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Developments in scalable strategies for detecting early markers
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Effective strategies for early detection of cognitive decline, if deployed on a large scale, would have individual and societal benefits.
However, current detection methods are invasive or time-consuming and therefore not suitable for longitudinal monitoring of
asymptomatic individuals. For example, biological markers of neuropathology associated with cognitive decline are typically
collected via cerebral spinal fluid, cognitive functioning is evaluated from face-to-face assessments by experts and brain measures
are obtained using expensive, non-portable equipment. Here, we describe scalable, repeatable, relatively non-invasive and
comparatively inexpensive strategies for detecting the earliest markers of cognitive decline. These approaches are characterized by
simple data collection protocols conducted in locations outside the laboratory: measurements are collected passively, by the
participants themselves or by non-experts. The analysis of these data is, in contrast, often performed in a centralized location using
sophisticated techniques. Recent developments allow neuropathology associated with potential cognitive decline to be accurately
detected from peripheral blood samples. Advances in smartphone technology facilitate unobtrusive passive measurements of
speech, fine motor movement and gait, that can be used to predict cognitive decline. Specific cognitive processes can be assayed
using ‘gamified’ versions of standard laboratory cognitive tasks, which keep users engaged across multiple test sessions. High
quality brain data can be regularly obtained, collected at-home by users themselves, using portable electroencephalography.
Although these methods have great potential for addressing an important health challenge, there are barriers to be overcome.
Technical obstacles include the need for standardization and interoperability across hardware and software. Societal challenges
involve ensuring equity in access to new technologies, the cost of implementation and of any follow-up care, plus ethical issues.
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INTRODUCTION

The proportion of the world’s population over the age of 60 will
rapidly increase in the coming decades [1]. Cognitive decline is
more likely with increasing age: this decline is primarily due to
pathological processes and not age per se [2, 3]. Many
neurodegenerative diseases have a long prodromal phase of
several years, providing a window of opportunity to identify
cognitive decline when impairment is non-existent or has little
impact on daily function [4]. Existing methods for detecting
cognitive decline are best suited for scenarios where symptoms
have already manifested (e.g., a referral following subjective
cognitive impairment) but are not appropriate when longitudinal
monitoring of asymptomatic individuals is required. For example,
biomarkers such as hyperphosphorylated tau protein (p-tau) and
amyloid-beta (AB) can identify neuropathology associated with
neurodegenerative diseases such as Alzheimer’s Disease (AD),
prior to any cognitive decline. However, these biomarkers are
typically obtained invasively from cerebrospinal fluid (CSF) via
lumbar puncture. Neuropsychological tests of cognition typically
require specialist administration, are insensitive to subtle declines
in cognition and a patient’s performance can vary day-to-day.
Structural and functional neuroimaging technologies such as
magnetic resonance imaging (MRI) and positron emission

tomography (PET) can detect and predict cognitive decline years
before its detection via traditional neuropsychological assessment
tools [5]. However, obtaining these brain data is costly and
requires rigorous protocol standardization to be meaningful [6].
Scalable methods for early detection of cognitive decline would
have several advantages. Even in the absence of disease-
modifying therapies, which remain largely in development [7],
there is a benefit to using scalable measures for screening
cognitively unimpaired (CU) individuals. Early detection of
cognitive decline may reduce adverse outcomes such as loss of
autonomy [8] and may also mitigate the high healthcare costs that
occur in the decade before formal diagnosis [9] (e.g., by providing
homecare to prevent falls or infections [10] or failure to take
prescribed medicine). In the event that disease-modifying
therapies for neurodegenerative diseases become widely avail-
able, healthcare systems will require scalable measures for
identifying patients at an early stage of the disease. A combination
of a cognitive instrument and blood-based biomarker tests to
triage patients at the primary care level could eliminate wait lists
after the first 3 years and increase correctly identified cases by
about 120,000 per year [11], primarily because referrals for PET or
CSF-based biomarkers would be restricted to patients for whom
disease-modifying treatment is possible (reducing annual health
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Fig. 1 An overview of scalable measures for early detection of cognitive decline. Left panel: within the general population, those deemed

“at-risk” would benefit most from early screening. Middle panel: List of scalable measures and some examples in each category. Right panel:
Advantages and Challenges associated with scalable measures.

system expenditure by $400-700 million in the United States).
With respect to clinical trials, it can be challenging to identify
sufficient numbers of participants who meet the criteria for
inclusion (e.g., increased brain amyloid) [12]. Improved detection
could identify those at the earliest stages of the disease process, a
status that could be confirmed by invasive methods. As we discuss
below, a benefit of scalable measures is that clinical trial data can
be recorded frequently, potentially detecting treatment effects
sooner than scenarios where in-clinic assessments are collected
periodically.

Here, we outline some emerging approaches that can provide
scalable, repeatable, relatively non-invasive and comparatively
inexpensive strategies for early detection of cognitive decline.
These strategies are linked by two common themes. First, the data
collection methods are simpler than extant clinical approaches
because they do not rely on measurements obtained by
professionals in dedicated settings. Rather, data are collected
passively, by participants themselves or by non-experts. Second,
analysis of the data does require highly sophisticated methods,
which are designed and/or performed by specialists. These new
approaches include new techniques in analysis of blood-based
biomarkers that allow neuropathology to be detected from
peripheral blood samples with high sensitivity and specificity.
Where available, we report metrics incorporating specificity (i.e.,
proportion of healthy participants correctly classified) and
sensitivity (i.e, the proportion of patients correctly classified).
The area under the curve of the receiver operating characteristic
(AROQ) is a summary measure incorporating both sensitivity and
specificity (AROC=1 denotes perfect classification, .5 denotes
random performance). Although AROC values such as .9 are
sometimes used heuristically as a threshold for clinical tests, the
desired sensitivity and specificity are situation-specific (e.g., in the
context of population screening where disease prevalence is low,
high specificity is desirable to avoid large numbers of false
positive cases). The sample size required for any analysis also
depends on the disease prevalence. When disease prevalence is
low (cf. case-control designs) the sample size needs to be
sufficient to accurately quantify sensitivity and specificity. Use of
passive measurements collected via smartphone can unobtru-
sively record features relevant to cognition (collecting data almost
continuously). Specific cognitive processes (e.g., memory) can be
monitored regularly using ‘gamified’ cognitive tasks, potentially in
combination with at-home recording of electroencephalography
(EEG). Frequent repeated assessment promises richer and more
reliable data than traditional snapshot assessment in the clinic
[13], especially relevant because cognitive performance of older
adults is more sensitive to external factors such as time of day
[14, 15] or fluctuations in stress [16]. We describe the practical
challenges when translating validated research methodologies
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into the healthcare pathway. An overview of this topic is
summarized in Fig. 1.

Peripheral-blood-based measures of neuropathology
Typically, biomarkers associated with cognitive decline are based
on analysis of CSF, involving an invasive lumbar puncture and
associated risks (e.g., infection). In contrast, blood-based biomar-
kers can be collected in a wide range of settings, such as tertiary
care centers, increasing accessibility. However, detecting biomar-
kers in blood is challenging, not least because some biomarker
levels, such as amyloid-p (Ap), are tenfold more concentrated in
CSF than in blood [17]. Blood contains several proteins, peptides,
nucleic acids, lipids, metabolites, exosomes, and cellular compo-
nents that present diurnal variations in their concentrations [18].
Biomarkers degrade in the liver or directly in the blood by
proteases, adhere to plasma proteins or blood cells, and are
excreted from the kidneys [19]. However, newer platforms can
detect biomarkers present at very low concentrations in blood
after having crossed the blood-brain barrier. Luminex xMAP,
single-molecule array (SIMOA), immunomagnetic reduction (IMR),
and immunoprecipitation mass spectrometry (IP-MS) assays,
among others, are based on the principle of the Enzyme-Linked
Immunoassay (ELISA) and have improved sensitivity versus
conventional biomarker assays [18, 20, 21].

Previous studies related to blood-based biomarkers for detect-
ing cognitive impairment focused on mild cognitive impairment
(MCl) or AD dementia. Increasing attention is being given to
evaluating blood-based biomarkers in cognitively unimpaired (CU)
older adults who are at risk of developing AD, and biomarkers
have predicted cognitive decline in a prospective cohort study
[22]. In this section, we focus on longitudinal studies in CU
participants deemed at risk (e.g., defined by AR status and/or
genetic risk) of developing dementia.

AB peptides can aggregate and form oligomers and fibrils,
resulting in amyloid plaque deposition, one of AD’s histopatho-
logical hallmarks [23]. AR peptides vary in size from 39-43 amino
acids, with AB40 being the most abundant in CSF (about 60% of
total AB), despite being less prone to aggregate. On the other
hand, AB42 has a higher propensity to form toxic oligomers, which
are present in CSF decades before AD onset [24, 25]. The AB42/40
ratio has been shown to improve diagnostic performance in
routine clinical use [26] and is robust to influence from pre-
analytical or analytical factors. An early study using plasma
showed an AP42/40 ratio reduction in AD dementia versus
subjective cognitive decline and MCI, with moderate accuracy
(AROC = 0.68) [27]. Subsequently, other sensitive methods have
been developed to quantify AR in blood plasma [28], and have
shown AP42/40 ratio as a biomarker in the progression to MCl or
AD dementia in CU individuals enrolled in large cohort studies
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[29-33]. Furthermore, the combination of plasma AB42/40 ratio
with age and APOE-£4 genotype could identify amyloid positivity
with higher accuracy (AROC = 0.90) [30].

In AD and other tauopathies, tau undergoes post-translational
modifications, resulting in aggregation and in the formation of
neurofibrillary tangles [34]. Together with AB peptides, neurofi-
brillary tangles are a pathological hallmark of AD [35-371]. Different
isoforms of plasma phosphorylated tau (p-tau) may be early
biomarkers of cognitive decline (cf. plasma total tau) [6, 38, 39],
with different assay platforms able to differentiate AD from CU
participants [40, 41]. The most studied tau isoform is p-taul81,
with several works reporting higher plasma levels associated with
future cognitive decline over time in CU individuals [25, 42-50].
Plasma p-tau181 had superior accuracy versus CSF p-tau181
(AROC = 0.94-0.98 and AROC =0.87-0.91, respectively) for pre-
dicting AD progression in CU individuals over time [46]. From
plasma, the p-tau231 isoform differentiated persons with AD from
AB—CU older adults and discriminated AD patients from those
with non-AD neurodegenerative disorders, as well as from Ap
—MCI patients [51]. Notably, p-tau231 levels in plasma increase
earlier than p-tau181 - before the threshold for AR PET positivity
has been reached and in response to early brain tau deposition
[51]. Therefore, p-tau231 may be a particularly useful biomarker of
AD pathology. Plasma p-tau217 is another promising blood-based
biomarker that may play a role in the spread of neocortical tangles
in AD. P-tau217's first increases in plasma are driven by AB
aggregation and may appear largely before the spread of tau
tangles outside of the medial temporal lobe [52]. Higher p-tau217
levels have been associated with steeper rates of cognitive
decline, with a greater risk of converting to AD and with
morphological brain alterations [1, 53-55].

Neurofilament light (NfL) plays a crucial role in the assembly
and maintenance of the axonal cytoskeleton chain. After an axonal
injury or neuronal degeneration, NfL is released into interstitial
fluid and eventually into CSF and plasma [56, 57]. NfL levels are
increased in frontotemporal dementia [58], small vessel disease
[59], Parkinson’s disease [60] and AD [61]. The results of cross-
sectional studies comparing plasma NfL concentrations and
cognitive performance are mixed: some studies have found
associations [62], whereas others did not [63, 64]. Longitudinal
studies, however, showed that increasing levels of plasma NfL
were significantly associated with declines in attention and global
cognition, even after a short 15-month follow-up period [64]. In a
separate study with CU participants, mean plasma levels increased
3.4 times faster in participants who subsequently developed AD
than those who remained cognitively healthy [65]. In a study that
investigated the NfL plasma levels in adults (mean age = 48 years)
with a mean follow-up of 4.3 years, initial NfL levels were
associated with a faster decline in normalized mental status scores
in Whites and those >50 years old [66]. Taken together, NfL may
be a predictive blood-based biomarker for global cognitive
impairment.

Glial fibrillary acidic protein (GFAP) is a type-lll intermediate
filament component of the cytoskeleton of mature astrocytes and a
marker of astroglial activation induced upon brain damage, during
CNS degeneration or in the aged brain [67]. In CU individuals at risk
of developing AD, GFAP predicted brain PET AP + (AROC =0.76),
outperforming CSF GFAP (AROC = 0.69) and other glial markers (CSF
chitinase-3-like protein 1, YKL-40: AROC=0.64; and Triggering
Receptor Expressed on Myeloid Cells 2: AROC = 0.71). These results
were independent of tau-PET burden, suggesting plasma GFAP is an
early marker associated with brain Ap pathology but not with tau
aggregation [68]. Combining plasma GFAP with other information
improved classification of AB+ compared to AB—: adding plasma
GFAP plus age, sex, and APOE-g4 carriage improved the AROC from
0.78 to 0.91 [69]. In addition, GFAP might be a prognostic biomarker
to predict incident dementia. Higher baseline GFAP levels in CU
participants were associated with a steeper rate of decline in
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memory, attention, and executive functioning [70]. In MCI partici-
pants, plasma GFAP detected AD pathology and predicted conver-
sion to AD dementia (AROC = 0.84); in the latter case, adding APOE-
€4 or age to the model did not significantly improve the accuracy of
the diagnosis [71]. However, other studies have reported a link
between plasma GFAP level and progression from MCI to dementia
[70].

Combining different types of blood-based biomarkers can
better predict change over time [72]. Combining data from
p-tau181 and NfL——but not AP42/AB40--produced the most
accurate prediction (AROC = 0.88) of 4-year conversion to AD, a
result that was validated in a separate cohort. A study with a long
follow-up compared baseline blood-based biomarkers (AR mis-
folding, NfL, p-tau181 and GFAP) in 308 participants: 68 of whom
developed dementia within 17 years. Among individual measures,
AB misfolding was the best predictor (AROC = 0.78), followed by
GFAP (0.74), NfL (0.68) and p-tau181 (0.61). However, the strongest
predictor was a combination of AR misfolding, GFAP and APOE
status (AROC = 0.83). With respect to preclinical AD, a variety of
blood-based biomarkers—p-tau181, p-tau217, p-tau231, GFAP, NfL
and AP42/40--and AP pathology were compared in at-risk
individuals (divided into two groups, over and under 65 years
old) [73]. In combination with age, sex and APOE &4 status, the
best predictors of CSF-determined A[ status were p-tau231
(AROC = 0.81 and 0.83 for younger and older groups, respectively)
and p-tau217 were (AROC = 0.76 and 0.89 for younger and older
groups, respectively). Studies such as these have great potential as
tools for recruitment and outcome measures in clinical trials.

Practical considerations for blood-based biomarkers

The technology for scalable blood-based biomarkers is quite
mature. For example, there is already a blood-based test for AD
based on the AB42/40 ratio (measured by mass spectrometry), age
and APOE-g4 genotype [74], which is concordant with PET
imaging scans in 94% of cases (see ref. [75]). In the context of
blood-based biomarkers, a standardized operating procedure for
plasma handling was produced by the Standardization of
Alzheimer's Blood Biomarkers working group [76] to describe
best practices for sample pre-analytical handling (collection,
preparation, dilution, and storage). These recommendations will
likely bring more standardized results and, consequently, more
robust comparisons among different studies evaluating blood-
based biomarkers for cognitive decline. There remain practical
challenges to widespread implementation of blood-based bio-
markers. Once extracted, blood cells need to be separated from
plasma, requiring several minutes in a centrifuge before aliquoting
and freezer storage within 2h [77]. These steps require both
expertise and expensive laboratory equipment (including reliable
storage at —80°C), which are typically not available in primary
healthcare settings.

Passive assessment of cognition
Increasing smartphone and tablet usage presents new opportu-
nities for expanding the availability and reducing the cost of
cognitive assessment and for improving the precision and
reducing the burden of cognitive testing. For example, in 2021,
61% of U.S. adults aged over 65 years owned a smartphone [78],
an almost 5-fold increase since 2012 [79]. Various wearable and in-
home sensors have been employed with the aim of detecting
cognitive decline (for overviews refs. [80, 81]). However, using
built-in smartphone sensors—already in the pockets of a large
proportion of the population—-allows passive monitoring to scale
up dramatically. Extant smartphone-based research has focused
on assessments of movement (e.g., gait, mobility, fine motor skills)
and of language and speech problems, all of which have been
associated with cognitive decline [82-85].

Mobile technologies can be used for automatic analysis of
speech and language impairments that may signal cognitive
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decline. For example, automated speech analysis of the linguistic
features captured during a tablet-administered picture description
task distinguished MCI/AD patients from CU individuals [86].
Moreover, unlike standard neuropsychological test scores, one of
these linguistic features-language coherence-declined signifi-
cantly faster in the MCI/AD group than in CU on a 6-month
follow-up, suggesting utility for monitoring language abilities over
time. In a separate study, spoken answers to cognitive assess-
ments were recorded on a tablet in order to generate a range of
features (e.g., number of pauses, verbal fluency). These features
were then used to develop models that differentiated among
patients with subjective cognitive impairment, MCl, AD and mixed
dementia patients with up to 92% accuracy [87]. Speech and
language can also be assessed in less structured, naturalistic
settings, such as during phone calls or typing. For example, natural
language processing of speech data was passively collected
during regular monitoring phone calls in a small sample of older
adults with or without AD [88] and linguistic features (e.g., atypical
repetition)  differentiated AD from CU  participants
(AROC=0.75-0.91). In addition to spoken language, features
derived from touchscreen typing classified older adults with or
without MCl (AROC =0.75) [89]. Relevant features included
aspects of fine motor movement (rigidity, bradykinesia, alternate
finger tapping) and those related to language (e.g. lexical
richness, grammatical and syntactical complexity).

Although passive measurements of communication bear an
obvious relation to cognition, other features-such as gait-may also
accurately predict cognitive decline. Assessing gait using smartphone
tools alone is currently not specific enough for detecting AD in the
general population [80]. Wearable accelerometers, however, can
differentiate among dementia subtypes (AD, dementia with Lewy
bodies and Parkinson’s disease) based on gait characteristics with
moderate accuracy (AROC = 0.403-0.799 for the different wearable
gait metrics) [90]. Real-life mobility of older adults can also be
measured through smartphones using global positioning system
data. Indeed, passive smartphone measures have been shown to
correlate with cognitive abilities better than laboratory indicators of
mobility capacity [91].

Practical considerations for passive assessment

One of the potential benefits of passive assessment lies in utilizing
the smart devices that people already possess. However, the low
cost, high scalability and accessibility of such an approach has to
be weighed against issues that are outside of researchers’ control.
Data can be lost simply due to internet connection problems.
Hardware in commercially available devices is heterogeneous
(e.g., the quality of motion and acceleration sensors varies widely).
Priorities of smartphone developers and researchers differ: many
smart devices automatically shut down background applications
to extend battery life, leading to data loss. The format of data
generated from smartphone devices prioritizes user-friendly
dashboards rather than a form suitable for researchers to perform
quantitative analyses.

Data privacy is a major concern for passive data collection.
Consent to passive monitoring of cognition via a smartphone
application appears higher in participants with more technology
experience and lower in healthcare professionals [92]. Worryingly,
not all smartphone applications intended for neuropsychiatric
conditions seem to have a privacy policy, and if this is available at
all, it is often inappropriately complex for lay people [93]. It is
possible, however, to effectively anonymize GPS data in order to
prevent re-identification use of ancillary data [94]. Given these
concerns, it is important to inform participants about what
happens to their data in an accessible, transparent way.

Remote, repeated cognitive assessment

Cognitive assessment remains the most common method for
clinical diagnosis of disease-related cognitive decline, despite the
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recent shift towards biological biomarkers [95, 96]. However,
identifying subtle changes in cognition outside the clinic - in
cognitively unimpaired individuals - requires valid and reliable
tools that can be administered frequently. Recent research has
made strides to make cognitive assessment deliverable via
desktop computer or smartphone. For example, the Test My Brain
Digital Neuropsychology Toolkit [97] was developed and made
available rapidly to meet a growing need for remote neuropsy-
chological assessment during the COVID-19 pandemic. Tests in
this toolkit probe a range of cognitive abilities including memory,
processing speed and executive function: these tests all achieved
‘acceptable’ to ‘very good’ reliability despite being self-
administered. Other cognitive assessment tools under develop-
ment include the Boston Remote Assessment for Neurocognitive
Health (BRANCH [98], designed to capture the first signs of
cognitive decline in preclinical AD using smartphone tests.
Validation work has shown that BRANCH has biological relevance,
with composite BRANCH scores negatively correlated with
amyloid and entorhinal tau levels [98].

Remote cognitive assessment has the benefit that it facilitates
longitudinal data collection. Repeated assessment allows perfor-
mance to be evaluated relative to an individual’s own baseline,
which is important given that short-term fluctuations can account
for up to 50% of variance on some cognitive tests across years
[99]. Memory is often the earliest cognitive function to noticeably
decline and is a cognitive function that is obviously suited to
longitudinal assessment [100]. Smartphone assessment of mem-
ory is not only more convenient but can allow researchers to
manipulate features of the design among participants to assess
what works best. For example, repeated smartphone assessment
was used to measure preclinical AD-related changes in long-term
associative memory [100] across varied memory retention
intervals of between 1-13 days. It was found that retention
intervals of at least 3 days were needed to be sufficiently sensitive
to differences in recall and recognition performance in adults
without diagnosed cognitive impairment.

Longitudinal assessment using smartphones can also allow
researchers to capture periodic fluctuations in cognition. This is
important because increased variability in cognitive performance
itself predicts cognitive decline in older adults, particularly on
speeded [101] or selective attention tasks [102]. An assessment of
the psychometric characteristics of very frequent and brief
repeated smartphone assessment [103] found that cognitive test
scores, averaged across 14 days of 5-times-a-day assessment, had
a between-person reliability of 0.97-0.99. However, the tests still
manifested sufficient within-person variability to capture cognitive
fluctuations between occasions (within-person reliability of
0.41-0.53). Furthermore, smartphone-administered brief cognitive
assessment repeated twice a day in multiple short sessions across
12 months could disentangle long- and short-term changes in
cognitive performance [104]. Most of the variance in cognitive
performance was due to between-person differences and short-
term  within-person fluctuations. Long-term  within-person
variability-the ~ metric  needed to  detect cognitive
decline-accounted for only approximately 14% of variance in
cognition. Fluctuations in cognitive performance can differ by
cognitive status. Utilizing a repeated smartphone assessment
protocol, diurnal patterns in cognitive performance distinguished
individuals at risk of AD from healthy older adults [15]. Specifically,
time-of-day effects—lower performance in afternoon vs.
morning-on an associative memory task were stronger in
individuals with abnormal levels of AD biomarkers. This type of
variability would be very difficult to detect using laboratory-based
protocols.

Although repeated cognitive assessment is desirable, cognitive
tasks can be repetitive, boring, too difficult, too easy [105] and
may have practice effects that affect their validity [106]. To solve
these problems, there is growing interest in the use of
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Fig.2 The way-finding game Sea Hero Quest is an example of a gamified smartphone tool that is sensitive to an increased genetic risk of
AD (figure reprinted with permission from ref. [117]). A Screenshot from the game. B The spatial trajectories of APOE-e4 positive (red) vs.
APOE-¢4 negative (green) participants on a selected Sea Hero Quest level. C The way-finding distance on the game differed significantly based

on APOE-€4 status.

gamification or “serious games” in cognitive assessment
[107-109]. Gamified assessment aims to reduce testing anxiety
[110] and increase task engagement and enjoyment without
affecting performance [108]. Many studies have successfully
adapted gamified assessment methods in older adults with or
without cognitive impairment [111-114]. Gamified assessment
can provide better construct and ecological validity than simple
laboratory-based tasks thanks to a richer, more realistic context
[115, 116]. Gamification is especially well suited for the assessment
of navigation abilities or spatial memory because games can
provide an immersive experience in 3D environments. For
example, a smartphone application assessed way-finding in a
high-quality 3D environment and showed that spatial navigation
ability on the application was more sensitive to genetic risk for AD
(APOE-€4 status) than a classic visual episodic memory test (see
Fig. 2) [117].

‘Adaptive testing’ is a common feature of gamified tasks, which
is a procedure wherein tasks become more or less challenging to
provide a tailored experience for the end-user. This allows
cognitive tests to arrive at a reliable estimate of a person’s ability
faster and more efficiently and avoids ceiling and floor effects that
can harm test sensitivity. Adaptive testing also has the benefit that
it promotes engagement on the part of the user and reduces
frustration, making people more likely to play for longer and more
frequently [118]. A driving scenario game took this approach to
assess attention and executive function via tablet [119]. The game
is a closed-loop system that dynamically adjusts to keep the
difficulty at 80% for all players and takes approximately 7 min to
complete. In a recent proof-of-concept study, the game was able
to distinguish those with cognitive impairment in a multiple
sclerosis (MS) population from those without [119].

Practical considerations for remote cognitive assessment

Ideally, metrics of cognitive functioning should be interoperable
(i.e., easily exchanged and interpreted across systems), although
this can be difficult to achieve in practice. For example, differences
in the technical parameters of smartphones affect the accuracy of
task presentation and measurement particularly for timed tasks
that involve very rapid presentation of stimuli or on tasks that
become more or less difficult based on screen size [120]. These
differences are not random: cognitive task performance varies
systematically per device type and operating system, which is
partially explained by demographic characteristics like education,
age and gender, suggesting that different people access different
devices [121]. Interoperability is also hindered because researchers
working in this area preferentially develop new assessment tools
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rather than validating and generalizing existing tools [121] (cf. the
Open Digital Health initiative, https://opendigitalhealth.org).

There is less experimental control with regards to distractions
and identity verification for remotely collected data but this is
counteracted by greater precision and standardization of the
stimuli vs. pen-and-paper tasks [120, 121]. Moreover, assessment
in real-life conditions can be more ecologically valid than
laboratory-based single assessments in carefully controlled con-
ditions (e.g., for tasks that examine memory retention over several
days). A further concern is that tasks ideal for repeated assessment
need to be short to remain engaging, which means fewer trials
and therefore less reliable measures. Repeated administration of
tasks can improve reliability by aggregating across multiple
timepoints.

Repeatable, remote brain assessment

Electroencephalography (EEG) is a non-invasive technique that
detects the synchronous activation of cortical pyramidal neurons
from the scalp. It can be used either to measure large-scale oscillatory
neural population spontaneous activity during quiet wakefulness or it
can be time-locked to an event. In contrast to MRI and PET, EEG
technology does not involve exposure to radioactive isotopes or
magnetic fields. A growing body of evidence shows that EEG is
sensitive to cognitive decline, at least. As we discuss later, EEG can
also potentially allow cognitive decline to be monitored via at-home
recording of brain activity because the technology can be
miniaturized and made portable [122].

Resting state EEG (rsEEG) may be particularly useful as a scalable
method because the participant does not have to engage in a
specific task, yet rsEEG appears sensitive to cognitive decline over
time, albeit in groups with mild symptoms at baseline (cf.
prospectively in a healthy cohort). For example, 54 MCl, 50 mild
AD, and 45 CU older adults each had their EEG recorded 1-year
apart [123]. At baseline, alpha-band power was lowest in the mild
AD group, highest in the CU group, whereas the MCI group had
intermediate values. At follow-up, the MCl group’s alpha power
was further decreased, suggesting that rsEEG could be sensitive to
disease progression. Similarly, in a separate study [124] there were
no differences in neuropsychological test performance for
participants, either A positive or negative, in a 2-year follow-up.
However, rsEEG, specifically the ratio of 6:a power, changed
significantly over time in participants who were AB+. A
comparison of 88 older adults with mild AD versus 35 CU across
one year reported increased widespread delta power and
decreased power of widespread alpha and posterior beta [125].
Furthermore, the topographies of the rsEEG power spectrum
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appear to be sensitive to disease stage. Differences in rsEEG power
spectrum densities between mild AD patients and CU controls
were the largest around temporal lobes while differences between
advanced AD patients and controls were largest around frontal
regions [126, 127]. A review of results from 14 studies that applied
machine learning to rsEEG data reported classification accuracies
between CU and MCl patients between 77-98%, sensitivity
between 75-100% and specificity between 75-97% [128]. A study
with a large sample (n =496) healthy older adults reported that
resting-state prefrontal biomarkers could predict global cognition
(Mini-Mental State Examination score) with moderate accuracy
(maximum intraclass correlation = 0.76) [129].

When time-locked to an event (e.g., a visual stimulus or a motor
response), the electrical potentials recorded via EEG are called
event-related potentials (ERPs) that can reveal - with temporal
resolution in the range of milliseconds - the neural correlates of
early sensory processes and of higher cognitive functions such as
decision-making. The P300 ERP is often evoked using oddball
tasks, during which participants should attend to the presence of
an infrequent stimulus [130], and is characterized by a positive ERP
deflection from approximately 300 ms after presentation of the
infrequent stimulus. The P300 ERP is thought to reflect decision
making and context-updating processes [131] and is particularly
promising for detecting cognitive decline [126, 127, 132], with the
benefit that it seems generally robust to gender and education
[133] (cf. ref. [134]. P300 latency correlates with degree of
cognitive deficit in AD [123, 127, 135-137]; and is increased in
AD compared to MCI, and MCl patients in turn have longer
latencies than age-matched controls [126, 127]. The P300 latency
is correlated with cognitive impairment, as measured by the Mini-
Mental State Exam [138] and the Alzheimer’s Disease Assessment
Scale-Cognitive Subscale [139]. Finally, using EEG phase-
amplitude coupling measures extracted from an oddball task, 15
CU were distinguished from 25 MCl with an accuracy of 95%, a
sensitivity of 96%, and a specificity of 93% [140].

In contrast to the P300 ERP, which requires a participant’s
attention, the mismatch negativity (MMN) ERP is produced by
passive auditory oddball paradigms in which a train of frequent
tones are interspersed with rare (‘deviant’) tones differing in
duration or frequency [141]. The MMN ERP is thought to reflect
automatic sensory processing and to act as a perceptual
prediction error signal, with a latency of 100-200 ms post deviant
stimulus presentation and ERP amplitude maximal at frontocentral
sites [142]. The MMN ERP can distinguish MCI from AD patients
[143] and amnestic MCl from healthy controls [142, 144]. MMN
amplitude appears to decrease in AD for interstimulus intervals
longer than 3 seconds, suggesting that sensory memory traces
decay faster in AD patients compared to healthy controls [144].
Demonstrating the utility of ERPs, whereas age and education
could not predict episodic memory or attention/executive
functions at 5-year follow-up, MMN metrics explained an
additional 36% of the variance in episodic memory performance
[144] at follow-up.

Given that laboratory-based EEG appears suitable for detecting
cognitive decline, scalability can be achieved by recording EEG
outside of the laboratory (i.e., remotely). Furthermore, remote EEG
can be conducted by unsupervised non-expert users
[122, 145-149]. Remote EEG platforms vary on a range of
parameters such as the electrode type (i.e., requiring a conductive
medium or not), number and placement of electrodes; portability;
user-friendliness and whether or not the signals are transmitted
wirelessly [122]. Precise synchronization between the EEG record-
ing device and the presentation of exogenous stimuli can be
achieved by pairing the EEG headset to a handheld tablet
[147, 148] or laptops [147].

The nomenclature for remote EEG reflects the variety of
possible configurations. ‘Portable’ refers to systems designed for
use outside the laboratory. ‘Mobile’ refers specifically to
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technology that can be used in motion, such as walking [149].
‘Wet' and ‘Dry’ refer to the type of electrodes used to conduct the
signal from the scalp: the former requiring a conductive medium
(electrolytic gel or water), the latter relying on mechanical
pressure against the scalp to ensure contact. In order to ensure
standardized electrode placement on the scalp, rigid headsets are
preferred for non-expert use [149]. Portable, dry EEG devices can
yield data that are similar in quality to those obtained by wet
laboratory-based EEG systems [150-153] with comparable ERP
amplitudes and latencies between wet and dry EEG [154],
significant positive correlations (r=0.54-0.89) between wet and
dry EEG recordings for both spectral components and ERPs [155],
and intra-class correlations between 0.76-0.85 across three
separate testing time points using dry EEG [156]. Figure 3 shows
an example of a portable EEG system and associated remotely
collected data.

Most usability studies of portable EEG have been conducted in
laboratories and/or have been overseen by trained technicians
[149, 151, 155, 157]. Limited data are available regarding the
usability of such technology when participants self-administer EEG
longitudinally from the home. However, one study [148] reported
data from 89 CU adults (age range 40-80 years) asked to complete
at-home recordings with a portable wireless dry EEG platform 5
times per week for 3 months. Each session was approximately
30 mins and consisted of gamified versions of tasks commonly
administered under EEG-two-stimulus oddball, flanker, delayed
match-to-sample and N-back-plus rsEEG. Participants were not
compensated, yet mean adherence was 4.1 sessions per week
with a low attrition rate of 11/89 participants (neither adherence
nor attrition were related to age). A high percentage of recordings
(96% of 3,603 sessions) contained usable EEG data. These results
suggest that it is feasible for participants to collect longitudinal
brain data from the home, which is essential if EEG is to be used
for detecting or monitoring cognitive decline

Practical considerations for remote EEG assessment
Integrating measures of cognitive decline into a healthcare system
requires standardized metrics, yet subtle differences in task design
(e.g., frequency of stimulus presentation) can change the nature of
EEG results [144]. Unlike psychometric tests, there are no
established norms for cognitive ERP amplitude and latency
although the development of standardized metrics may address
this issue [158, 159]. Self-administered EEG may not be feasible for
those with motor impairment (e.g., Parkinson'’s disease). Putting
on the headset and adjusting electrodes requires some manual
dexterity: some assistance may be needed for these participants.
Finally, many remote technologies often rely on a good WiFi
connection to download tasks and upload recorded data.

Pathway to healthcare practice: opportunities and challenges
The approaches described above-peripheral blood-based markers
associated with neuropathology, passive monitoring of cognition
and remote brain assessment-offer potential strategies for
detecting cognitive decline. However, deploying these strategies
at scale in diverse real-world healthcare settings is subject to
several considerations: scientific, societal and ethical. In this
section, we discuss these challenges and some potential solutions.

Early diagnosis raises complex ethical issues, including the right
(not) to know and communication challenges regarding the
probabilistic nature of any assessment [160]. Although smart-
phone and EEG tools described here accurately measure cognitive
function, they are not yet comparable with clinical tools. In
particular, the specificity-the proportion of negative cases
correctly identified-needs to be high before a tool for identifying
cognitive decline is clinically useful. Identifying cases with low or
no symptoms may cause individual distress and unduly burden
health systems by creating the ‘worried well’, particularly when
there are limited treatment options for diseases that cause
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Fig. 3 Example of a portable, dry EEG platform. Upper left panel: The platform (Cumulus Neuroscience) consists of a wireless 16-channel dry
sensor EEG headset linked to an Android tablet for task presentation. Upper right panel: Flexible Ag/AgCl coated dry EEG electrodes. Lower
left panel: Figure adapted with permission from ref. [155] showing weekly adherence of a cohort of 50 healthy older adults (455 years old)
with a 6-week at-home EEG recording protocol. Lower Right Panel: Figure adapted with permission from ref. [153] showing averaged event-
related potentials from target trials extracted from a gamified Oddball task, collected remotely by participants themselves.

cognitive decline [161]. An economic burden may result from the
cost of technologies, such as dry EEG and plasma biomarker
platforms, although these should reduce if manufactured at scale.
Many methods have been developed for Western populations: for
example, between 2000-2019, 41% of studies using automated
speech and language processing for AD monitoring were
conducted in English, with other studies focusing mostly on
Western-European languages [84]. It will be important to ensure
these approaches are suitable for low- and middle-income
countries, particularly because cognitive decline is becoming a
bigger issue in those regions [162, 163]. At a more fundamental
level, some methods lack an evidence base per se. A review of 83
available smartphone apps related to the most disabling
neuropsychiatric conditions found that only 18% seemed
evidence-based [93].

An important stepping-stone to real-world implementation is
deployment of scalable methods and tools in large, prospective
cohorts of CU participants. Indeed, some of these studies are
already underway. For example, the Early Detection of Neurode-
generative diseases (EDoN) [164] project aims to collect data from
passive sensors and easily obtained clinical measures to detect the
earliest signatures of dementia. EDoN'’s ultimate goal is to develop
a digital toolkit to deployed at a population level for people over
age 40. Notably, at first, a range of digital metrics will be recorded.
Subsequently, a data-driven approach (machine learning) will
identify a subset of measures that, in combination, are most
predictive. Combining a variety of tools in this way may improve
specificity. A Swedish-based prospective study - BioFINDER
(Biomarkers For Identifying Neurodegenerative Disorders Early
and Reliably; https://biofinder.se/)-seeks to validate blood-based
biomarkers for the diagnosis of AD and Parkinson’s Disease in
primary care settings. Participants in BioFINDER complete a wide
range of specialized, gold-standard measures (e.g., neuroimaging),
against which scalable methods can be compared.
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CONCLUSION

In this review, we described approaches for detecting cognitive
decline at scale, each of which varied in their development status.
Improvements in standardization and interoperability are needed
for tools designed for assaying specific cognitive functions to be
widely deployed. However, in the near future, blood plasma
measures of neuropathology, passive smartphone data collection
and resting-state EEG could plausibly be implemented at scale. It
may be possible to provide a direct-to-consumer test using p-tau
as a blood-based biomarker to identify those most at risk of
cognitive decline [165]. Alternatively, or in addition, cognitive
functioning can be detected using passive “digital biomarkers” to
detect early signs of disease [166]. The methods described here
can also be used to identify participants at-risk of cognitive
impairment for inclusion in clinical trials, to monitor progression of
cognitive decline and to assay treatment responses over time. For
clinical trials, the ability to monitor cognitive and brain responses
frequently (perhaps even on a daily basis) would allow researchers
to map the evolution of any treatment response over time, and
potentially to identify individual differences associated with
effective medication response. Obtaining behavior and brain data
outside the laboratory may radically change approaches for
detecting cognitive decline.
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