy women), while FSH and LH had a negative correlation with 
them (p < 0.05). KEGG level3 metabolic pathways relevant to cardiovascular disease and carbohydrate metabolism 
were enriched in the MPS (p < 0.05), according to functional prediction by PICRUST and analyzed by Dunn test.

Conclusion:  There was gut microbiota dysbiosis in MPS, which is reflected in the deficiency of the abundance of 
Aggregatibacter segnis, Bifidobacterium animalis and Acinetobacter guillouiae related to the level of sex hormones. In 
MPS individuals, species with altered abundances and unique functional pathways were found.
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Functional prediction

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
During the menopause transition, women usually experi-
ence a progressive change in ovarian activity and a physi-
ologic deterioration of hypothalamic-pituitary-ovarian 

axis function associated with fluctuating hormone lev-
els [1], which cause menopausal syndrome (MPS). Hot 
flashes, night sweats, sleep disturbances, sexual dys-
function, mood disorders, and other symptoms are 
problematic symptoms experienced by women with 
MPS [2]. Menopausal symptoms affect 69.5% to 80% 
of women at menopause [3, 4]. Menopausal symp-
toms not only have a detrimental impact on one’s qual-
ity of life, but  may also link patients to cardiovascular 
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disease, diabetes, osteoporosis, and breast cancer [5–
8]. As a result, the prevention and treatment of MPS 
demand more attention.

More and more studies showed that the gut microbes 
are closely related to health and disease. Gut microbes 
are regarded as one of the organs of human body. The 
intestine is colonized with 1013–1014 bacteria mainly 
residing in the lumen and in the mucus [9]. Gut dysbio-
sis is involved in many female reproductive and endo-
crine diseases, such as endometriosis [10], polycystic 
ovary syndrome [11], obesity and sexual precocious 
puberty [12], et al. Endometriosis is a chronic inflamma-
tory disease, which is estrogen dependent. Gut microbes 
participate in the metabolism of estrogen in blood. The 
gut microbiota regulates estrogens through secretion 
of β-glucuronidase, an enzyme that deconjugates estro-
gens into their active forms [13]. The gut microbes in 
patients with endometriosis may have a large number of 
β- Glucuronidase producing bacteria, which may lead to 
increased levels of estrogen metabolites, leading to endo-
metriosis [13]. Endometriosis is common in premeno-
pausal women, and the disease may be mediated by high 
estrogen levels [14].

During menopause and postmenopause a variety of 
negative health outcomes may occur from the deple-
tion of circulating estrogen. Premenopausal and post-
menopausal women have different gut microbes [15]. 
A study showed that the gut microbiota community in 
menopausal women changed after isoflavones supple-
mentation [16], which are plant-derived phytoestrogens. 
Another study showed that the level of estrogen metabo-
lites in urine was positively correlated with the diversity 
of gut microbiota [17]. Osteoporosis develops as a result 
of continuous hypoestrogenemia. The gut microbiota 
has been found to interfere with hormone secretion, 
estrogen levels, metabolism and immune function, all 
of which influence bone metabolism [18, 19]. Numer-
ous menopause-related symptoms and signs are derived 
as a result of lack of estrogen production. However, the 
link between gut microbiota and MPS was still poorly 
characterized. As a result, little was known regarding 
the link between gut dysbiosis and MPS. Furthermore, it 
remained unexplored how and which gut microbes may 
influence the key pathophysiological processes in MPS.

In order to study the taxonomic and functional fea-
tures of the gut microbes in menopausal women, we con-
ducted 16S ribosomal RNA (16S rRNA) gene sequencing 
and functional prediction analysis on the gut microbes 
of stool specimen taken from patients with MPS and 
healthy controls. Characterization of the compositional 
and functional features of the gut microbes in menopau-
sal women helps us comprehend its involvement in wom-
en’s health, and hence the importance of gut microbes 

regulation in menopausal women’s health. We aim to 
provide potential techniques for the prevention and 
treatment of MPS.

Methods
Study participants
This study was a case-control study that included patients 
with menopausal syndrome (P group) and healthy 
women at menopause (H group). The Medical Ethics 
Committee of the Guangzhou University of Traditional 
Chinese Medicine First Affiliated Hospital approved this 
study (NO.ZYYECK【2020】021). From June 2020 to 
October 2021, we recruited females aged 40–60 to per-
form the domestic modified Kupperman index (KI) score 
(Additional  file  1) test at our hospital. All participants 
were informed about the study’s purpose and given writ-
ten informed consent.

Participants in the P group must satisfy the follow-
ing criteria: (1) female, 40–60 years old; (2) have at least 
one of these autonomic nerve changes (hot flashes, 
night sweats, insomnia, irritability, and other symptoms) 
and menstrual disorders (two consecutive cycle length 
changes > 7 days in 10 months); (3) have a domestic modi-
fied KI score > 15 points.

Participants in the H group must meet the follow-
ing requirements: (1) female, 40–60 years old; (2) with 
a domestic modified KI score < 15 points and no hot 
flashes.

The following were the exclusion criteria: (1) have 
unexplained irregular vaginal bleeding; (2) have used sex 
hormones within 3 months; (3) have  antibiotics  within 
2 weeks; (4) have a history of severe, progressive, or 
uncontrolled cardiac, hepatic, renal, mental, or hemato-
logical diseases.

A total of 101 out of 1253 women who participated 
in the survey from June 2020 to October 2021 were 
included in the analysis to investigate the gut microbes 
of two groups after the exclusion of women who were 
aged under 40 years and over 60 years (n = 806), meet 
the exclusion criteria and refused toparticipate (n = 366). 
Lastly, we included 77 patients with menopausal syn-
drome (P group) and 24 healthy women at menopause (H 
group).

Data collection
The Guangzhou University of Traditional Chinese Medi-
cine First Affiliated Hospital used a survey (Additional 
file  1) and a physical examination to collect data on 
demographic characteristics, medical history, menstrual 
history, height, weight, body mass index (BMI), waist cir-
cumstance (WC), hip, waist hip ratio (WHR), and blood 
pressure. Participants were given a fecal collection kit 
and instructed to collect their feces within 1 week after 
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their visit. Within 4 h of collection, feces samples were 
collected and sent to the hospital for examination. The 
samples were kept at − 80 °C until they were processed. 
After 8 hours of fasting, the H group had their  blood 
obtained to check for follicle stimulating hormone (FSH), 
luteinizing hormone (LH), and estradiol (E2). After 
an 8-hour fast, the P group was required to have blood 
obtained and a bone mineral density (BMD) test. FSH, 
LH, E2, total cholesterol (CHOL), high-density lipopro-
tein cholesterol (HDL), low-density lipoprotein choles-
terol (LDL), triglycerides (TG), fasting blood glucose 
(Glu), and fasting insulin (INS) are some of the blood 
test indications. The participants’ serum test results and 
BMD (dual-energy x-ray absorptiometry, DXA) testing 
room results were obtained from hospital laboratories 
and BMD (dual-energy x-ray absorptiometry, DXA) test-
ing room, respectively.

Diagnostic criteria of menopausal syndrome
Clinical manifestations, followed by sex hormone levels, 
are used to diagnose MPS. Diagnostic criteria referred to 
the Obstetrics and Gynecology Clinical Guidelines [20]. 
The following are the diagnostic criteria: (1) menstrual 
disorders are the first clinical symptoms of perimeno-
pause; (2) vasomotor symptoms are primarily hot flashes; 
(3) may have one or more additional symptoms such as 
mental disorder (anxiety, depression, or insomnia), uro-
genital atrophy, cardiovascular symptoms (chest tight-
ness or palpitations), skin and body changes (itchy skin, 
obesity), and osteoporosis; (4) FSH>10 IU/L indicates 
decreased ovarian reserve; amenorrhea, FSH>40 IU/L 
and E2<10-20pg/mL indicates ovarian failure.

DNA extraction and PCR amplication
The HiPure Bacterial DNA Kit was used to extract bac-
terial genomic DNA (Megan, China). Using agarose gel 
electrophoresis and Qubit, the quality and quantity of 
the DNA was detected (Thermo Fisher Scientific, USA). 
After premixing using NEBnext-Ultra-II-Q5-Master-
Mix, the V3-V4 region of the 16S rRNA gene was ampli-
fied (NEB, USA).

Illumina sequencing
Agilent 2200 Tape Station and Qubit® were used to assess 
the final library product (Life Technologies, USA). The 
first batch of samples was sequenced on the Miseq (Illu-
mina, USA) platform at with pair-end 250 bp, whereas 
the second batch was sequenced on the NovaSeq (Illu-
mina, USA) platform at with pair-end 250 bp.

Data analysis
The mean with SD was showed for normally distrib-
uted parameters, and p values were calculated using 

a student’s t-test; for not normally distributed param-
eters, the median with IQR (P25, P75) was showed, 
and p values were calculated using the Mann-Whitney 
U test. Counts were used to represent categorical vari-
ables, and the Chi-square test was used to obtain the p 
value. Statistical significance was defined as a value of 
p < 0.05.

Using the qiime tools import program, raw data 
FASTQ files were imported into a format that could be 
used by the QIIME2 system. To obtain the feature table 
of amplicon sequence variant (ASV), demultiplexed 
sequences from each sample were quality filtered and 
trimmed, de-noised, merged, and then the chimeric 
sequences were identified and removed using the 
QIIME2 dada2 plugin [21]. To generate the taxonomy 
table, the QIIME2 feature-classifier plugin was used to 
align ASV sequences to a pre-trained GREENGENES 
13_8 99% database (trimmed to the V3-V4 region 
bound by the 338F/806R primer pair) [22]. The core-
diversity plugin in QIIME2 was used to calculate diver-
sity metrics. Wilcoxon calculated feature-level alpha 
diversity indices, such as Chao1 and Shannon diversity 
index, to estimate microbial diversity within a single 
sample. To study the structural variation of microbial 
communities among samples, researchers used beta 
diversity distance measurements and Bray Curtis, 
which were then visualized using principal coordinate 
analysis (PCoA) [23]. LEfSe was used to identify bac-
teria with varying abundances in different samples and 
groups [24] Clinical parameters and microbial species 
Spearman correlation coefficients were calculated and 
displayed as heat maps. The R program heatmap pack-
age is mostly used to generate the correlation heat 
map. PICRUSt was also used to predict the potential 
KEGG Ortholog functional profiles of microbial com-
munities [25]. After getting the functional annotation, 
the Dunn test (R program dunn.test package) was per-
formed to see if there were any significant differences 
between groups in the microbial community prediction 
function. A statistically significant value of p < 0.05 was 
used. The online sketching website was used to imple-
ment all visualizations (https://​www.​bioin​cloud.​tech).

Results
Clinical characteristics of participants
In terms of age (p = 0.051), menopausal status (p = 0.798), 
BMI (p = 0.771), WHR (p = 0.243), SBP (p = 0.701), 
DBP (p = 0.127), hypertension, or diabetes (all p > 0.05), 
there was no significant difference between the P and H 
groups, indicating that the influence of gut microbiota 
caused by age, nutritional status, hypertension, or dia-
betes could be excluded (Table 1) However, the P groups 

https://www.bioincloud.tech
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had higher FSH and LH values, whereas the E2 levels 
were lower (all p < 0.05).

Analysis of gut microbiota diversity
In an analysis of gut microbial diversity, no significant 
differences were found between P (n = 77) and H group 
(n = 24). The sequencing depths were examined by plot-
ting the rarefaction curve of richness (ggplot2) (Addi-
tional  file  2). Each group’s curve was found to be near 
saturation, indicating that the sequencing depth was ade-
quate. The abundance and diversity of microbial commu-
nities, as measured by Chao1 and Shannon index, were 
reflected in Alpha diversity. Between the two groups, 
there was no significant difference in Chao1 (Wilcoxon, 
p = 0.167) or Shannon index (Wilcoxon, p = 0.432) 
(Fig.  1A-B). Bray curtis calculated beta diversity, which 
is an indicator of microbial community composition. P 
group had no significant difference from H group (PER-
MANOVA, p = 0.204) (Fig.  1C), according to principal 
coordinate analysis (PCoA).

Gut microbiota composition and difference analysis
In the P (n = 77) and H (n = 24) groups, a total of 43 
phyla, 281 genera, and 163 species were identified (Addi-
tional file 3). At the phylum and genus level, the top 20 

average relative abundance of microbiota were showed 
(Fig.  2A-B). Using LEfSe analysis, we compared the gut 
microbiota compositions in two groups. LEfSe analy-
sis detected 14 species with varying abundances: In the 
P group, Bifidobacterium adolescentis, Bifidobacterium 
longum, Bacteroides ovatus, Lactobacillus ruminis, Veil-
lonella dispar, and Eubacterium biforme showed greater 
enrichment, whereas in H group, Corynebacterium sta-
tionis, Bifidobacterium animalis, Bacteroides coprophilus, 
Clostridium celatum, Ruminococcus albus, Helicobacter 
rodentium, Aggregatibacter segnis, Acinetobacter guil-
louiae were more abundant (LDA significance threshold 
> 2.0; Fig.  2C-D). In conclusion, we identified different 
species in two groups, indicating a significant different 
composition of the gut microbiota between the P and H 
group.

Associations between clinical parameters and gut 
microbiome
We explored the correlation between clinical parameters 
and  species abundance using Spearman’s correlation 
analysis (Fig. 3). It was discovered that E2 had a positive 
correlation with Aggregatibacter segnis, Bifidobacterium 
animalis and Acinetobacter guillouiae, while FSH and LH 
had a negative correlation with these three species. E2 had 
the strongest positive correlation with Acinetobacter guil-
louiae (r = 0.253, p = 0.018), followed by Aggregatibacter 
segnis and Bifidobacterium animalis. FSH   (r = − 0.302, 
p = 0.004)  and LH (r = − 0.276, p = 0.009) had  the 
strongest negative correlations with Bifidobacterium 
animalis, followed by Aggregatibacter segnis and Acine-
tobacter guillouiae. Meanwhile,  Aggregatibacter segnis, 
Bifidobacterium animalis, and Acinetobacter guillouiae 
were found enriching  in the H group  (LDA significance 
threshold > 2.0; Fig.  2C-D). The domestic modified KI 
scores was  found to be positively correlated with Rumi-
nococcus torques, Blautia obeum and  Butyricicoccus 
pullicaecorum, while negatively correlated with Lactoba-
cillus delbrueckii. The hot flash (HF) symptom scores was 
found to be positively related to  Ruminococcus torques, 
while negatively related to  Clostridium cocleatum. BMI, 
WHR, Glu, INS, CHOL, LDL, TG, and BMD were also 
correlated with species abundance. As a result, the clini-
cal parameters were found to be correlated with the com-
position of the gut microbiome.

Functional alternation of gut microbiota
Gut microbial functions were predicted by PICRUST in 
our study, of which the profiles revealed significant alter-
ations in two groups. We constructed functional profiles 
for each sample using microbial KEGG Ortholog path-
ways. 8 KEGG level2 pathways (p < 0.05; Table  2) and 
50 KEGG level3 pathways (p < 0.05; Additional  file  4) 

Table 1  Baseline characteristics

For normally distributed parameters, the mean was showed ±SD, and p values 
were calculated using a student’s t-test and for not normally distributed 
parameters, the median with IQR (P25，P75) was showed, and the p value was 
calculated using Mann-Whitney U test. Categorical variables are represented by 
counts, and p value was calculated using Chi-square test

H healthy controls, P Patients with MPS, BMI body mass index, WHR waist hip 
ratio, SBP systolic blood pressure, DBP diastolic blood pressure, FSH follicle 
stimulating hormone, LH luteinizing hormone, E2 estradiol

*p < 0.05

Parameters H
n = 24

P
n = 77

p value

Age (years) 47.88 ± 3.04 49.55 ± 3.77 0.051

Menopausal state n(%)

  Premenopausal 18 (66.67%) 47 (61.04%) 0.798

  Postmenopausal 8 (33.33%) 30 (38.96%)

  BMI (kg/m2) 22.55 ± 1.26 22.43 ± 2.36 0.771

  WHR 0.82 ± 0.04 0.81 ± 0.05 0.243

  SBP (mmHg) 114.42 ± 11.52 116.00 ± 16.85 0.701

  DBP (mmHg) 74.42 ± 6.15 77.42 ± 11.37 0.127

  Hypertension, 
n (%)

0 (0.00%) 3 (3.90%) 1.000

  Diabetes, n (%) 0 (0.00%) 1 (1.30%) 1.000

  FSH (IU/L) 7.91 (4.80, 24.54) 68.46 (54.93, 85.64) <0.05*

  LH (IU/L) 5.45 (4.42, 15.84) 37.33 (28.33, 52.27) <0.05*

  E2 (pmol/L) 216.5 (109.42, 
381.90)

51.65 (32.23, 77.47) <0.05*
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enriched in the P group, were found to be significantly 
higher than in H group. Circulatory system, carbohy-
drate metabolism, digestive system, cell motility, signal 
transduction, folding, sorting and degradation, infectious 
disease, and biosynthesis of other secondary metabolites 
had more abundance in the P group than in the H group. 
Importantly, metabolic pathways related to cardiovascu-
lar disease and carbohydrate metabolism were enriched 
in the P group (p < 0.05; Table 3), indicating that the inci-
dence of cardiovascular disease, obesity, diabetes and 
other related diseases may increase after women enter 
menopause.

Discussion
The findings showed that the gut microbiome composi-
tion was altered in MPS patients: the abundance of 14 
species differed significantly between MPS patients and 
menopausal healthy women. We found underlying and 
intriguing relationships between gut microbe composi-
tion and function and MPS. It was discovered that  E2 

had a positive correlation with  Aggregatibacter seg-
nis, Bifidobacterium animalis, and Acinetobacter guil-
louiae (these three species were enriched in menopausal 
healthy women), while FSH and LH had  a positive cor-
relation with  them. The domestic modified KI score, 
HF symptom score, BMI, WHR, Glu, INS, CHOL, LDL, 
TG  and BMD were also correlated with species abun-
dance. Functionally, the MPS was enriched in metabolic 
pathways related to cardiovascular disease and carbo-
hydrate metabolism, implying that the incidence of car-
diovascular disease, obesity, diabetes, and other related 
diseases may rise at menopause.

Ovarian function declines as women enter menopause, 
and the ovaries produce less estrogen, so the level of 
estradiol in the blood drops and the level of FSH rises. 
Estrogens and other female hormones play a key role 
in regulating the gut microbiome’s composition [26, 
27]. Premenopausal women’s estrogen levels are usually 
higher than postmenopausal women’s. A previous study 
found that pre-menopausal and post-menopausal women 

Fig. 1  Gut microbiota diversity of patients with MPS (P group) and menopausal healthy women (H group) at menopause. A Alpha diversity was 
measured by both Chao1 and Shannon index for comparisons between P (n = 77) and H groups (n = 24). B Principal coordinate analysis (PCoA) 
with bray-curtis showed that P group (n = 77) had no significant difference from H group (n = 24)
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Fig. 2  Composition and difference of the gut microbiota in P and H group. A Average relative abundance of microbiota at the phylum level and (B) 
at the genus level in P (n = 77) and H group (n = 24); sequences without annotations were classified as unclassified; those bacteria whose relative 
abundance was ranking > 20 were classified as others. C The taxonomic cladogram was generated based on the LEfSe and LDA scores. Bacterial 
taxa enriched in P group (red dots) and H group (green dots). D Taxa enriched in P group were indicated with a positive LDA score (red) and 
negative LDA score (green), respectively. Only taxa with an LDA significance threshold > 2.0 were showed in the figure; p, phylum; c, class; o, order; f, 
family; g, genus; s, species
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had significantly different estrogen levels and hormone 
secretion, which could be linked to changes in the gut 
microbiome [28, 29]. Our study showed that patients 
with MPS had lower levels of estradiol, higher levels of 

FSH and LH, and a significantly different gut microbiota 
composition than menopausal healthy women. These 
changes suggested that estrogen levels, FSH, and LH may 
have an effect on gut microbiota composition.

Fig. 3  Correlation matrix for clinical parameters and species. Yellow and red signified a positive correlation, while blue signified a negative 
correlation. * 0.01 ≤ p<0.05，** 0.001 ≤ p<0.01. #Significantly different species between P and H groups, green signified genus enriching in H group. 
L1-L4, BMD of the 1st to 4th lumbar vertebrae; LNF, BMD of left neck of femur; LHip, BMD of the left hip; HF, Hot flash symptom score (a component 
of the domestic modified KI Score)

Table 2  KEGG level2 differential pathways between P and H group

The Dunn test was used to analyze whether the microbial community prediction function was significantly different between groups. Z, tests statistic of Dunn test

*p < 0.05

Feature Expression Z p value adjusted

Circulatory system P>H −2.138 0.016*

Carbohydrate metabolism P>H −1.995 0.023*

Digestive system P>H −2.130 0.017*

Cell motility P>H 2.019 0.022*

Signal transduction P>H 1.939 0.026*

Folding, sorting and degradation P>H 2.290 0.011*

Infectious disease: viral P>H 2.098 0.018*

Biosynthesis of other secondary metabolites P>H −1.723 0.042*
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Estrogen has been showed to influence the gut micro-
biome, and gut microbiome also had a significant impact 
on estrogen levels [30, 31]. We found that three bacteria 
species (Aggregatibacter segnis, Bifidobacterium animalis, 
and Acinetobacter guillouiae) were enriched in menopau-
sal healthy women, and E2 had a positive correlation with 
them, while FSH and LH had a negative correlation with 
them. Bifidobacterium_animalis is considered a probiotic 
that can improve abdominal obesity [32], inflammation, 
oxidative stress, blood lipids, blood sugar and vascular 
endothelial function in patients with metabolic syndrome 
[33]. Aggregatibacter segnis and Acinetobacter guillouiae 
are primarily related with inflammation and infections 
[34, 35]. Changes in sex hormone levels may be caused 
by a decrease of Bifidobacterium animalis in MPS. Pre-
vious studies found that most gut microbiome showed 
an increase of β-glucuronidase enzyme activity [36]. 
β-glucuronidase could inactivate estrogen by blocking its 
binding to glucuronic acid, thus increasing the amount 
of estrogen in the body [37]. The gut microbiota with a 
positive correlation with the E2 may have an increase of 
β-glucuronidase enzyme activity to increase the amount 
of estrogen in the body.

The decline in estrogen result in MPS with vaso-
motor symptoms (hot flash), sleep disturbances and 
insomnia, adverse mood, vulvovaginal atrophy, sexual 
dysfunction, et  al. [38]. This is in line with menopau-
sal hormone therapy’s rapid resolution of MPS. A new 
vaginal cream containing visnadine (0.30%), prenylfla-
vonoids (0.10%) and bovine colostrum (1%) was able 
to ameliorate both vaginal health and sexual qual-
ity [39]. Because prenylflavonoids exert similar effect 

as estrogen [40], visnadine ameliorate female sexual 
arousal disorder [41] and bovine colostrum relieve vag-
inal dryness [42]. Menopause symptoms not only have 
a detrimental impact on one’s quality of life, but may 
also link patients to cardiovascular disease, diabetes, 
osteoporosis, and breast cancer [5–8]. The decline in 
estrogen is also a serious threat to physiological activi-
ties and correlates with diseases such as type 2 diabetes 
[43], obesity [44], cardiovascular disease [45] and oste-
oporosis [46].

Changes in estrogen and gut microbiota in patients 
with MPS are consistent with functional predic-
tions. Estrogen plays a leading role in the causes of 
female obesity [47]. Estrogen binding to its recep-
tor can regulate glucose and lipid metabolism in 
a variety of ways. Disturbances in these metabolic 
pathways would contribute to the development of 
metabolic syndrome in post-menopausal women, 
as well as an increased risk of cardiovascular dis-
ease [48, 49]. In estrogen-deficient rats, MPS can 
be alleviated by maintaining gut microbial diversity 
[50]. Current studies have suggested the potentially 
strong association between gut microbiota, bone 
remodeling and bone metabolic diseases [51]. Gut 
microbiota disorders may cause increased gut per-
meability and trigger activation of key inflammatory 
pathways for inducing bone loss in sex steroid-defi-
cient mice [52]. Probiotics have shown a positive 
effect on the management of healthy bone [53]. A 
previous study showed that a high-fat/carbohydrate 
diet programmed the gut microbiota to be predomi-
nated by Firmicutes (Clostridium), Prevotella and 

Table 3  KEGG level3 differential pathways between P and H group

The Dunn test was used to analyze whether the microbial community prediction function was significantly different between groups. Z, tests statistic of Dunn test

*p < 0.05

Feature Expression Z p value adjusted

Adrenergic signaling in cardiomyocytes P>H − 2.023 0.022*

Cardiac muscle contraction P>H − 1.947 0.026*

Dilated cardiomyopathy (DCM) P>H −1.727 0.042*

Arrhythmogenic right ventricular cardiomyopathy P>H −2.079 0.019*

Hypertrophic cardiomyopathy (HCM) P>H −1.823 0.034*

Calcium signaling pathway P>H −2.023 0.022*

cAMP signaling pathway P>H −2.047 0.02*

Carbohydrate digestion and absorption P>H −2.011 0.022*

Fructose and mannose metabolism P>H −2.162 0.015*

Galactose metabolism P>H −2.138 0.016*

Pentose and glucuronate interconversions P>H −2.513 0.006*

Insulin secretion P>H −2.023 0.022*

NOD-like receptor signaling pathway P>H 1.939 0.026*



Page 9 of 11Liu et al. BMC Women’s Health          (2022) 22:437 	

Methanobrevibacter but deficient in beneficial gen-
era/species such as Bacteroides, Bifidobacterium, 
Lactobacillus and Akkermansia [54]. Bifidobacterium 
animalis abundance decreased in MPS, and meta-
bolic pathways related to cardiovascular disease and 
carbohydrate metabolism were enriched in the MPS, 
according to our findings. Altering the gut microbi-
ota in MPS patients may have therapeutic effects as 
well as reducing the risk of long-term chronic dis-
ease, according to our speculation.

Conclusion
In conclusion, we discovered taxonomic signatures 
associated with MPS in the gut microbes and pre-
dicted their function. We propose a hypothesis about 
how the gut microbiome affects menopausal women 
based on our findings. In MPS, our findings revealed 
a dysbiosis of the gut microbiome. In menopausal 
women, Bifidobacterium animalis is likely to be a ben-
eficial gut microbiota. The gut microbiota may pro-
duce β-glucuronidase, which increases estrogen levels 
in the body. MPS was found to be particularly rich in 
metabolic pathways related to cardiovascular disease 
and carbohydrate metabolism, implying that the inci-
dence of cardiovascular disease, obesity, diabetes, and 
other related diseases rises as women approach meno-
pause. In patients with MPS, altering the gut microbi-
ota could have therapeutic effects as well as reducing 
the risk of long-term chronic disease. Nevertheless, 
several limitations of the study should be taken into 
account: first of all, the sample size is limited; second, 
more research is needed to determine whether probi-
otics and fecal transplantation are preferentially used 
to prevent potential risks in postmenopausal women; 
third, future multiomic studies with a larger longitudi-
nal cohort, as well as animal model experiments, will 
be required to verify our findings and gain a better 
understanding towards the underlying mechanisms of 
gut microbiota in MPS. The findings of the gut micro-
biome study provide not only new insights into disease 
mechanisms, but also novel therapies to help women 
feel better after menopause.
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