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Background: Existing methods to reconstruct vascular structures from a
computerized tomography (CT) angiogram rely on contrast injection to
enhance the radio-density within the vessel lumen. However, patho-
logical changes in the vasculature may be present that prevent accurate
reconstruction. In aortic aneurysmal disease, a thrombus adherent to the
aortic wall within the expanding aneurysmal sac is present in > 90% of
cases. These deformations prevent the automatic extraction of vital
clinical information by existing image reconstruction methods.
Aim: In this study, a deep learning architecture consisting of a modified
U-Net with attention-gating was implemented to establish a high-
throughput and automated segmentation pipeline of pathological blood
vessels in CT images acquired with or without the use of a contrast agent.
Methods and Results: Seventy-Five patients with paired noncontrast and
contrast-enhanced CT images were randomly selected from an ongoing
study (Ethics Ref 13/SC/0250), manually annotated and used for model
training and evaluation. Data augmentation was implemented to diver-
sify the training data set in a ratio of 10:1. The performance of our
Attention-based U-Net in extracting both the inner (blood flow) lumen
and the wall structure of the aortic aneurysm from CT angiograms was
compared against a generic 3-D U-Net and displayed superior results.
Implementation of this network within the aortic segmentation pipeline
for both contrast and noncontrast CT images has allowed for accurate
and efficient extraction of the morphological and pathological features of
the entire aortic volume.

Conclusions: This extraction method can be used to standardize aneur-
ysmal disease management and sets the foundation for complex geo-
metric and morphological analysis. Furthermore, this pipeline can be
extended to other vascular pathologies.
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Abbreviations: AAA, abdominal aortic aneurysm; Attn UNet, Attention
U-Net Network; CT, computerized tomography; CTA, computerized
tomography angiogram; DL, deep learning; GT, ground truth/manually-
derived; HU, hounsfield units; ICC, intraclass correlation coefficient;
ILT, intraluminal thrombus; NHS, National Health Service; OUH,
Oxford University Hospitals; OXAAA, Oxford Abdominal Aortic Aneur-
ysm Study; WS, wall structure
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A computerized tomography (CT) scan uses multiple X-ray
measurements to provide a noninvasive visualization of

internal structures. Since the invention of the first commercially-
available CT scanner in 1972,1 the use of CT for the diagnosis
and disease management is extensively embedded in modern
medicine. Visualization of vasculature on a routine CT is chal-
lenging as vessels have similar radio-densities (measured in
Hounsfield Unit, HU) to adjacent soft tissues. Injection of
intravenous contrast enhances the radio-density within the ves-
sel, enables its visualization and permits rapid segmentation. The
produced CT angiogram (CTA) is routinely utilized for diag-
nosis. On the other hand, vascular segmentation from non-
contrast CT images is a time-intensive and challenging task.
Such methods are not readily available to clinicians.

Furthermore, pathological changes, present in the lumen,
vessel wall or a combination of both, impede automatic segmen-
tation. In the example of abdominal aortic aneurysms (AAA,
abnormal ballooning of the aorta) (Fig. S1A, http://links.lww.
com/SLA/C720, red arrow), a thrombus is adherent to the
aneurysmal aortic wall (Fig. S1B, http://links.lww.com/SLA/
C720, red arrow points toward the AAA) in > 90% of cases.2

Existing methods to segment these CTAs are unable to con-
sistently extract the thrombus and the complex thrombus-lumen
interface with accuracy. As such, no automated and standardized
methods exist to assess aneurysmal diameter (Fig. S1C, http://
links.lww.com/SLA/C720) or thrombus volume. These are vital
pieces of clinical information used in the care of AAA patients.

Before the advent of deep learning (DL), vascular seg-
mentation methods incorporated traditional tools including edge
detection and/or mathematical models. These methods are
complex, difficult to execute and are poorly generalizable. In the
early 2000s, image-based DL methods became moreDOI: 10.1097/SLA.0000000000004595
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approachable, given significant improvements in hardware.
Convolutional neural networks, which are the foundation of DL
architectures, consist of multiple layers that transform the input
using various predefined methods (convolution, nonlinear acti-
vation, pooling, etc). The derived high-level abstractions are then
extracted by fully connected layers. Finally, the weights of each
neural layer and by extension the model are optimized during
training.3,4 In recent years, many groups have strived to identify
improvements to this conventional approach.

One well-known architecture for biomedical image seg-
mentation is the U-Net.5 This model employs skip connections
between layers, which serve to integrate the spatial and con-
textual information, to assemble a more precise output. Fur-
thermore, these methods, which were initially limited to 2D,
have been applied to 3D images to fully utilize spatial infor-
mation.3,5 However, due to memory limitations, many 3D U-Net
methods utilize down-sampled input images. This input size may
not have enough resolution to represent its diverse anatomical
variety. This is especially relevant when evaluating structures
with variation that can only be captured at higher resolutions.3,6

Additionally, most methods are not automatic and require
complex user input.

In this study, a modified U-Net architecture was imple-
mented to achieve high-throughput, automated segmentation of
pathological vessels (AAA) in CT images acquired with or
without the use of IV contrast. In CTA images, our method
enables simultaneous segmentation of both the arterial wall and

lumen to enable characterization of pathological contents. The
model’s efficacy was demonstrated by segmenting the thoracic
and abdominal aortic regions. Finally, clinical relevance of the
trained models was extensively evaluated.

METHODS

Curation of CT Images From a Clinical Cohort
Chest and abdominal CT images were acquired through

the Oxford Abdominal Aortic Aneurysm (OxAAA) study. This
study received full ethics approval from both Oxford University
and Oxford University Hospitals (OUH) NHS Foundation
Trust (Ethics Ref 13/SC/0250). As part of the routine pre-
operative assessment for AAA, a noncontrast CT of the abdo-
men and a CTA of both the chest and abdomen were performed.
CTA images were obtained following contrast injection in helical
mode with a predefined slice thickness of 1.25 mm. Noncontrast
CT images included only the abdominal aorta and were obtained
with a predefined slice thickness of 2.5 mm. Paired images were
anonymized within the OUH PACS system before being
downloaded onto the secure study drive.

Manual Segmentation of CT Images (Defining the
Ground Truth Data)

Seventy-Five patients with paired noncontrast and CTA
images were selected. In the CTA, both the aortic lumen and

FIGURE 1. A-F. Axial Slices obtained from a CTA and noncontrast CTscan with overlaying manually segmented labels. The lumen is
illustrated in black and is typically surrounded by the outer wall in grey. In the abdominal region, the grey label includes the intra-
luminal thrombus, if present. G–H. 3D-reconstructed volumes representing the aortic lumen (black) and wall structure (grey),
which contains the intra-luminal thrombus, are generated from the masks.
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wall structure (WS) were segmented from the aortic root to the
iliac bifurcation using the ITK-Snap segmentation software.7

Semi-automatic segmentation of the aortic lumen was achieved
using region-growing by manually delimiting the target inten-
sities between the contrast-enhanced lumen and surrounding
tissue. Segmentation of the wall was performed manually by
drawing along its boundary using the previously obtained inner
lumen as a base. Removing the lumen from the larger segmen-
tation results in a mask highlighting the WS and intra-luminal
thrombus (ILT), if present. In the noncontrast CT image, the
aorta was manually segmented.

Axial CTA images depicting the ascending thoracic (yel-
low arrow), descending thoracic (blue arrow), and abdominal
(red arrow) aortic regions are shown inFigure 1A-B. The latteris
aneurysmal and contains crescentic layers of thrombus.
Figure 1C displays the cross-section of the abdominal aorta (red
arrow) in the noncontrast CT scan. Figure 1D–F show the CT
images with the overlying manual segmentations. 3D volumes
derived from the manual 2D segmentations are depicted in
Figure 1G-H.

Assessment of Intra- and Inter- Observer Variation of
Manual Segmentation

Ten patients were selected for intra- and inter-observer
variability evaluation. This evaluates the validity of the manual
segmentations. For the intra-observer assessment, manual

segmentation was performed for the second time by AC after a
gap of 2 weeks. For the inter-observer assessment, a trained
clinician (NS) performed the segmentations independent of the
primary observer. The intraclass correlation coefficient (ICC)
was calculated for the intra-/inter-observer analysis to assess the
consistency of inner lumen and WS/ILT segmentations.

Data Augmentation
To diversify the training set, CT images and their corre-

sponding segmentations were augmented using divergence
transformations. These augmentations employ non-linear
warping techniques to manipulate the image in predefined
locations. Each image was augmented 10:1 to obtain a total of
825 postaugmented scans. Figure S2, http://links.lww.com/SLA/
C720 illustrates an axial slice augmented 10 times. During model
training, images were further augmented in 3D using random
rotation (0°–15°), translation and scaling (0.7–1.3).

U-Net Architecture
In this study, a variation of the U-Net was used for the

aortic segmentation pipeline (Fig. 2A).5,6 Its general architecture
consists of 2 components: the contraction and expansion path
(Fig. 2B). The contraction path (red) extracts information to
capture the context of the input at the expense of losing spatial
information. This is followed by an expansion path (green),
where the size of the image increases to produce a predictive

FIGURE 2. A. Automatic aortic segmentation pipeline for the simultaneous detection of the aortic lumen, and intra-luminal
thrombus/wall structure. Training required manual segmentation, 2D/3D-data augmentation and preprocessing of both CTA and
noncontrast CT images. Aortic ROI detection is coordinated by U-Net A for CTA images and U-Net D for noncontrast CT images.
This is followed by aortic segmentation and is coordinated by U-Net B+C for CTA images and U-Net E for non-contrast CT images.
B. The base architecture for this pipeline is a 3D Attention-based U-Net.
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binary mask. The lost image detail is restored using skip con-
nections and is merged via concatenation. This integrates the
spatial and contextual information to assemble a more precise
prediction of the aortic structure.

Attention Gating to Strengthen U-Net Performance
An attention-gated 3D U-Net was evaluated for the seg-

mentation of the aneurysmal aorta. Attention gates utilize
information extracted from the coarse scale to filter out irrele-
vant data exchanged via the skip connections before the con-
catenation step. The output of each attention gate is the element-
wise multiplication of input feature-maps and a learned attention
coefficient [0–1]. Given the goal to simultaneously predict the
location of the aortic lumen and WS, multidimensional attention
coefficients were used. These coefficients were determined using
additive addition,8 which is more accurate than multiplicative
addition.9 The integration of attention gates for the purpose of
pancreatic segmentation has produced superior results when
compared to that of prior models.6 A similar attention mecha-
nism was implemented in this study for aortic segmentation. The
performance of this modified U-Net architecture against that of
a generic 3D U-Net for segmentation of the aneurysm is
included in the supplement. Figure 2B illustrates the 3D U-Net
architecture with attention gates utilized in this study.

Loss Function to Evaluate Model Performance
The DICE score was used to quantify model performance

at each step. This metric evaluates the similarity between 2
binary images (A and B) and is defined as follows:

∩( ) =
+

DICE A B
A B

A B
,

2

Here, this index equals twice the number of elements
common to both binary images (true positives) divided by the
total number of elements in both images (2* True Positives +
False Positives + False Negatives). This similarity quotient
ranges between 0 and 1.

Aortic Segmentation Pipeline: Image Preprocessing
Following data augmentation, all 825 sets of CT scans

from 75 patients (284,624 CTA axial slices, 145,320 noncontrast
CT axial slices) were preprocessed. Preprocessing steps included
isotropic voxel conversion and down-sampling by a factor of 3.2
(512 × 512 × Zinitial/(i)→160 × 160 × Zinitial/(f): Zf = Zi / 3.2).
Here, Zi and Zf represents the number of axial slices within the
study series before and after pre-processing. The down-sampled
images were only used for aortic region of interest detection
(ROI). The higher resolution images were used for aortic
segmentation.

Aortic Segmentation Pipeline: Aortic ROI Detection
Attention U-Nets A and D (Attn U-Net A, D, refer to

Fig. 2A) were trained to segment the aorta from these decreased
resolution, isotropic CTA and noncontrast CT images, respec-
tively. These architectures were trained and evaluated using 26
patients (Table S1A, http://links.lww.com/SLA/C720). Aortic
bounding boxes were generated from the model predictions. Two
bounding boxes were generated from the contrast CT image [1.
Thoracic (Thor.) and 2. Descending/ Abdominal Aorta (AAA)]
and one was generated from the non-contrast CT image (1.
Descending/ Abdominal Aorta (AAA)]. The ROIs derived from
the bounding boxes served as the input data for aortic segmen-
tation. ZThor or ZAAA represent the number of axial slices within

the thoracic aorta and descending aorta/AAA ROIs, respec-
tively. All subsequent U-Nets (Attn U-Nets B, C, and E) were
trained using the entire dataset of 75 patients (825 augmented
augmented sets of images). This was done to expose the DL
models to the diverse and complex aortic/aneurysmal
morphology.

Aortic Segmentation Pipeline: Aortic Segmentation
U-Nets B and C (Attn U-Net B + C, refer to Fig. 2A) were

trained on the CTA ROIs to simultaneously segment the aortic
lumen and WS regions of the thoracic and WS/ILT of abdominal
aorta, respectively. U-Net E was trained on the non-contrast
ROIs and was tasked to segment the abdominal aorta. For all 3
U-Nets, 3-fold cross-validation experiments were performed
with a data-split of 50:25 patients between training and testing
cohorts for each fold (Table S1B, http://link-s.lww.com/SLA/
C720). Each fold consisted of 550 post-augmented images from
50 patients for training. The testing cohort consisted of 25 pre-
augmented images from 25 patients (testing cohort). There was
no overlap between the train/validation and testing cohorts.
Table S2, http://links.lww.com/SLA/C720 delineates all the
U-Nets trained and evaluated in this study along with their
learning parameters. Model training was performed simulta-
neously on a workstation with 2 × 11gb NVIDIA RTX 2080 TI
graphics cards.

Assessment of Model Accuracy Using Aortic
Morphological Features

In addition to the DICE score, 1-,2- and 3-D measure-
ments of aortic morphology were extracted from the aorta.
These were used to evaluate the clinical validity of this high-
resolution segmentation pipeline. We developed an in-house
program in MATLAB to automate the extraction task. We
assessed the inter-/intra- observer variation by comparing the
algorithm output to the measurements manually extracted
(ground truth) from the same CT images. From each patient,
measurements were obtained both along the axial plane and the
plane orthogonal to the aortic centerline. Six measurements were
obtained from three slices [1. slice with the max anteroposterior
(AP) diameter, 2–3.1 cm above and below the slice with the max
AP diameter]. Max antero-posterior and transverse diameters
were measured in each of the 3 slices. Coefficients of variation
between the manual delineation and automatic methods are
reported.

Maximum AP diameter (1-D) along the axial plane and
axial area (2-D) of the aneurysmal region were automatically
extracted from each 3-D image. Finally, 3-D measurements
included spatial assessment of the lumen and ILT/WS from CTA
images and of the total aortic volume from noncontrast CT
images. All metrics were calculated on model predictions and
ground truth (GT) segmentations using an in-house program in
MATLAB. Bland Altman plots and correlation coefficient
analysis assessed bias and the strength of association between the
output of the DL models and the GT. Bias for all measurements
was reported along with its 95% confidence interval (95% CI).

Second-order features including lumen and ILT/WS
center-lines were calculated using an implementation of the
homotopic thinning algorithm.10 Centerline deviation between
model predictions and GT annotations was calculated using 1.
Average Euclidean distances and 2. Hausdorff distance. The
former calculates the distances between 2 closest points in the 2
centerlines. On the other hand, the Hausdorff metric reflects the
upper bounds of the former.11 It is the greatest distance between
a point in one centerline and the closest point in the adjacent
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line. Additionally, maximum diameter in planes perpendicular
and orthogonal to the generated centerlines were extracted and
compared between the ground truth measurements and the
model predictions. Root-mean-square-error and percentage
deviation were used to assess the similarity between the diame-
ters orthogonal to the AAA centerline. This second-order feature
assessment ensures the utility of model predictions for complex
geometric/morphological analysis.

RESULTS

CT Image Characteristics
Threefold cross-validation was used during training of the

aortic segmentation pipeline. CT image characteristics between
the training/validation and testing cohorts were extracted for
each fold. Statistical comparison (2-tailed unpaired t-tests)
between the training and testing cohorts for both CTA and
noncontrast CT images across all 3 folds, revealed no significant
differences. The CT image characteristics between the groups in
fold 1 are summarized in Table S3, http://links.lww.com/SLA/
C720.

Intra- and Inter- Observer Variability Assessment
There were strong agreements for inter- and intra- observer

measurements (GT) as measured by DICE (±SD) score and
intra-class correlation coefficients from CTA and noncontrast
CT images (Table S4, http://links.lww.com/SLA/C720). This
supports the accuracy of the manual segmentations used for
model training.

Aortic Segmentation Pipeline: ROI Selection
Accuracy

Attn-U-Nets A and D were trained and tested using the
smaller cohort of 26 patients. These networks were tasked to
extract the aortic volume from low-resolution isotropic CT
images. Both model performances plateaued rapidly after 200
epochs of training. Figure S6, http://links.lww.com/SLA/C720
illustrates the evolving DICE score metric for the validation
group during training of these architectures. The segmentation
accuracies on the testing cohort for extracting the aortic mask
from the CTA and noncontrast CT images were 93.4 ± 1.2% and
88.7 ± 4.2%, respectively. Implementing this network on the
larger cohort allowed for accurate ROI selection of the aortic
shape on all images.

Aortic Segmentation Pipeline: Aortic Segmentation
Accuracy

Following ROI selection, threefold cross-validation was
used to train the final segmentation models. Figure S7A, http://
link-s.lww.com/SLA/C720 illustrates the evolving DICE score
metric for the validation group during training of these archi-
tectures. Consequently, Figure 3 displays the performance of
Attn U-Nets B and C on the ability to segment CTA images via
the DICE score metric. The inner lumen DICE accuracy is
comparable between the thoracic and the abdominal aorta
regions. However, WS DICE accuracy is lower in the thoracic
aorta compared to the abdominal aortic region. This is primarily
because the thoracic aorta is mostly devoid of ILT and in most
cases is a thin circular “ring” surrounding the lumen. Slight

FIGURE 3. DICE accuracy of model
predictions from CTA/noncontrast CT
images compared against GT segmen-
tations. A. DICE scores for the CTA-
derived segmentations are divided into
nonoverlapping ROIs (Thoracic Aorta
[U-Net B] and Abdominal Aorta [U-Net
C]). Scores for the lumen, thrombus/
wall structure (ILT/WS) only and the
combined aortic region are calculated.
B. DICE scores for the non-contrast-
derived segmentations of the com-
bined aortic region are calculated for
the descending aorta/AAA only [U-
Net E].
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differences in this segmentation result in a relatively larger pro-
portion of error, as compared to the abdominal region where WS
differences will be proportionally less due to ILT presence.

For noncontrast CT images, threefold cross-validation
was utilized to train Attn U-Net E (Fig. S7B, http://links.lww.
com/SLA/ C720). Figure 3B displays the performance of Attn
U-Net E to segment non-contrast CT images via the DICE
metric. The aortic segmentation pipeline for a patient within the
test cohort compared against GT annotations is illustrated in
Figure S8, http://link-s.lww.com/SLA/C720.

Aortic Segmentation Pipeline: First and Second
Order Assessment of Aortic Morphology

Coefficients of variation (%CV) between manual and
automatic measurements for the maximum AP and transverse
diameters along the axial plane were 0.7 ± 0.05% and 1.1 ±
0.03%, respectively. Additionally, %CV between manual
and automatic measurements for the maximum AP and
transverse diameters along the plane orthogonal to the aortic
centerline were 0.9 ± 0.04% and 1.4 ± 0.1%, respectively. This
suggests high concordance between the manual and automatic

FIGURE 4. Bland-Altman plots and correlation-coefficient analysis comparing the 1-D (Max AP Diameter of AAA - A), 2-D (Max
axial area of AAA - B), and 3-D (Lumen/WS volume of Thoracic Aorta – C-D, and lumen/WST/ILT volumes of the Abdominal Aorta -
E-F) measurements derived from model predictions compared against those derived from the GT. This analysis was limited to
volumes extracted from CTA images. Spearman correlation coefficients (rp) and P-values are indicated on the graphs.

TABLE 1. Clinical Assessment of Segmented Volumes From CTA and Noncontrast Images

CTA % Difference (±SD) % Difference (±SD) Noncontrast CT % Difference (±SD)

Thoracic aorta (U-Net B) Abdominal Aorta / AAA (U-Net C) Abdominal Aorta / AAA (U-Net E)
Max AP diameter — 1.20 ± 0.80% Max AP Diameter 1.67 ± 1.10%
Max axial area — 2.96 ± 2.45% Max Axial Area 3.60 ± 3.02%
Lumen volume 3.90 ± 2.64% 2.90 ± 2.60% AAA Volume 1.67 ± 1.10%
WS volume 12.40 ± 8.10% 5.50 ± 3.01%

Deviation (Euclidean
Distance, ± SD)

Deviation (Euclidean
distance, ±SD)

Deviation
(Euclidean

Distance, ±SD)

Lumen
Centerline Dev. 1.07 ± 0.67 mm 0.85 ± 0.52 mm AAA
Hausdorff dist. 2.60 ± 2.02 mm 2.54 ± 1.98 mm Centerline deviation 1.94 ± 1.00 mm

WS
Centerline Dev. 1.64 ± 0.80 mm 1.04 ± 0.57 mm
Hausdorff dist. 2.84 ± 1.59 mm 2.73 ± 1.73 mm Hausdorff distance 3.58 ± 2.08 mm
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methods in the calculation of clinical measurements and
supports the use of the automatic extraction algorithm for
subsequent steps.

Maximal AP diameter (rp = 0.99, P < 0.001) and cross-
sectional area (rp = 0.98, P < 0.001) derived from model pre-
dictions of CTA images were very strongly correlated with

FIGURE 5. Model predictions of the thoracic (A) and abdominal (B) aortic regions from CTA images and the abdominal region
from noncontrast CTimages (C) within the testing cohort are displayed alongside labelled GT masks. WS and Lumen volumes,
when available, are indicated next to each segmentation. DICE scores for the lumen (black), WS (grey), and the combined aortic
predictions are indicated for each patient. The difference in centerlines derived from the lumen (CDL +/– SD) and wall structure
masks (CDWS +/– SD) are indicated as average Euclidean distance deviation. CDL indicates Centerline Deviation of Lumen;SD,
Standard Deviation.
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manually derived measurements (Fig. 4A-B). The variability in
diameter measurements was < 1.5 mm (1.2 ± 0.80%). Inner
lumen (rP = 0.98, P < 0.001) and WS (rP = 0.78, P < 0.001)
volumes of the thoracic aorta, derived from the output of U-Net

B, were strongly correlated with those obtained from the GT
annotations (Fig. 4C-D). The variability in the WS volume
measurements (12.40% ± 8.10%) were noticeably greater than
for the lumen (3.90% ± 2.64%) in the thoracic aorta. This is

FIGURE 6. Maximum AAA Diameter profiles along planes orthogonal to AAA centerline. Profiles were generated from ground
truth and model predictions of AAA volumes derived from contrast-enhanced (Panel A) and noncontrast (Panel B) CT images. The
CT images displayed are the straightened views through the sagittal plane (realigned using the centerline). Corresponding DICE
scores, average Euclidean distance deviations between centerlines, RMSE and %-difference of diameter profiles are indicated.
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inherently linked with its thin circumferential distribution in the
thoracic aorta.

Inner lumen (rp= 0.99,P < 0.001) and ILT/WS (rp= 0.97,P
< 0.001) volumes from the abdominal aorta, derived from the
output of U-Net C, were very strongly correlated with manually-
extracted volumes (Fig. 4E-F). In this case, the ILT/WS variability
in the abdominal region (5.50 ± 3.01%) is lower than that in the
thoracic aorta (Table 1A). Model predictions of the thoracic (U-Net
B) and the abdominal aorta (U-Net C) from 4 patients in the testing
cohort alongside their GT masks are shown in Figure 5A-B.

Furthermore, the similarity in the lumen and ILT/WS
center-lines generated from the model predictions and GT
annotations is highlighted in Table 1A. Centerline deviations
within the thoracic aorta are greater than those observed within
the abdominal aorta. This may be due to the difficulty in
delineating the border between the aorta and branching arteries
within the thoracic region. Modelderived segmentations of these
outlets may affect centerline properties greater than other met-
rics. However, the average Euclidean distance deviation is less
than 2 mm for the thoracic aorta in 89% of cases (67/75) and for
the abdominal aorta in 92% of cases (69/75).

The generated centerlines allow for the automatic calcu-
lation of max AP diameter along planes orthogonal to the aortic

centerline. The resulting diameter profiles between ground truth
and predictions were compared and showed a RMSE of 1.45 ±
1.65 mm, which is equivalent to a percentage difference of 2.3 ±
1.1%. Figure 6A illustrates 2 examples of AAAs with planes
orthogonal to centerline. These planes were used to generate the
re-aligned or straightened view of the AAA. Corresponding
DICE scores and average Euclidean distance deviations between
centerlines are indicated. Maximum diameter profiles are illus-
trated for both ground truth and model predictions. These results
support the clinical strength of this automatic segmentation
platform for CTA images.

Maximal AP diameter (rp = 0.99, P < 0.001), cross-sec-
tional area (rp = 0.99, P < 0.001) and volume (rp = 0.99, P <
0.001) measurements extracted from the model predictions of
non-contrast CT images are very strongly correlated with those
derived from the GT segmentations (Fig. 7). The variability in
extracting these measurements from noncontrast CT-derived
segmentations is like that of CTA-derived annotations
(Table 1B). Model predictions from 2 patients within the testing
cohort are illustrated in Figure 5C. The resulting diameter pro-
files between ground truth and predictions were compared and
showed a RMSE of 2.11 ± 1.32 mm, which is equivalent to a
percentage difference of 2.8 ± 2.1%. Figure 6B illustrates
2 examples of AAAs with planes orthogonal to centerline. This

FIGURE 7. Bl and-Altman plots and
correlation-coefficient analysis compar-
ing the 1-D (Max AP Diameter of AAA -
A), 2-D (Max axial area of AAA - B), and
3-D (Total volume of AAA - C) measure-
ments from model predictions com-
pared against those derived from GT.
This analysis was limited to volumes
extracted from noncontrast CT images.
Spearman correlation coefficients (rp)
and P-values are indicated on the
graphs.
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study shows for the first time the ability to segment the aneur-
ysmal aorta from noncontrast CT images at a level comparable
to a human observer.

DISCUSSION
This study describes a fully automatic and high-resolution

algorithm able to extract the aortic volume from both CTA and
noncontrast CT images at a level superior to that of other cur-
rently published methods.12,13 High accuracy of our segmentation
pipeline was supported by the DICE score metric between model
predictions and ground truth annotations for both the thoracic
and abdominal aorta. However, this metric, which evaluates the
similarity between 2 binary images by evaluating the extent of
pixel overlap, has its limitations. In cases of small volumes,
minimal changes lead to lower DICE score percentages. This is
especially true in the outer wall structure region of the thoracic
aorta. This region is usually a thin, circumferential ring around
the aortic inner lumen. Small variations within this small volume
lead to relatively greater variability and lower DICE scores.
Concurrently, if there are small but critical errors in a relatively
large volume, the DICE score would remain elevated, but the
clinical utility of the image would be diminished. However, this
is a common way to compare the performance of segmentation
algorithms across methods.

To address the limitations of DICE score metric, clinical
utility was demonstrated by comparing first and second-order
measurements, which are important parameters for characteriz-
ing AAA progression. Extracting max AP diameter measure-
ments enables the calculation of growth during surveillance and
determines timing of surgery.14,15 Assessing the accuracy of dia-
meter extraction is essential to integrate this DL platform with
current methods of AAA management. Cross-sectional area
(2-D) has been shown to have the lowest variability in assessing
aneurysm change and supplements the 1-D diameter measure-
ments.16 Evolution of 3-D, especially thrombus volume, and
second order indices, including centerline is linked to AAA
progression, rupture risk and the incidence of adverse car-
diovascular events.17,18 This automatic method of volume
extraction can be used to standardize current methods of
aneurysmal disease management and sets the foundation for
subsequent complex geometric analysis. Furthermore, the pro-
posed pipeline can be extended to other vascular pathologies.

Before the advent of machine-learning approaches, AAA
segmentations were performed using intensity-based semi-
automatic lgorithms (eg, level-sets, active shape models and graph
cut methods).12,19–21 Their primary drawback was the failure to
accurately detect the aneurysm’s outer boundary as its intensity is
like that of adjacent structures. Although these models may pro-
vide good results, there are significant limitations that prevent
clinical implementation. These methods are semi-automatic and
require significant model optimization. Furthermore, these
methods require complex user-input (ex. prior lumen segmenta-
tions/centerlines), and are highly data-set dependent.12,19 The latter
limits model robustness and generalizability.

Recently, DL methods on CTAs have been proposed to
tackle this problem without encountering many of the limitations
of their predecessors. Variations on Deep Belief and U-net based
networks have been used to segment the infra-renal region of the
aorta.13,22 Unfortunately, many of these networks are limited to
2-D inputs (axial CT slices), which may fail to appropriately
capture the aneurysm’s 3D geometry. The accuracy and repro-
ducibility of these models is like that of earlier methods as they
are trained and validated on small data sets. Lopez-Linares et al

recently proposed a Holistically-Nested Edge Detection network
trained in both 2D and 3D that out-performs currently available
methods in both pre and post operative AAA segmentation.23

However, this method is limited to single-class segmentation of
the aneurysmal wall and performs poorly with small aneurysms
and those with a small thrombus burden.

Current convolutional neural network architectures can
capture semantic contextual information by generating a coarse
feature-map grid through iterative down-sampling of the input.
Features on this coarse map represent location and relationship
between structures/tissues at the organ level. However, these
architectures struggle to capture small target objects with
increased shape variability. This is especially important for
pathological vascular cases. Integrating attention gates, which is
commonly used in natural image analysis and classification tasks,
into this architecture has shown promise in focusing on target
structures without the need for additional train-ing.6 These
attention gates can suppress predictions in irrelevant background
region and can be trained simultaneously with the underlying
network using standard back-propagation methods. The strength
of this attention-based U-Net has been documented on the seg-
mentation of abdominal structures6; however, its role in aortic
segmentation has never before been evaluated. Its superior seg-
mentation performance for aneurysmal segmentation rationalized
its incorporation within the full aortic segmentation pipeline.

This is the first time aDLmethod is used to isolate the aorta/
AAA from a noncontrast CT scan. This allows for the extraction of
complex morphological information from noncontrast images.
Furthermore, the same methodology underpinning this work can
be extended to enable automatic segmentation of other structures
with or without the use of IV contrast agents.

Although CTAs provide unique insight into aneurysm
morphology and the vascular tree, it is not without its dis-
advantages. Administration of contrast requires needle insertion,
which is associated with multiple complications including inad-
vertent arterial puncture and contrast leak from veins causing
skin irritation/damage. Additionally, contrast agents are neph-
rotoxic and have a 10% incidence of acute kidney injury (con-
trast-induced nephropathy) after use. This is a problem within
the elderly population, who either have decreasing baseline renal
function or concomitant chronic kidney disease. Given that a
large sub-cohort of patients with aortic aneurysmal disease may
have diagnosed renal disease, this study highlights the necessity
to re-evaluate the role of noncontrast CT imaging for the
management of aneurysmal disease.

CONCLUSIONS
In this study, a novel automated pipeline was developed to

enable high resolution segmentation of blood vessels using deep
learning approaches. This clinically validated pipeline enables
automatic extraction of morphologic features of blood vessels
and can be applied for research and potentially for clinical use.
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